Discussiones Mathematicae
Graph Theory 33 (2013) 571-582
doi:10.7151/dmgt.1684

THE CROSSING NUMBERS OF PRODUCTS OF PATH
WITH GRAPHS OF ORDER SIX

MARIAN KLESCH2  AND JANA PETRILLOVA!

Faculty of Electrical Engineering and Informatics
Technical University of Kosice
Letnd 9, 042 00 Kosice, Slovak Republic
e-mail: marian.klescQtuke.sk
jana.petrillova@tuke.sk

Abstract

The crossing numbers of Cartesian products of paths, cycles or stars with
all graphs of order at most four are known. For the path P, of length n,
the crossing numbers of Cartesian products GOP,, for all connected graphs
G on five vertices are also known. In this paper, the crossing numbers of
Cartesian products GOP,, for graphs G of order six are studied. Let H
denote the unique tree of order six with two vertices of degree three. The
main contribution is that the crossing number of the Cartesian product
HOP, is 2(n — 1). In addition, the crossing numbers of GOP,, for fourty
graphs G on six vertices are collected.

Keywords: graph, drawing, crossing number, Cartesian product, path,
tree.
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1. INTRODUCTION

The crossing number cr(G) of a simple graph G with vertex set V(G) and edge set
E(QG) is defined as the minimum possible number of edge crossings in a drawing
of G in the plane. A drawing with minimum number of crossings (an optimal
drawing) must be a good drawing; that is, each two edges have at most one point
in common, which is either a common end-vertex or a crossing. Moreover, no
three edges cross in a point. Let D be a good drawing of the graph G. We
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denote the number of crossings in D by crp(G). Let G; and G be edge-disjoint
subgraphs of G. We denote by crp(G;, G;) the number of crossings between edges
of G; and edges of G, and by crp(G;) the number of crossings among edges of
G; in D.

The investigation on the crossing number of graphs is a classical but very
difficult problem. According to their special structure, Cartesian products of
special graphs are one of few graph classes for which the exact values of crossing
numbers were obtained. Let G; and G2 be simple graphs with vertex sets V(G1)
and V(G2), and edge sets E£(G1) and E(G2), respectively. The Cartesian product
G10G3 of the graphs G; and G2 has vertex set V(G10G2) = V(G1) x V(G2)
and two vertices (u,u’) and (v,v’) are adjacent in G100Gs if and only if either
u = v and v’ is adjacent with v’ in Gs, or v/ = v’ and u is adjacent with v in Gj.

Let C, be the cycle of length n, P, be the path of length n, and S,, be
the star isomorphic to Kj,. Beineke and Ringeisen in [1] started to study the
crossing numbers of Cartesian products of cycles with all graphs of order at most
four. In [3], [4], and [5], the crossing numbers of Cartesian products of cycles,
paths and stars with all graphs of order four are given. The crossing numbers
of Cartesian products of paths with all graphs of order five are collected in [8].
It seems natural to enquire about crossing numbers of Cartesian products of
paths with other graphs. There are known the crossing numbers of products
GOP, for some graphs G on six vertices, see [9], [10], [11], [12], and [13]. In the
paper, we extend these results by giving the exact values of crossing numbers for
Cartesian products of paths with several graphs of order six. We consider graphs
G;, i = 1,2,...,40, on six vertices which are collected in Table 1 in the last
section of the paper. All known results concerning crossing numbers of Cartesian
products of these graphs with paths are presented in Table 1.
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Figure 1. All trees of order six.

