THE CROSSING NUMBERS OF PRODUCTS OF PATH WITH GRAPHS OF ORDER SIX

Marián Klešč ${ }^{1,2}$ and Jana Petrillová ${ }^{1}$
Faculty of Electrical Engineering and Informatics
Technical University of Košice
Letná 9, 04200 Košice, Slovak Republic
e-mail: marian.klesc@tuke.sk
jana.petrillova@tuke.sk

Abstract

The crossing numbers of Cartesian products of paths, cycles or stars with all graphs of order at most four are known. For the path P_{n} of length n, the crossing numbers of Cartesian products $G \square P_{n}$ for all connected graphs G on five vertices are also known. In this paper, the crossing numbers of Cartesian products $G \square P_{n}$ for graphs G of order six are studied. Let H denote the unique tree of order six with two vertices of degree three. The main contribution is that the crossing number of the Cartesian product $H \square P_{n}$ is $2(n-1)$. In addition, the crossing numbers of $G \square P_{n}$ for fourty graphs G on six vertices are collected.

Keywords: graph, drawing, crossing number, Cartesian product, path, tree.
2010 Mathematics Subject Classification: 05C10, 05C38.

1. Introduction

The crossing number $\operatorname{cr}(G)$ of a simple graph G with vertex set $V(G)$ and edge set $E(G)$ is defined as the minimum possible number of edge crossings in a drawing of G in the plane. A drawing with minimum number of crossings (an optimal drawing) must be a good drawing; that is, each two edges have at most one point in common, which is either a common end-vertex or a crossing. Moreover, no three edges cross in a point. Let D be a good drawing of the graph G. We

[^0]denote the number of crossings in D by $\operatorname{cr}_{D}(G)$. Let G_{i} and G_{j} be edge-disjoint subgraphs of G. We denote by $\operatorname{cr}_{D}\left(G_{i}, G_{j}\right)$ the number of crossings between edges of G_{i} and edges of G_{j}, and by $\operatorname{cr}_{D}\left(G_{i}\right)$ the number of crossings among edges of G_{i} in D.

The investigation on the crossing number of graphs is a classical but very difficult problem. According to their special structure, Cartesian products of special graphs are one of few graph classes for which the exact values of crossing numbers were obtained. Let G_{1} and G_{2} be simple graphs with vertex sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$, and edge sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$, respectively. The Cartesian product $G_{1} \square G_{2}$ of the graphs G_{1} and G_{2} has vertex set $V\left(G_{1} \square G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two vertices $\left(u, u^{\prime}\right)$ and $\left(v, v^{\prime}\right)$ are adjacent in $G_{1} \square G_{2}$ if and only if either $u=v$ and u^{\prime} is adjacent with v^{\prime} in G_{2}, or $u^{\prime}=v^{\prime}$ and u is adjacent with v in G_{1}.

Let C_{n} be the cycle of length n, P_{n} be the path of length n, and S_{n} be the star isomorphic to $K_{1, n}$. Beineke and Ringeisen in [1] started to study the crossing numbers of Cartesian products of cycles with all graphs of order at most four. In [3], [4], and [5], the crossing numbers of Cartesian products of cycles, paths and stars with all graphs of order four are given. The crossing numbers of Cartesian products of paths with all graphs of order five are collected in [8]. It seems natural to enquire about crossing numbers of Cartesian products of paths with other graphs. There are known the crossing numbers of products $G \square P_{n}$ for some graphs G on six vertices, see [9], [10], [11], [12], and [13]. In the paper, we extend these results by giving the exact values of crossing numbers for Cartesian products of paths with several graphs of order six. We consider graphs $G_{i}, i=1,2, \ldots, 40$, on six vertices which are collected in Table 1 in the last section of the paper. All known results concerning crossing numbers of Cartesian products of these graphs with paths are presented in Table 1.

G_{1}

Figure 1. All trees of order six.

