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Abstract

The crossing numbers of Cartesian products of paths, cycles or stars with
all graphs of order at most four are known. For the path Pn of length n,
the crossing numbers of Cartesian products G�Pn for all connected graphs
G on five vertices are also known. In this paper, the crossing numbers of
Cartesian products G�Pn for graphs G of order six are studied. Let H

denote the unique tree of order six with two vertices of degree three. The
main contribution is that the crossing number of the Cartesian product
H�Pn is 2(n − 1). In addition, the crossing numbers of G�Pn for fourty
graphs G on six vertices are collected.

Keywords: graph, drawing, crossing number, Cartesian product, path,
tree.
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1. Introduction

The crossing number cr(G) of a simple graph G with vertex set V (G) and edge set
E(G) is defined as the minimum possible number of edge crossings in a drawing
of G in the plane. A drawing with minimum number of crossings (an optimal
drawing) must be a good drawing; that is, each two edges have at most one point
in common, which is either a common end-vertex or a crossing. Moreover, no
three edges cross in a point. Let D be a good drawing of the graph G. We
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denote the number of crossings in D by crD(G). Let Gi and Gj be edge-disjoint
subgraphs of G. We denote by crD(Gi, Gj) the number of crossings between edges
of Gi and edges of Gj , and by crD(Gi) the number of crossings among edges of
Gi in D.

The investigation on the crossing number of graphs is a classical but very
difficult problem. According to their special structure, Cartesian products of
special graphs are one of few graph classes for which the exact values of crossing
numbers were obtained. Let G1 and G2 be simple graphs with vertex sets V (G1)
and V (G2), and edge sets E(G1) and E(G2), respectively. The Cartesian product
G1�G2 of the graphs G1 and G2 has vertex set V (G1�G2) = V (G1) × V (G2)
and two vertices (u, u′) and (v, v′) are adjacent in G1�G2 if and only if either
u = v and u′ is adjacent with v′ in G2, or u

′ = v′ and u is adjacent with v in G1.

Let Cn be the cycle of length n, Pn be the path of length n, and Sn be
the star isomorphic to K1,n. Beineke and Ringeisen in [1] started to study the
crossing numbers of Cartesian products of cycles with all graphs of order at most
four. In [3], [4], and [5], the crossing numbers of Cartesian products of cycles,
paths and stars with all graphs of order four are given. The crossing numbers
of Cartesian products of paths with all graphs of order five are collected in [8].
It seems natural to enquire about crossing numbers of Cartesian products of
paths with other graphs. There are known the crossing numbers of products
G�Pn for some graphs G on six vertices, see [9], [10], [11], [12], and [13]. In the
paper, we extend these results by giving the exact values of crossing numbers for
Cartesian products of paths with several graphs of order six. We consider graphs
Gi, i = 1, 2, . . . , 40, on six vertices which are collected in Table 1 in the last
section of the paper. All known results concerning crossing numbers of Cartesian
products of these graphs with paths are presented in Table 1.

G1 G2 G3 G4 G5 G6

Figure 1. All trees of order six.

2. Trees on Six Vertices

In this section, we give the crossing numbers of Cartesian products of paths with
all trees on six vertices. There are six trees of order six shown in Figure 1. The
graph G1�Pn = P5�Pn is planar. The graph G6 is isomorphic with the star
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S5. It was proved in [2] that cr(Sm�Pn) = (n− 1)⌊m
2
⌋⌊m−1

2
⌋. So, cr(G6�Pn) =

4(n − 1). As both graphs G2 and G3 contain the star S3 as a subgraph, the
Cartesian product S3�Pn is a subgraph of both graphsG2�Pn andG3�Pn. Thus,
cr(G2�Pn) ≥ n− 1 and cr(G3�Pn) ≥ n− 1, because cr(S3�Pn) = n− 1, see [3].
On the other hand, in Figure 2(a) and Figure 2(b) there are drawings of the graphs
G2�Pn and G3�Pn with n − 1 crossings. This implies that cr(G2�Pn) ≤ n − 1
and cr(G3�Pn) ≤ n − 1 and therefore, cr(G2�Pn) = cr(G3�Pn) = n − 1. The
drawing in Figure 2(c) shows the graph G4�Pn with 2(n − 1) crossings. As the
graph G4�Pn contains S4�Pn as a subgraph and cr(S4�Pn) = 2(n− 1), see [4],
the crossing number of the graph G4�Pn is 2(n− 1). The aim of the rest of this
section is to establish the crossing number of the graph G5�Pn.

(a) (b) (c)

Figure 2. The graphs G2�Pn, G3�Pn and G4�Pn.