2. TREES ON SiX VERTICES

In this section, we give the crossing numbers of Cartesian products of paths with
all trees on six vertices. There are six trees of order six shown in Figure 1. The
graph G10JF, = Ps0P, is planar. The graph Gg is isomorphic with the star
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Ss. It was proved in [2] that cr(S,0P,) = (n — 1) 2|22 ]. So, cr(GOP,) =
4(n — 1). As both graphs G2 and G3 contain the star S5 as a subgraph, the
Cartesian product S3[1P, is a subgraph of both graphs G2l1P, and G3[1P,. Thus,
cr(GoOP,) > n—1 and cr(GsOPR,) > n — 1, because cr(Ss0F,) =n — 1, see [3].
On the other hand, in Figure 2(a) and Figure 2(b) there are drawings of the graphs
G20P,, and G30P, with n — 1 crossings. This implies that cr(G2:0F,) <n —1
and cr(Gs0OP,) < n — 1 and therefore, cr(G20P,) = cr(GsOP,) = n — 1. The
drawing in Figure 2(c) shows the graph G4OP, with 2(n — 1) crossings. As the
graph G40P, contains S40P, as a subgraph and cr(S40F,) = 2(n — 1), see [4],
the crossing number of the graph G4O0P, is 2(n — 1). The aim of the rest of this
section is to establish the crossing number of the graph G50P,.

(a) (b) (©)
Figure 2. The graphs G,0P,,, G3OP, and G4O0P,.

We assume n > 1 and find it convenient to consider the graph Gs[PF, in the
following way: it has 6(n + 1) vertices and edges that are the edges in n + 1
copies G%, 1 =0,1,...,n, and in six paths of length n. For ¢ = 0,1,...,n, let
a;,b;,e;, and f; be the vertices of Gg of degree one, ¢; and d; the vertices of
degree three (see Figure 3). Thus, for = € {a,b,c,d, e, f}, the path P¥ is induced
by the vertices xg, x1,...,o,. For i =1,2,...,n, let H® denote the subgraph of
G50P, containing the vertices of Gé_l and G’Lé) and the six edges joining Gé_l
to GL. Let Q', i = 1,2,...,n — 1, denote the subgraph of G5JP, induced by
V(GEHY UV(GLY) UV(GE™). So, @ = GEPUH UGLU H U GE!. Let us
denote by Qib the subgraph of @ obtained from Q° by removing six vertices e;
and f; for j =i —1,i,9+ 1 and two edges {¢;—1,¢;} and {¢;,¢ip1}. Likewise,
let Qéf be the subgraph of Q' obtained by removing six vertices a; and b; for
j=1—1,i,i+ 1 and two edges {d;—1,d;} and {d;,d;+1}. It is easy to see that
both subgraphs ng and Qé 7 are subdivisions of the graph K3 3.

The graph G5[JP; is planar. In the next lemma, the crossing number of the graph
G50P; is determined.

Lemma 1. cr(Gs0P) = 2.

Proof. 1t can be seen from the drawing in Figure 3 that cr(G50FP2) < 2. To
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Figure 3. The drawing of the graph G50P, with 2(n — 1) crossings.

prove the reverse inequality, assume that there is a drawing of the graph G5O P,
with less than two crossings. The graph G5P, can be consider as the graph Q'
defined above. As the subgraph Q}Lb of Q' is a subdivision of K33, at least one
crossing appears among the edges of Ql,. This implies that cr(GsP,) > 1. Our
assumption of the considered drawing with less than two crossings forces that
none of the edges incident with the vertices e; and f;, ¢ = 0,1, 2, is crossed. But
the unique planar drawing of the subgraph induced by the edges incident with
the vertices eg, e1, €2, fo, f1, and fo divides the plane into two hexagonal regions
and one octagonal region in such a way that at most two of the vertices dy, d1,
and dg are contained on a boundary of one region. Hence, the edge {c1,d;} or
at least one of the paths cicgdy and cqcods joining the vertex ¢; with the vertices
dp, d1, and ds crosses the edges incident with the vertices eq, e1, €2, fo, f1, and fs.
Thus, at least two crossings appear in any drawing of the graph G5[JP,. This
completes the proof. [

Lemma 2. If D is a good drawing of the graph GsOP,, n > 3, in which every
of the subgraphs GS U H', GE U H"™ and G, i =1,2,...,n — 1, has at most one
crossing on its edges, then in D there are at least 2(n — 1) crossings.