2. Trees on Six Vertices

In this section, we give the crossing numbers of Cartesian products of paths with all trees on six vertices. There are six trees of order six shown in Figure 1. The graph $G_{1} \square P_{n}=P_{5} \square P_{n}$ is planar. The graph G_{6} is isomorphic with the star
S_{5}. It was proved in [2] that $\operatorname{cr}\left(S_{m} \square P_{n}\right)=(n-1)\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor$. So, $\operatorname{cr}\left(G_{6} \square P_{n}\right)=$ $4(n-1)$. As both graphs G_{2} and G_{3} contain the star S_{3} as a subgraph, the Cartesian product $S_{3} \square P_{n}$ is a subgraph of both graphs $G_{2} \square P_{n}$ and $G_{3} \square P_{n}$. Thus, $\operatorname{cr}\left(G_{2} \square P_{n}\right) \geq n-1$ and $\operatorname{cr}\left(G_{3} \square P_{n}\right) \geq n-1$, because $\operatorname{cr}\left(S_{3} \square P_{n}\right)=n-1$, see [3]. On the other hand, in Figure 2(a) and Figure 2(b) there are drawings of the graphs $G_{2} \square P_{n}$ and $G_{3} \square P_{n}$ with $n-1$ crossings. This implies that $\operatorname{cr}\left(G_{2} \square P_{n}\right) \leq n-1$ and $\operatorname{cr}\left(G_{3} \square P_{n}\right) \leq n-1$ and therefore, $\operatorname{cr}\left(G_{2} \square P_{n}\right)=\operatorname{cr}\left(G_{3} \square P_{n}\right)=n-1$. The drawing in Figure 2(c) shows the graph $G_{4} \square P_{n}$ with $2(n-1)$ crossings. As the graph $G_{4} \square P_{n}$ contains $S_{4} \square P_{n}$ as a subgraph and $\operatorname{cr}\left(S_{4} \square P_{n}\right)=2(n-1)$, see [4], the crossing number of the graph $G_{4} \square P_{n}$ is $2(n-1)$. The aim of the rest of this section is to establish the crossing number of the graph $G_{5} \square P_{n}$.

Figure 2. The graphs $G_{2} \square P_{n}, G_{3} \square P_{n}$ and $G_{4} \square P_{n}$.
We assume $n \geq 1$ and find it convenient to consider the graph $G_{5} \square P_{n}$ in the following way: it has $6(n+1)$ vertices and edges that are the edges in $n+1$ copies $G_{5}^{i}, i=0,1, \ldots, n$, and in six paths of length n. For $i=0,1, \ldots, n$, let a_{i}, b_{i}, e_{i}, and f_{i} be the vertices of G_{5}^{i} of degree one, c_{i} and d_{i} the vertices of degree three (see Figure 3). Thus, for $x \in\{a, b, c, d, e, f\}$, the path P_{n}^{x} is induced by the vertices $x_{0}, x_{1}, \ldots, x_{n}$. For $i=1,2, \ldots, n$, let H^{i} denote the subgraph of $G_{5} \square P_{n}$ containing the vertices of G_{5}^{i-1} and G_{5}^{i} and the six edges joining G_{5}^{i-1} to G_{5}^{i}. Let $Q^{i}, i=1,2, \ldots, n-1$, denote the subgraph of $G_{5} \square P_{n}$ induced by $V\left(G_{5}^{i-1}\right) \cup V\left(G_{5}^{i}\right) \cup V\left(G_{5}^{i+1}\right)$. So, $Q^{i}=G_{5}^{i-1} \cup H^{i} \cup G_{5}^{i} \cup H^{i+1} \cup G_{5}^{i+1}$. Let us denote by $Q_{a b}^{i}$ the subgraph of Q^{i} obtained from Q^{i} by removing six vertices e_{j} and f_{j} for $j=i-1, i, i+1$ and two edges $\left\{c_{i-1}, c_{i}\right\}$ and $\left\{c_{i}, c_{i+1}\right\}$. Likewise, let $Q_{e f}^{i}$ be the subgraph of Q^{i} obtained by removing six vertices a_{j} and b_{j} for $j=i-1, i, i+1$ and two edges $\left\{d_{i-1}, d_{i}\right\}$ and $\left\{d_{i}, d_{i+1}\right\}$. It is easy to see that both subgraphs $Q_{a b}^{i}$ and $Q_{e f}^{i}$ are subdivisions of the graph $K_{3,3}$.
The graph $G_{5} \square P_{1}$ is planar. In the next lemma, the crossing number of the graph $G_{5} \square P_{2}$ is determined.

Lemma 1. $\operatorname{cr}\left(G_{5} \square P_{2}\right)=2$.
Proof. It can be seen from the drawing in Figure 3 that $\operatorname{cr}\left(G_{5} \square P_{2}\right) \leq 2$. To

Figure 3. The drawing of the graph $G_{5} \square P_{n}$ with $2(n-1)$ crossings.
prove the reverse inequality, assume that there is a drawing of the graph $G_{5} \square P_{2}$ with less than two crossings. The graph $G_{5} \square P_{2}$ can be consider as the graph Q^{1} defined above. As the subgraph $Q_{a b}^{1}$ of Q^{1} is a subdivision of $K_{3,3}$, at least one crossing appears among the edges of $Q_{a b}^{1}$. This implies that $\operatorname{cr}\left(G_{5} \square P_{2}\right) \geq 1$. Our assumption of the considered drawing with less than two crossings forces that none of the edges incident with the vertices e_{i} and $f_{i}, i=0,1,2$, is crossed. But the unique planar drawing of the subgraph induced by the edges incident with the vertices $e_{0}, e_{1}, e_{2}, f_{0}, f_{1}$, and f_{2} divides the plane into two hexagonal regions and one octagonal region in such a way that at most two of the vertices d_{0}, d_{1}, and d_{2} are contained on a boundary of one region. Hence, the edge $\left\{c_{1}, d_{1}\right\}$ or at least one of the paths $c_{1} c_{0} d_{0}$ and $c_{1} c_{2} d_{2}$ joining the vertex c_{1} with the vertices d_{0}, d_{1}, and d_{2} crosses the edges incident with the vertices $e_{0}, e_{1}, e_{2}, f_{0}, f_{1}$, and f_{2}. Thus, at least two crossings appear in any drawing of the graph $G_{5} \square P_{2}$. This completes the proof.