We assume n ≥ 1 and find it convenient to consider the graph G5�Pn in the
following way: it has 6(n + 1) vertices and edges that are the edges in n + 1
copies Gi

5, i = 0, 1, . . . , n, and in six paths of length n. For i = 0, 1, . . . , n, let
ai, bi, ei, and fi be the vertices of Gi

5 of degree one, ci and di the vertices of
degree three (see Figure 3). Thus, for x ∈ {a, b, c, d, e, f}, the path P x

n is induced
by the vertices x0, x1, . . . , xn. For i = 1, 2, . . . , n, let H i denote the subgraph of
G5�Pn containing the vertices of Gi−1

5
and Gi

5 and the six edges joining Gi−1
5

to Gi
5. Let Qi, i = 1, 2, . . . , n − 1, denote the subgraph of G5�Pn induced by

V (Gi−1
5

) ∪ V (Gi
5) ∪ V (Gi+1

5
). So, Qi = Gi−1

5
∪ H i ∪ Gi

5 ∪ H i+1 ∪ Gi+1
5

. Let us
denote by Qi

ab the subgraph of Qi obtained from Qi by removing six vertices ej
and fj for j = i − 1, i, i + 1 and two edges {ci−1, ci} and {ci, ci+1}. Likewise,
let Qi

ef be the subgraph of Qi obtained by removing six vertices aj and bj for
j = i − 1, i, i + 1 and two edges {di−1, di} and {di, di+1}. It is easy to see that
both subgraphs Qi

ab and Qi
ef are subdivisions of the graph K3,3.

The graph G5�P1 is planar. In the next lemma, the crossing number of the graph
G5�P2 is determined.

Lemma 1. cr(G5�P2) = 2.

Proof. It can be seen from the drawing in Figure 3 that cr(G5�P2) ≤ 2. To
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Figure 3. The drawing of the graph G5�Pn with 2(n− 1) crossings.

prove the reverse inequality, assume that there is a drawing of the graph G5�P2

with less than two crossings. The graph G5�P2 can be consider as the graph Q1

defined above. As the subgraph Q1
ab of Q1 is a subdivision of K3,3, at least one

crossing appears among the edges of Q1
ab. This implies that cr(G5�P2) ≥ 1. Our

assumption of the considered drawing with less than two crossings forces that
none of the edges incident with the vertices ei and fi, i = 0, 1, 2, is crossed. But
the unique planar drawing of the subgraph induced by the edges incident with
the vertices e0, e1, e2, f0, f1, and f2 divides the plane into two hexagonal regions
and one octagonal region in such a way that at most two of the vertices d0, d1,
and d2 are contained on a boundary of one region. Hence, the edge {c1, d1} or
at least one of the paths c1c0d0 and c1c2d2 joining the vertex c1 with the vertices
d0, d1, and d2 crosses the edges incident with the vertices e0, e1, e2, f0, f1, and f2.
Thus, at least two crossings appear in any drawing of the graph G5�P2. This
completes the proof.

Lemma 2. If D is a good drawing of the graph G5�Pn, n ≥ 3, in which every

of the subgraphs G0
5 ∪H1, Gn

5 ∪Hn and Gi
5, i = 1, 2, . . . , n− 1, has at most one

crossing on its edges, then in D there are at least 2(n− 1) crossings.

Proof. The proof is based on counting the total force of crossings in a drawing
of a graph. This concept was introduced by Beineke and Ringeisen in [1]. Let us
consider the following types of possible crossings on the edges of Qi in a drawing
of the graph G5�Pn:

(1) a crossing of an edge in H i ∪H i+1 with an edge in Gi
5,

(2) a crossing of an edge in Gi−1
5

∪H i with an edge in Gi+1
5

∪H i+1,
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(3) a crossing of an edge in Gi−1
5

∪Gi+1
5

with an edge in Gi
5,

(4) a crossing of an edge in Gi−1
5

∪H i with an edge in Gi+2
5

∪H i+2,

(5) a crossing of an edge in Gi+1
5

∪H i+1 with an edge in Gi−2
5

∪H i−1.

It is readily seen that every crossing of types (1) and (2) appears in a good drawing
of the graphG5�Pn only on the edges of the subgraphQi. For i ∈ {2, 3, . . . , n−1},
a crossing of type (3) in Qi between an edge of Gi−1

5
and an edge of Gi

5 appears
only in Qi−1 as a crossing of type (3), and a crossing of type (5) in Qi appears
only in Qi−1 as a crossing of type (4). For i ∈ {1, 2, . . . , n−2}, a crossing between
an edge of Gi+1

5
and an edge of Gi

5 appears only in Qi+1 as a crossing of type (3),
and a crossing of type (4) in Qi appears only as a crossing of type (5) in Qi+1.