Proof. The proof is based on counting the total force of crossings in a drawing
of a graph. This concept was introduced by Beineke and Ringeisen in [1]. Let us
consider the following types of possible crossings on the edges of @’ in a drawing
of the graph GsP,:

(1) a crossing of an edge in H* U H**! with an edge in G,

(2) a crossing of an edge in G5 ' U H' with an edge in G5 U H'*!,
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3) a crossing of an edge in Gt U Gi™! with an edge in G,

5 5 5
(4) a crossing of an edge in Gg_l U H with an edge in Gé” UH™2,
(5) a crossing of an edge in Gg‘H U H*"! with an edge in Gé‘Q UHL

It is readily seen that every crossing of types (1) and (2) appears in a good drawing
of the graph G500P, only on the edges of the subgraph Q*. Fori € {2,3,...,n—1},
a crossing of type (3) in Q° between an edge of Gé_l and an edge of G% appears
only in Q"' as a crossing of type (3), and a crossing of type (5) in Q' appears
only in Q"' as a crossing of type (4). Fori € {1,2,...,n—2}, a crossing between
an edge of G’;rl and an edge of G appears only in Q! as a crossing of type (3),
and a crossing of type (4) in Q¢ appears only as a crossing of type (5) in Q1.

In a good drawing of G5[JP,, we define the force f(Q?) of Q° in the following
way: every crossing of type (1) or (2) contributes the value 1 to f(Q?) and every
crossing of type (3), (4) or (5) contributes the value % to f(Q") (and 3 to Q! or
1 to Q"1). The total force of the drawing is the sum of f(Q°). As every crossing
of type (1) or (2) is counted only once and every crossing of type (3), (4) or (5) is
counted at most twice and no other crossing contributes to the total force of the
drawing, the number of crossings in the drawing is not less than the total force
of the drawing. So, the aim of this proof is to show that if every of the subgraphs
GYUH!, GEUH" and G, i = 1,2,...,n — 1, has at most one crossing on its
edges, then f(Q%) >2foralli=1,2,...,n— 1.

Consider the good drawing D of G5UP, assumed in Lemma 2 and let D;b be
the subdrawing of the subgraph Q°, induced by D. Any drawing of K33 contains
a pair of edges that cross each other and do not meet in a vertex. The graph szb
can be obtained by elementary subdivision of six edges of K3 3. So, in Dflb there
is a forced crossing between an edge in Gg_l U H® and an edge in G?l U HL,
or between an edge in G’S and an edge in H* U H*!, or between an edge in e
and an edge in G’;l U Gg“. Every of the first two considered types of crossings
contributes the value 1 to f(Q') and the last one contributes the value 1. Hence,
the minimal contribution of the subdrawing D!, to f(Q") is %, but, an edge of
Gi is crossed by an edge of G5 ! or by an edge of G?Fl if f(Q’) = % The same
consideration can be repeated for the subdrawing D? 7 of Q7 f- Only three edges
{ciz1,di—1}, {ci,d;} and {ci41,d;+1} appear in both subgraphs @', and Qif. As
two adjacent edges cannot cross each other in K33, a possible crossing between
two of these three edges cannot be the forced crossing in the subdrawing Déb of