Lemma 2. If D is a good drawing of the graph $G_{5} \square P_{n}, n \geq 3$, in which every of the subgraphs $G_{5}^{0} \cup H^{1}, G_{5}^{n} \cup H^{n}$ and $G_{5}^{i}, i=1,2, \ldots, n-1$, has at most one crossing on its edges, then in D there are at least $2(n-1)$ crossings.

Proof. The proof is based on counting the total force of crossings in a drawing of a graph. This concept was introduced by Beineke and Ringeisen in [1]. Let us consider the following types of possible crossings on the edges of Q^{i} in a drawing of the graph $G_{5} \square P_{n}$:
(1) a crossing of an edge in $H^{i} \cup H^{i+1}$ with an edge in G_{5}^{i},
(2) a crossing of an edge in $G_{5}^{i-1} \cup H^{i}$ with an edge in $G_{5}^{i+1} \cup H^{i+1}$,
(3) a crossing of an edge in $G_{5}^{i-1} \cup G_{5}^{i+1}$ with an edge in G_{5}^{i},
(4) a crossing of an edge in $G_{5}^{i-1} \cup H^{i}$ with an edge in $G_{5}^{i+2} \cup H^{i+2}$,
(5) a crossing of an edge in $G_{5}^{i+1} \cup H^{i+1}$ with an edge in $G_{5}^{i-2} \cup H^{i-1}$.

It is readily seen that every crossing of types (1) and (2) appears in a good drawing of the graph $G_{5} \square P_{n}$ only on the edges of the subgraph Q^{i}. For $i \in\{2,3, \ldots, n-1\}$, a crossing of type (3) in Q^{i} between an edge of G_{5}^{i-1} and an edge of G_{5}^{i} appears only in Q^{i-1} as a crossing of type (3), and a crossing of type (5) in Q^{i} appears only in Q^{i-1} as a crossing of type (4). For $i \in\{1,2, \ldots, n-2\}$, a crossing between an edge of G_{5}^{i+1} and an edge of G_{5}^{i} appears only in Q^{i+1} as a crossing of type (3), and a crossing of type (4) in Q^{i} appears only as a crossing of type (5) in Q^{i+1}.

In a good drawing of $G_{5} \square P_{n}$, we define the force $f\left(Q^{i}\right)$ of Q^{i} in the following way: every crossing of type (1) or (2) contributes the value 1 to $f\left(Q^{i}\right)$ and every crossing of type (3), (4) or (5) contributes the value $\frac{1}{2}$ to $f\left(Q^{i}\right)$ (and $\frac{1}{2}$ to Q^{i-1} or $\frac{1}{2}$ to $\left.Q^{i+1}\right)$. The total force of the drawing is the sum of $f\left(Q^{i}\right)$. As every crossing of type (1) or (2) is counted only once and every crossing of type (3), (4) or (5) is counted at most twice and no other crossing contributes to the total force of the drawing, the number of crossings in the drawing is not less than the total force of the drawing. So, the aim of this proof is to show that if every of the subgraphs $G_{5}^{0} \cup H^{1}, G_{5}^{n} \cup H^{n}$ and $G_{5}^{i}, i=1,2, \ldots, n-1$, has at most one crossing on its edges, then $f\left(Q^{i}\right) \geq 2$ for all $i=1,2, \ldots, n-1$.