In a good drawing of G5�Pn, we define the force f(Qi) of Qi in the following
way: every crossing of type (1) or (2) contributes the value 1 to f(Qi) and every
crossing of type (3), (4) or (5) contributes the value 1

2
to f(Qi) (and 1

2
to Qi−1 or

1

2
to Qi+1). The total force of the drawing is the sum of f(Qi). As every crossing

of type (1) or (2) is counted only once and every crossing of type (3), (4) or (5) is
counted at most twice and no other crossing contributes to the total force of the
drawing, the number of crossings in the drawing is not less than the total force
of the drawing. So, the aim of this proof is to show that if every of the subgraphs
G0

5 ∪ H1, Gn
5 ∪ Hn and Gi

5, i = 1, 2, . . . , n − 1, has at most one crossing on its
edges, then f(Qi) ≥ 2 for all i = 1, 2, . . . , n− 1.

Consider the good drawing D of G5�Pn assumed in Lemma 2 and let Di
ab be

the subdrawing of the subgraph Qi
ab induced by D. Any drawing of K3,3 contains

a pair of edges that cross each other and do not meet in a vertex. The graph Qi
ab

can be obtained by elementary subdivision of six edges of K3,3. So, in Di
ab there

is a forced crossing between an edge in Gi−1
5

∪H i and an edge in Gi+1
5

∪H i+1,
or between an edge in Gi

5 and an edge in H i ∪H i+1, or between an edge in Gi
5

and an edge in Gi−1
5

∪Gi+1
5

. Every of the first two considered types of crossings
contributes the value 1 to f(Qi) and the last one contributes the value 1

2
. Hence,

the minimal contribution of the subdrawing Di
ab to f(Qi) is 1

2
, but, an edge of

Gi
5 is crossed by an edge of Gi−1

5
or by an edge of Gi+1

5
if f(Qi) = 1

2
. The same

consideration can be repeated for the subdrawing Di
ef of Qi

ef . Only three edges

{ci−1, di−1}, {ci, di} and {ci+1, di+1} appear in both subgraphs Qi
ab and Qi

ef . As
two adjacent edges cannot cross each other in K3,3, a possible crossing between
two of these three edges cannot be the forced crossing in the subdrawing Di

ab of
Qi

ab. The same holds for the subdrawing Di
ef of Qi

ef . Thus, there are at least

two forced crossings in the subdrawing Di of Qi induced by D. As there is at
most one crossing on the edges of Gi

5, at least one forced crossing contributes 1
to f(Qi). If both forced crossings among the edges of Qi contribute 1 to f(Qi),
then f(Qi) ≥ 2.
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For i ∈ {2, 3, . . . , n − 2}, assume that one of the forced crossings among the
edges of Qi, say in Di

ab, contributes only
1

2
to f(Qi). Without loss of generality

suppose that an edge of Gi
5 is crossed by an edge of Gi−1

5
in Di

ab. As no two
adjacent edges cross in a drawing of the graph K3,3, it is easy to see that neither
a crossing between the edges {ai, ci} and {ai−1, ci−1} nor a crossing between the
edges {bi, ci} and {bi−1, ci−1} is forced in Di

ab. Thus, the forced crossing in Di
ab

is one of the following: {ai, ci} crosses {bi−1, ci−1}, {bi, ci} crosses {ai−1, ci−1},
{di, ci} crosses {ai−1, ci−1} or {bi−1, ci−1}, and {di−1, ci−1} crosses {ai, ci} or
{bi, ci}. Up to the symmetry it is enough to consider only three case: the edge
{ai, ci} is crossed by {bi−1, ci−1}, the edge {di, ci} is crossed by {bi−1, ci−1}, and
the edge {di−1, ci−1} is crossed by {ai, ci}. Since in D there is no other crossing
either on the edges of Gi

5 or on the edges of Gi−1
5

, one can find in Figure 3
that in all three cases two vertex disjoint cycles aiai+1ci+1di+1ei+1eidiciai and
bi−1bi−2ci−2di−2ei−2ei−1di−1ci−1bi−1 cross each other in D at least two times in
such a way that the path aiai+1ci+1di+1ei+1ei crosses the path bi−1bi−2ci−2di−2

ei−2ei−1. This crossing of type (5) contributes 1

2
to f(Qi), and hence, f(Qi) ≥ 2.