‘- The same holds for the subdrawing D! 7 of Q s Thus, there are at least
two forced crossings in the subdrawing D* of Q' induced by D. As there is at
most one crossing on the edges of G, at least one forced crossing contributes 1
to f(Q"). If both forced crossings among the edges of Q' contribute 1 to f(Q?),
then f(Q%) > 2.
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For i € {2,3,...,n — 2}, assume that one of the forced crossings among the
edges of @', say in D!, contributes only % to f(Q"). Without loss of generality
suppose that an edge of Gg is crossed by an edge of Gé_l in Dib. As no two
adjacent edges cross in a drawing of the graph K3 3, it is easy to see that neither
a crossing between the edges {a;, ¢;} and {a;—1,¢;—1} nor a crossing between the
edges {b;,c;} and {b;—1,c;—1} is forced in DZb. Thus, the forced crossing in D;b
is one of the following: {a;,c;} crosses {b;—1,ci—1}, {bi,c;} crosses {a;—1,¢i—1},
{di,Ci} Crosses {(11;1,61;1} or {bifl,cifl}, and {difl,cifl} Crosses {ai,ci} or
{bi,c¢;}. Up to the symmetry it is enough to consider only three case: the edge
{a;,c;} is crossed by {b;—1,c;—1}, the edge {d;, ¢;} is crossed by {b;_1,¢;—1}, and
the edge {d;_1,¢;—1} is crossed by {a;,c;}. Since in D there is no other crossing
either on the edges of Gg or on the edges of Gg_17 one can find in Figure 3
that in all three cases two vertex disjoint cycles a;a;+1¢i+1d;ir1€i+1€:d;cia; and
bi—1bi—oci_odi_s€;_9e;_1d;_1¢;—1b;—1 cross each other in D at least two times in
such a way that the path a;a;11¢;11d;11€;11€; crosses the path b;_1b;_oc;_od;_o
ei—se;—1. This crossing of type (5) contributes 3 to f(Q"), and hence, f(Q°) > 2.
Consider now the subgraph Q! induced on the vertices of GY, Gi, and G2.

In the subdrawing D' of Q! induced by D there are at least two forced crossings.
If crp(GY, GY) = crp(GE, G2) = 0, then f(Q') > 2. If the subgraphs G} and
G% cross each other, then the analysis in the previous paragraph implies that a
crossing of type (4) between G2U H! and G2 U H? is necessary. Hence, f(Q') > 2
in this case. As a crossing between the edges {cg,do} and {c1,d;} is not a forced
crossing in D!, one of the edges {co, a0}, {co,bo}, {do,e0}, and {do, fo} must be
crossed if cr(GY, Gi) = 1. Without loss of generality let {cg, ao} is crossed by an
edge of Gi. Assume now the subgraph of Qi 7 induced by the edges incident with
the vertices cg, do, €g, fo,c1,d1,e1 and fi. As, by hypothesis, no other crossing
appear on the edges of Gg U H' U G}, the unique planar subdrawing of the
considered subgraph divides the plane into three hexagonal regions in such a way
that at most two of the vertices ci, e, and f; are placed on a boundary of one
region. But, in this case, in the subdrawing D;f at least one of the paths dacacy,
dseser, and do fo f1 crosses an edge of Gg UH'U Gé. This contradiction with the
assumption of Lemma 2 implies that both forced crossings in D' contribute 1 to
f(QY) an therefore, f(Q') > 2. A similar analysis for the subgraph Q" ! gives
that f(Q" ') > 2 as well. Hence, the total force of the drawing D is at least
2(n—1), and in D there are at least 2(n— 1) crossings. This completes the proof.
|

Theorem 3. cr(Gs0F,) =2(n—1) forn > 1.

Proof. The drawing in Figure 3 shows that cr(Gs0P,) < 2(n — 1), because
every copy of G, i = 1,2,...,n — 1, is crossed two times and there is no other
crossings in the drawing. We prove the reverse inequality by induction on n. It
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is easy to see that the graph G500P; is planar and, by Lemma 1, cr(G50FPs) = 2.
So, the result is true for n = 1 and n = 2. Assume that it is true for n = k,
k > 2, and suppose that there is a good drawing of G5UPy1 with fewer than
2k crossings. By Lemma 2, some of the subgraphs Gg UH!, G’g“ U H*1 and

L i=1,2,...,k must be crossed at least twice. If Gg U H! has at least two
crossings on its edges, the deletion of all vertices of GY results in a drawing of the
graph G50P; with fewer than 2(k — 1) crossings. This contradicts the induction
hypothesis. The same contradiction is obtained, if at least two crossings appear
on the edges of Glgﬂ UH**1, If some G’g, t=1,2,...,k, is crossed at least twice,
by the removal of all edges of this G%, a subdivision of G50P; with fewer than
2(k — 1) crossings is obtained. This contradiction with the induction hypothesis
completes the proof. ]