Consider the good drawing D of $G_{5} \square P_{n}$ assumed in Lemma 2 and let $D_{a b}^{i}$ be the subdrawing of the subgraph $Q_{a b}^{i}$ induced by D. Any drawing of $K_{3,3}$ contains a pair of edges that cross each other and do not meet in a vertex. The graph $Q_{a b}^{i}$ can be obtained by elementary subdivision of six edges of $K_{3,3}$. So, in $D_{a b}^{i}$ there is a forced crossing between an edge in $G_{5}^{i-1} \cup H^{i}$ and an edge in $G_{5}^{i+1} \cup H^{i+1}$, or between an edge in G_{5}^{i} and an edge in $H^{i} \cup H^{i+1}$, or between an edge in G_{5}^{i} and an edge in $G_{5}^{i-1} \cup G_{5}^{i+1}$. Every of the first two considered types of crossings contributes the value 1 to $f\left(Q^{i}\right)$ and the last one contributes the value $\frac{1}{2}$. Hence, the minimal contribution of the subdrawing $D_{a b}^{i}$ to $f\left(Q^{i}\right)$ is $\frac{1}{2}$, but, an edge of G_{5}^{i} is crossed by an edge of G_{5}^{i-1} or by an edge of G_{5}^{i+1} if $f\left(Q^{i}\right)=\frac{1}{2}$. The same consideration can be repeated for the subdrawing $D_{e f}^{i}$ of $Q_{e f}^{i}$. Only three edges $\left\{c_{i-1}, d_{i-1}\right\},\left\{c_{i}, d_{i}\right\}$ and $\left\{c_{i+1}, d_{i+1}\right\}$ appear in both subgraphs $Q_{a b}^{i}$ and $Q_{e f}^{i}$. As two adjacent edges cannot cross each other in $K_{3,3}$, a possible crossing between two of these three edges cannot be the forced crossing in the subdrawing $D_{a b}^{i}$ of $Q_{a b}^{i}$. The same holds for the subdrawing $D_{e f}^{i}$ of $Q_{e f}^{i}$. Thus, there are at least two forced crossings in the subdrawing D^{i} of Q^{i} induced by D. As there is at most one crossing on the edges of G_{5}^{i}, at least one forced crossing contributes 1 to $f\left(Q^{i}\right)$. If both forced crossings among the edges of Q^{i} contribute 1 to $f\left(Q^{i}\right)$, then $f\left(Q^{i}\right) \geq 2$.

For $i \in\{2,3, \ldots, n-2\}$, assume that one of the forced crossings among the edges of Q^{i}, say in $D_{a b}^{i}$, contributes only $\frac{1}{2}$ to $f\left(Q^{i}\right)$. Without loss of generality suppose that an edge of G_{5}^{i} is crossed by an edge of G_{5}^{i-1} in $D_{a b}^{i}$. As no two adjacent edges cross in a drawing of the graph $K_{3,3}$, it is easy to see that neither a crossing between the edges $\left\{a_{i}, c_{i}\right\}$ and $\left\{a_{i-1}, c_{i-1}\right\}$ nor a crossing between the edges $\left\{b_{i}, c_{i}\right\}$ and $\left\{b_{i-1}, c_{i-1}\right\}$ is forced in $D_{a b}^{i}$. Thus, the forced crossing in $D_{a b}^{i}$ is one of the following: $\left\{a_{i}, c_{i}\right\}$ crosses $\left\{b_{i-1}, c_{i-1}\right\},\left\{b_{i}, c_{i}\right\}$ crosses $\left\{a_{i-1}, c_{i-1}\right\}$, $\left\{d_{i}, c_{i}\right\}$ crosses $\left\{a_{i-1}, c_{i-1}\right\}$ or $\left\{b_{i-1}, c_{i-1}\right\}$, and $\left\{d_{i-1}, c_{i-1}\right\}$ crosses $\left\{a_{i}, c_{i}\right\}$ or $\left\{b_{i}, c_{i}\right\}$. Up to the symmetry it is enough to consider only three case: the edge $\left\{a_{i}, c_{i}\right\}$ is crossed by $\left\{b_{i-1}, c_{i-1}\right\}$, the edge $\left\{d_{i}, c_{i}\right\}$ is crossed by $\left\{b_{i-1}, c_{i-1}\right\}$, and the edge $\left\{d_{i-1}, c_{i-1}\right\}$ is crossed by $\left\{a_{i}, c_{i}\right\}$. Since in D there is no other crossing either on the edges of G_{5}^{i} or on the edges of G_{5}^{i-1}, one can find in Figure 3 that in all three cases two vertex disjoint cycles $a_{i} a_{i+1} c_{i+1} d_{i+1} e_{i+1} e_{i} d_{i} c_{i} a_{i}$ and $b_{i-1} b_{i-2} c_{i-2} d_{i-2} e_{i-2} e_{i-1} d_{i-1} c_{i-1} b_{i-1}$ cross each other in D at least two times in such a way that the path $a_{i} a_{i+1} c_{i+1} d_{i+1} e_{i+1} e_{i}$ crosses the path $b_{i-1} b_{i-2} c_{i-2} d_{i-2}$ $e_{i-2} e_{i-1}$. This crossing of type (5) contributes $\frac{1}{2}$ to $f\left(Q^{i}\right)$, and hence, $f\left(Q^{i}\right) \geq 2$.