3. THE COLLECTION OF cr(G;0P,) FOR GRAPHS GG; ON SIX VERTICES

The aim of this section is to collect Cartesian products of graphs of order six
with paths for which the crossing numbers are known. As for a disconnected
graph G, the Cartesian product GLP, is disconnected, we are interesting only of
connected graphs on six vertices. There are 112 connected graphs on six vertices.
At present, we are able to summarise the crossing numbers of G;[JP, for fourty
connected graphs G; of order six shown in the Table 1.

In the previous section, the crossing numbers of Cartesian products of paths
with all trees on six vertices are collected. These results enable us to determine
the exact values of crossing numbers for Cartesian products of paths with some
other graphs. It is easy to see that the graph C,,[JP, is planar. As the graph G~
is isomorphic to the cycle Cg, cr(G70P,) = 0. The graphs Gg, Gy, G12, and Gis
contain S3 as a subgraph. Thus, all Cartesian products G;0F,, ¢ = 8,9,12, 18,
contain S3[JP, as a subgraph. It was proved in [3] that cr(S30P,) = n — 1.
This implies that cr(G;0P,) > n — 1 for i = 8,9,12,18. On the other hand,
the graphs GgIP,, Go[1P,, and G12JPF, are subgraphs of the graph GigL1F,.
In Figure 4(a) there is a drawing of the graph G1300FP,, with n — 1 crossings and
therefore, cr(G1g0P,) < n — 1. Hence, cr(G;0P,) = n — 1 for the graphs G,
i =28,9,12,18.

Figure 4(b) shows the drawing of the graph Go70P, with 2(n — 1) crossings.
The graph Go7P,, contains G110P,, G15UP,, Gig0P,, G19P,, and Go51F,
as subgraphs. Thus, cr(G;0F,) < 2(n — 1) for ¢ = 11,15,16,19,25, and 27.
As cr(S40P,) = 2(n — 1), see [4], cr(G110P,) = cr(G150P,) = cr(Gs0P,) =
cr(GrodPR,) = cr(Gos0OP,) = cr(Goy0P,) = 2(n — 1), because each of these
graphs contains S4[1P, as a subgraph.

By Theorem 3, cr(G50P,) = 2(n—1). The graph G5[P, is a subgraph of all
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Figure 4. The graphs Glsl:an7 G27DPn, G31DPn, G17|:|Pn, and G35DPn.

graphs G;[JP, for ¢ = 10,14, 17,21, 23, 31 and therefore, the crossing number of all
these graphs is at least 2(n —1). To show the reverse inequality, we need suitable
drawings of two of the considered six graphs. Except of the graph G170P,, all
other graphs G;JFP,, i = 10, 14, 21, 23, are subgraphs of the graph G3;0F,. In
Figure 4(c) and Figure 4(d) one can find the drawings of the graphs Gs0F,
and G170P,, respectively, both with 2(n — 1) crossings. This implies that for
i =10,14,17,21,23, 31, the crossing number of the graphs G;,00P, is 2(n — 1).

The drawing of the graph Gs50P,, with 4(n — 1) crossings is shown in Fig-
ure 4(e). Thus, cr(Gs;0F,) < 4(n —1). As G350P, contains all graphs G;0P,,
i = 13,22,24,26,28, as subgraphs, the value 4(n — 1) is the upper bound for
crossing numbers of these graphs. On the other hand, each of the graphs G;1JFP,,
i =13,22,24, 26,28, 35, contains S5[0P,, as a subgraph. Bokal in [2] proved that
cr(Ss0P,) = 4(n — 1). Hence, cr(G30P,) = cr(G220P,) = cr(GuOP,) =
CT(GQGDPH) = CI’(GQgDPn) = CI‘(Ggg,DPn) = 4(n — 1)