Consider now the subgraph Q^{1} induced on the vertices of G_{5}^{0}, G_{5}^{1}, and G_{5}^{2}. In the subdrawing D^{1} of Q^{1} induced by D there are at least two forced crossings. If $\operatorname{cr}_{D}\left(G_{5}^{0}, G_{5}^{1}\right)=\operatorname{cr}_{D}\left(G_{5}^{1}, G_{5}^{2}\right)=0$, then $f\left(Q^{1}\right) \geq 2$. If the subgraphs G_{5}^{1} and G_{5}^{2} cross each other, then the analysis in the previous paragraph implies that a crossing of type (4) between $G_{5}^{0} \cup H^{1}$ and $G_{5}^{3} \cup H^{2}$ is necessary. Hence, $f\left(Q^{1}\right) \geq 2$ in this case. As a crossing between the edges $\left\{c_{0}, d_{0}\right\}$ and $\left\{c_{1}, d_{1}\right\}$ is not a forced crossing in D^{1}, one of the edges $\left\{c_{0}, a_{0}\right\},\left\{c_{0}, b_{0}\right\},\left\{d_{0}, e_{0}\right\}$, and $\left\{d_{0}, f_{0}\right\}$ must be crossed if $\operatorname{cr}\left(G_{5}^{0}, G_{5}^{1}\right)=1$. Without loss of generality let $\left\{c_{0}, a_{0}\right\}$ is crossed by an edge of G_{5}^{1}. Assume now the subgraph of $Q_{e f}^{1}$ induced by the edges incident with the vertices $c_{0}, d_{0}, e_{0}, f_{0}, c_{1}, d_{1}, e_{1}$ and f_{1}. As, by hypothesis, no other crossing appear on the edges of $G_{5}^{0} \cup H^{1} \cup G_{5}^{1}$, the unique planar subdrawing of the considered subgraph divides the plane into three hexagonal regions in such a way that at most two of the vertices c_{1}, e_{1}, and f_{1} are placed on a boundary of one region. But, in this case, in the subdrawing $D_{e f}^{1}$ at least one of the paths $d_{2} c_{2} c_{1}$, $d_{2} e_{2} e_{1}$, and $d_{2} f_{2} f_{1}$ crosses an edge of $G_{5}^{0} \cup H^{1} \cup G_{5}^{1}$. This contradiction with the assumption of Lemma 2 implies that both forced crossings in D^{1} contribute 1 to $f\left(Q^{1}\right)$ an therefore, $f\left(Q^{1}\right) \geq 2$. A similar analysis for the subgraph Q^{n-1} gives that $f\left(Q^{n-1}\right) \geq 2$ as well. Hence, the total force of the drawing D is at least $2(n-1)$, and in D there are at least $2(n-1)$ crossings. This completes the proof.

Theorem 3. $\operatorname{cr}\left(G_{5} \square P_{n}\right)=2(n-1)$ for $n \geq 1$.
Proof. The drawing in Figure 3 shows that $\operatorname{cr}\left(G_{5} \square P_{n}\right) \leq 2(n-1)$, because every copy of $G_{5}^{i}, i=1,2, \ldots, n-1$, is crossed two times and there is no other crossings in the drawing. We prove the reverse inequality by induction on n. It
is easy to see that the graph $G_{5} \square P_{1}$ is planar and, by Lemma $1, \operatorname{cr}\left(G_{5} \square P_{2}\right)=2$. So, the result is true for $n=1$ and $n=2$. Assume that it is true for $n=k$, $k \geq 2$, and suppose that there is a good drawing of $G_{5} \square P_{k+1}$ with fewer than $2 k$ crossings. By Lemma 2, some of the subgraphs $G_{5}^{0} \cup H^{1}, G_{5}^{k+1} \cup H^{k+1}$ and $G_{5}^{i}, i=1,2, \ldots, k$, must be crossed at least twice. If $G_{5}^{0} \cup H^{1}$ has at least two crossings on its edges, the deletion of all vertices of G_{5}^{0} results in a drawing of the graph $G_{5} \square P_{k}$ with fewer than $2(k-1)$ crossings. This contradicts the induction hypothesis. The same contradiction is obtained, if at least two crossings appear on the edges of $G_{5}^{k+1} \cup H^{k+1}$. If some $G_{5}^{i}, i=1,2, \ldots, k$, is crossed at least twice, by the removal of all edges of this G_{5}^{i}, a subdivision of $G_{5} \square P_{k}$ with fewer than $2(k-1)$ crossings is obtained. This contradiction with the induction hypothesis completes the proof.

3. The Collection of $\operatorname{cr}\left(G_{i} \square P_{n}\right)$ for Graphs G_{i} on Six Vertices

The aim of this section is to collect Cartesian products of graphs of order six with paths for which the crossing numbers are known. As for a disconnected graph G, the Cartesian product $G \square P_{n}$ is disconnected, we are interesting only of connected graphs on six vertices. There are 112 connected graphs on six vertices. At present, we are able to summarise the crossing numbers of $G_{i} \square P_{n}$ for fourty connected graphs G_{i} of order six shown in the Table 1.

In the previous section, the crossing numbers of Cartesian products of paths with all trees on six vertices are collected. These results enable us to determine the exact values of crossing numbers for Cartesian products of paths with some other graphs. It is easy to see that the graph $C_{m} \square P_{n}$ is planar. As the graph G_{7} is isomorphic to the cycle $C_{6}, \operatorname{cr}\left(G_{7} \square P_{n}\right)=0$. The graphs G_{8}, G_{9}, G_{12}, and G_{18} contain S_{3} as a subgraph. Thus, all Cartesian products $G_{i} \square P_{n}, i=8,9,12,18$, contain $S_{3} \square P_{n}$ as a subgraph. It was proved in [3] that $\operatorname{cr}\left(S_{3} \square P_{n}\right)=n-1$. This implies that $\operatorname{cr}\left(G_{i} \square P_{n}\right) \geq n-1$ for $i=8,9,12,18$. On the other hand, the graphs $G_{8} \square P_{n}, G_{9} \square P_{n}$, and $G_{12} \square P_{n}$ are subgraphs of the graph $G_{18} \square P_{n}$. In Figure 4 (a) there is a drawing of the graph $G_{18} \square P_{n}$ with $n-1$ crossings and therefore, $\operatorname{cr}\left(G_{18} \square P_{n}\right) \leq n-1$. Hence, $\operatorname{cr}\left(G_{i} \square P_{n}\right)=n-1$ for the graphs G_{i}, $i=8,9,12,18$.

Figure $4(\mathrm{~b})$ shows the drawing of the graph $G_{27} \square P_{n}$ with $2(n-1)$ crossings. The graph $G_{27} \square P_{n}$ contains $G_{11} \square P_{n}, G_{15} \square P_{n}, G_{16} \square P_{n}, G_{19} \square P_{n}$, and $G_{25} \square P_{n}$ as subgraphs. Thus, $\operatorname{cr}\left(G_{i} \square P_{n}\right) \leq 2(n-1)$ for $i=11,15,16,19,25$, and 27 . As $\operatorname{cr}\left(S_{4} \square P_{n}\right)=2(n-1)$, see [4], $\operatorname{cr}\left(G_{11} \square P_{n}\right)=\operatorname{cr}\left(G_{15} \square P_{n}\right)=\operatorname{cr}\left(G_{16} \square P_{n}\right)=$ $\operatorname{cr}\left(G_{19} \square P_{n}\right)=\operatorname{cr}\left(G_{25} \square P_{n}\right)=\operatorname{cr}\left(G_{27} \square P_{n}\right)=2(n-1)$, because each of these graphs contains $S_{4} \square P_{n}$ as a subgraph.

By Theorem 3, $\operatorname{cr}\left(G_{5} \square P_{n}\right)=2(n-1)$. The graph $G_{5} \square P_{n}$ is a subgraph of all

Figure 4. The graphs $G_{18} \square P_{n}, G_{27} \square P_{n}, G_{31} \square P_{n}, G_{17} \square P_{n}$, and $G_{35} \square P_{n}$.
graphs $G_{i} \square P_{n}$ for $i=10,14,17,21,23,31$ and therefore, the crossing number of all these graphs is at least $2(n-1)$. To show the reverse inequality, we need suitable drawings of two of the considered six graphs. Except of the graph $G_{17} \square P_{n}$, all other graphs $G_{i} \square P_{n}, i=10,14,21,23$, are subgraphs of the graph $G_{31} \square P_{n}$. In Figure $4(\mathrm{c})$ and Figure $4(\mathrm{~d})$ one can find the drawings of the graphs $G_{31} \square P_{n}$ and $G_{17} \square P_{n}$, respectively, both with $2(n-1)$ crossings. This implies that for $i=10,14,17,21,23,31$, the crossing number of the graphs $G_{i} \square P_{n}$ is $2(n-1)$.

The drawing of the graph $G_{35} \square P_{n}$ with $4(n-1)$ crossings is shown in Figure $4(\mathrm{e})$. Thus, $\operatorname{cr}\left(G_{35} \square P_{n}\right) \leq 4(n-1)$. As $G_{35} \square P_{n}$ contains all graphs $G_{i} \square P_{n}$, $i=13,22,24,26,28$, as subgraphs, the value $4(n-1)$ is the upper bound for crossing numbers of these graphs. On the other hand, each of the graphs $G_{i} \square P_{n}$, $i=13,22,24,26,28,35$, contains $S_{5} \square P_{n}$ as a subgraph. Bokal in [2] proved that $\operatorname{cr}\left(S_{5} \square P_{n}\right)=4(n-1)$. Hence, $\operatorname{cr}\left(G_{13} \square P_{n}\right)=\operatorname{cr}\left(G_{22} \square P_{n}\right)=\operatorname{cr}\left(G_{24} \square P_{n}\right)=$ $\operatorname{cr}\left(G_{26} \square P_{n}\right)=\operatorname{cr}\left(G_{28} \square P_{n}\right)=\operatorname{cr}\left(G_{35} \square P_{n}\right)=4(n-1)$.