In [6], the crossing number of the Cartesian product Kj30P, is given.
Namely, cr(K230P,) = 2n. We use these result and we give the values of crossing
numbers of two other Cartesian products of paths with graphs of order six. The
graph Gog is a subdivision of the complete bipartite graph Kj3 and the graph
Gog contains a subdivision of K>3 as a subgraph. Hence, the crossing number
of both Cartesian products GooLJP,, and Ga9[JP, is at least 2n. In Figure 5(a)
there is a drawing of Ggg[P, with 2n crossings. Thus, cr(GaUOP,) < 2n and
therefore, cr(GaogP,) = 2n. Moreover, as GooJP, is a subgraph of GogP,, the
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(a) (b)

(©)

Figure 5. The graphs Go9OP,, G3sOP,, and G34P,.

crossing number of the graph GooldP, is 2n too.

Let Hs be the graph obtained from the complete graph on five vertices K3
by deleting three edges incident with the same vertex. It was shown in [7] that
cr(H;0P,) = 3n — 1. Both graphs Gsp and Gsg contain a subdivision of the
graph Hj as a subgraph. This implies that the crossing number of both Cartesian
products GsoJFP, and GsglJP, is greater or equal 3n — 1, which is the crossing
number of the graph H5[1F,. The graph G3gP, is a subgraph of GssdFP, and
therefore, cr(Gso0dP,) < cr(GsgdP,). In the drawing of the graph GsgJP, in
Figure 5(b) it is easy to see that cr(Gss0P,) < 3n — 1. Thus, cr(G30F,) =
CT(GgﬁDPn) =3n — 1.

Recently, some few results concerning crossing numbers of Cartesian products
of paths with graphs on six vertices were obtained. For the graph Gs3 = P(3,1),
Peng and Yiew proved that the Cartesian product Gs3[JFP, has crossing number
4n, see [10]. The graph Gs7 is isomorphic with the second power of the path of
length five denoted by P2. It was proved in [9] that cr(P20P,) = cr(Gs;0P,) =
4(n—1). For two other graphs, namely for G3g and Gsg, the crossing numbers are
also known. In [12] one can find that cr(Gss[P,) = 4n and cr(GsgOP,) = 6n.
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G, cr(G,OP,) G; (GO P,) G er(G;0 P,)
G, Q 0 Gis % 2m-1 | g, @ 2n
Gy @ n-1 G,y @ 20- | @ 2(n-1)
G @ 2D Gis @ n Gy, @ on
G \Uf 20-1) | g, @ 201 | 6, @ an
6, \%@ 4n-1 | g @ 2n . @ 4n
G Q 0 Goy @ 2An-1) | @ 4n-1)
Gy @ n-1 Gy @ 2(n-1) 6 @ 4n-1)
60 | 20 |6, UL | 40 | <3|
6 | 200 | Ul | 20 |4, €| @
Gys @ n-1 G @ 4n-1 | g, % 15n+3
G, % 4n-1 | g, @ 2n-1)
Gy Q_I/) 2= | 60 @f 4(n-1)

Table 1. The known crossing numbers of G;[0P, for graphs G; on six vertices.

For the complete graph on six vertices, it is shown in [13] that the crossing
number of its Cartesian product with the path P, is 15n+ 3. Thus, we have that
cr(KgOP,) = cr(G4OP,) = 15n + 3. The last known result one can find in [11].
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It is shown that the crossing number of the graph G3200F,, = K3 4[1F, is 4n. This
result we use to establish the crossing number of the Cartesian product Gz41F,.
The graph G4 contains a subgraph Ks4 and therefore, cr(Gs40F,) > 4n. On
the other hand, in Figure 5(c) there is a drawing of the graph Gs4[P, with 4n
crossings. This confirms that cr(Gs4[0P,) = 4n. All known results concerning
crossing numbers of Cartesian products of paths with graphs on six vertices are
collected in Table 1.
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