In [6], the crossing number of the Cartesian product $K_{2,3} \square P_{n}$ is given. Namely, $\operatorname{cr}\left(K_{2,3} \square P_{n}\right)=2 n$. We use these result and we give the values of crossing numbers of two other Cartesian products of paths with graphs of order six. The graph G_{20} is a subdivision of the complete bipartite graph $K_{2,3}$ and the graph G_{29} contains a subdivision of $K_{2,3}$ as a subgraph. Hence, the crossing number of both Cartesian products $G_{20} \square P_{n}$ and $G_{29} \square P_{n}$ is at least $2 n$. In Figure 5(a) there is a drawing of $G_{29} \square P_{n}$ with $2 n$ crossings. Thus, $\operatorname{cr}\left(G_{29} \square P_{n}\right) \leq 2 n$ and therefore, $\operatorname{cr}\left(G_{29} \square P_{n}\right)=2 n$. Moreover, as $G_{20} \square P_{n}$ is a subgraph of $G_{29} \square P_{n}$, the

Figure 5. The graphs $G_{29} \square P_{n}, G_{36} \square P_{n}$, and $G_{34} \square P_{n}$.
crossing number of the graph $G_{20} \square P_{n}$ is $2 n$ too.
Let H_{5} be the graph obtained from the complete graph on five vertices K_{5} by deleting three edges incident with the same vertex. It was shown in [7] that $\operatorname{cr}\left(H_{5} \square P_{n}\right)=3 n-1$. Both graphs G_{30} and G_{36} contain a subdivision of the graph H_{5} as a subgraph. This implies that the crossing number of both Cartesian products $G_{30} \square P_{n}$ and $G_{36} \square P_{n}$ is greater or equal $3 n-1$, which is the crossing number of the graph $H_{5} \square P_{n}$. The graph $G_{30} \square P_{n}$ is a subgraph of $G_{36} \square P_{n}$ and therefore, $\operatorname{cr}\left(G_{30} \square P_{n}\right) \leq \operatorname{cr}\left(G_{36} \square P_{n}\right)$. In the drawing of the graph $G_{36} \square P_{n}$ in Figure $5(\mathrm{~b})$ it is easy to see that $\operatorname{cr}\left(G_{36} \square P_{n}\right) \leq 3 n-1$. Thus, $\operatorname{cr}\left(G_{30} \square P_{n}\right)=$ $\operatorname{cr}\left(G_{36} \square P_{n}\right)=3 n-1$.

Recently, some few results concerning crossing numbers of Cartesian products of paths with graphs on six vertices were obtained. For the graph $G_{33}=P(3,1)$, Peng and Yiew proved that the Cartesian product $G_{33} \square P_{n}$ has crossing number $4 n$, see [10]. The graph G_{37} is isomorphic with the second power of the path of length five denoted by P_{5}^{2}. It was proved in [9] that $\operatorname{cr}\left(P_{5}^{2} \square P_{n}\right)=\operatorname{cr}\left(G_{37} \square P_{n}\right)=$ $4(n-1)$. For two other graphs, namely for G_{38} and G_{39}, the crossing numbers are also known. In [12] one can find that $\operatorname{cr}\left(G_{38} \square P_{n}\right)=4 n$ and $\operatorname{cr}\left(G_{39} \square P_{n}\right)=6 n$.

G_{i}	$\operatorname{cr}\left(G_{i} \square P_{n}\right)$	G_{i}	$\operatorname{cr}\left(G_{i} \square P_{n}\right)$	G_{i}	$\operatorname{cr}\left(G_{i} \square P_{n}\right)$
G_{1}	0	G_{15}	$2(n-1)$	$G_{29} \overbrace{0}^{0-9}$	$2 n$
$G_{2} \quad \vartheta_{0}^{0}$	$n-1$	$G_{16} \underbrace{\circ}_{0}$	$2(n-1)$	cos	$3 n-1$
$G_{3} \stackrel{9}{\square}$	$n-1$	G_{17}	$2(n-1)$	G_{31}	$2(n-1)$
$G_{4} \stackrel{\sim}{6}_{0}^{\circ}$	$2(n-1)$	G_{18}	$n-1$	Cose	$4 n$
$G_{5} \quad Q_{0}^{\circ} \rho$	$2(n-1)$	$G_{19} \stackrel{\square}{\square}$	$2(n-1)$	$G_{33} \stackrel{\circ}{\square}$	$4 n$
G_{6}	$4(n-1)$	$G_{20} \bigcup_{0}^{0-q}$	$2 n$	G_{34}	$4 n$
G_{7}	0	$G_{21} \text { ob }$	$2(n-1)$	G_{35}	$4(n-1)$
G_{8}	$n-1$	$G_{22} \stackrel{1}{\infty}$	$4(n-1)$	G_{36}	$3 n-1$
G_{9}	$n-1$	$G_{23} \text { ob }$	$2(n-1)$	G_{37}	$4(n-1)$
$G_{10} \text { 饣- }$	$2(n-1)$	G_{24}	$4(n-1)$	G_{38}	$4 n$
$G_{11} \text { Oo }$	$2(n-1)$		$2(n-1)$	G_{39}	$6 n$
$G_{12} \text { \& }$	$n-1$	$G_{26} \text { مo }$	$4(n-1)$	C_{40}	$15 n+3$
$G_{13} \underbrace{\infty}_{0}$	$4(n-1)$	G_{27}	$2(n-1)$		
$G_{14} \text { ○- }$	$2(n-1)$	$G_{28} \text { مos }$	$4(n-1)$		

Table 1. The known crossing numbers of $G_{i} \square P_{n}$ for graphs G_{i} on six vertices.
For the complete graph on six vertices, it is shown in [13] that the crossing number of its Cartesian product with the path P_{n} is $15 n+3$. Thus, we have that $\operatorname{cr}\left(K_{6} \square P_{n}\right)=\operatorname{cr}\left(G_{40} \square P_{n}\right)=15 n+3$. The last known result one can find in [11].

It is shown that the crossing number of the graph $G_{32} \square P_{n}=K_{2,4} \square P_{n}$ is $4 n$. This result we use to establish the crossing number of the Cartesian product $G_{34} \square P_{n}$. The graph G_{34} contains a subgraph $K_{2,4}$ and therefore, $\operatorname{cr}\left(G_{34} \square P_{n}\right) \geq 4 n$. On the other hand, in Figure 5(c) there is a drawing of the graph $G_{34} \square P_{n}$ with $4 n$ crossings. This confirms that $\operatorname{cr}\left(G_{34} \square P_{n}\right)=4 n$. All known results concerning crossing numbers of Cartesian products of paths with graphs on six vertices are collected in Table 1.

Acknowledgement

The authors would like to thank the anonymous referees for several helpful comments and suggestions.

References

[1] L.W. Beineke and R.D. Ringeisen, On the crossing numbers of products of cycles and graphs of order four, J. Graph Theory 4 (1980) 145-155. doi:10.1002/jgt. 3190040203
[2] D. Bokal, On the crossing number of Cartesian products with paths, J. Combin. Theory (B) 97 (2007) 381-384. doi:10.1016/j.jctb.2006.06.003
[3] S. Jendrol' and M. Ščerbová, On the crossing numbers of $S_{m} \times P_{n}$ and $S_{m} \times C_{n}$, Časopis Pro Pěstování Matematiky 107 (1982) 225-230.
[4] M. Klešč, The crossing numbers of Cartesian products of stars and paths or cycles, Math. Slovaca 41 (1991) 113-120.
[5] M. Klešč, The crossing numbers of products of paths and stars with 4-vertex graphs, J. Graph Theory 18 (1994) 605-614.
[6] M. Klešč, The crossing number of $K_{2,3} \times P_{n}$ and $K_{2,3} \times S_{n}$, Tatra Mt. Math. Publ. 9 (1996) 51-56.
[7] M. Klešč, The crossing numbers of products of 4-vertex graphs with paths and cycles, Discuss. Math. Graph Theory 19 (1999) 59-69. doi:10.7151/dmgt. 1085
[8] M. Klešč, The crossing numbers of Cartesian products of paths with 5-vertex graphs, Discrete Math. 233 (2001) 353-359. doi:10.1016/S0012-365X(00)00251-X
[9] D. Kravecová, The crossing number of $P_{5}^{2} \times P_{n}$, Creat. Math. Inform. 28 (2012) 49-56.
[10] Y.H. Peng and Y.C. Yiew, The crossing number of $P(3,1) \times P_{n}$, Discrete Math. 306 (2006) 1941-1946.
doi:10.1016/j.disc.2006.03.058
[11] J. Wang and Y. Huang, The crossing number of $K_{2,4} \times P_{n}$, Acta Math. Sci.,Ser. A, Chin. Ed. 28 (2008) 251-255.
[12] L. Zhao, W. He, Y. Liu and X. Ren, The crossing number of two Cartesian products, Int. J. Math. Comb. 1 (2007) 120-127.
[13] W. Zheng, X. Lin, Y. Yang and Ch. Cui, On the crossing number of $K_{m} \square P_{n}$, Graphs Combin. 23 (2007) 327-336.
doi:10.1007/s00373-007-0726-z
Received 30 November 2011
Revised 12 April 2012
Accepted 17 April 2012

[^0]: ${ }^{1}$ The research was supported by the Slovak VEGA grant No. 1/0309/11.
 ${ }^{2}$ This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0008-10.