Consider now the subgraph Q1 induced on the vertices of G0
5, G

1
5, and G2

5.
In the subdrawing D1 of Q1 induced by D there are at least two forced crossings.
If crD(G

0
5, G

1
5) = crD(G

1
5, G

2
5) = 0, then f(Q1) ≥ 2. If the subgraphs G1

5 and
G2

5 cross each other, then the analysis in the previous paragraph implies that a
crossing of type (4) between G0

5∪H1 and G3
5∪H2 is necessary. Hence, f(Q1) ≥ 2

in this case. As a crossing between the edges {c0, d0} and {c1, d1} is not a forced
crossing in D1, one of the edges {c0, a0}, {c0, b0}, {d0, e0}, and {d0, f0} must be
crossed if cr(G0

5, G
1
5) = 1. Without loss of generality let {c0, a0} is crossed by an

edge of G1
5. Assume now the subgraph of Q1

ef induced by the edges incident with
the vertices c0, d0, e0, f0, c1, d1, e1 and f1. As, by hypothesis, no other crossing
appear on the edges of G0

5 ∪ H1 ∪ G1
5, the unique planar subdrawing of the

considered subgraph divides the plane into three hexagonal regions in such a way
that at most two of the vertices c1, e1, and f1 are placed on a boundary of one
region. But, in this case, in the subdrawing D1

ef at least one of the paths d2c2c1,

d2e2e1, and d2f2f1 crosses an edge of G0
5 ∪H1 ∪G1

5. This contradiction with the
assumption of Lemma 2 implies that both forced crossings in D1 contribute 1 to
f(Q1) an therefore, f(Q1) ≥ 2. A similar analysis for the subgraph Qn−1 gives
that f(Qn−1) ≥ 2 as well. Hence, the total force of the drawing D is at least
2(n−1), and in D there are at least 2(n−1) crossings. This completes the proof.

Theorem 3. cr(G5�Pn) = 2(n− 1) for n ≥ 1.

Proof. The drawing in Figure 3 shows that cr(G5�Pn) ≤ 2(n − 1), because
every copy of Gi

5, i = 1, 2, . . . , n − 1, is crossed two times and there is no other
crossings in the drawing. We prove the reverse inequality by induction on n. It
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is easy to see that the graph G5�P1 is planar and, by Lemma 1, cr(G5�P2) = 2.
So, the result is true for n = 1 and n = 2. Assume that it is true for n = k,
k ≥ 2, and suppose that there is a good drawing of G5�Pk+1 with fewer than
2k crossings. By Lemma 2, some of the subgraphs G0

5 ∪ H1, Gk+1
5

∪ Hk+1 and
Gi

5, i = 1, 2, . . . , k, must be crossed at least twice. If G0
5 ∪ H1 has at least two

crossings on its edges, the deletion of all vertices of G0
5 results in a drawing of the

graph G5�Pk with fewer than 2(k− 1) crossings. This contradicts the induction
hypothesis. The same contradiction is obtained, if at least two crossings appear
on the edges of Gk+1

5
∪Hk+1. If some Gi

5, i = 1, 2, . . . , k, is crossed at least twice,
by the removal of all edges of this Gi

5, a subdivision of G5�Pk with fewer than
2(k − 1) crossings is obtained. This contradiction with the induction hypothesis
completes the proof.

3. The Collection of cr(Gi�Pn) for Graphs Gi on Six Vertices

The aim of this section is to collect Cartesian products of graphs of order six
with paths for which the crossing numbers are known. As for a disconnected
graph G, the Cartesian product G�Pn is disconnected, we are interesting only of
connected graphs on six vertices. There are 112 connected graphs on six vertices.
At present, we are able to summarise the crossing numbers of Gi�Pn for fourty
connected graphs Gi of order six shown in the Table 1.

In the previous section, the crossing numbers of Cartesian products of paths
with all trees on six vertices are collected. These results enable us to determine
the exact values of crossing numbers for Cartesian products of paths with some
other graphs. It is easy to see that the graph Cm�Pn is planar. As the graph G7

is isomorphic to the cycle C6, cr(G7�Pn) = 0. The graphs G8, G9, G12, and G18

contain S3 as a subgraph. Thus, all Cartesian products Gi�Pn, i = 8, 9, 12, 18,
contain S3�Pn as a subgraph. It was proved in [3] that cr(S3�Pn) = n − 1.
This implies that cr(Gi�Pn) ≥ n − 1 for i = 8, 9, 12, 18. On the other hand,
the graphs G8�Pn, G9�Pn, and G12�Pn are subgraphs of the graph G18�Pn.
In Figure 4(a) there is a drawing of the graph G18�Pn with n− 1 crossings and
therefore, cr(G18�Pn) ≤ n − 1. Hence, cr(Gi�Pn) = n − 1 for the graphs Gi,
i = 8, 9, 12, 18.

Figure 4(b) shows the drawing of the graph G27�Pn with 2(n− 1) crossings.
The graph G27�Pn contains G11�Pn, G15�Pn, G16�Pn, G19�Pn, and G25�Pn

as subgraphs. Thus, cr(Gi�Pn) ≤ 2(n − 1) for i = 11, 15, 16, 19, 25, and 27.
As cr(S4�Pn) = 2(n − 1), see [4], cr(G11�Pn) = cr(G15�Pn) = cr(G16�Pn) =
cr(G19�Pn) = cr(G25�Pn) = cr(G27�Pn) = 2(n − 1), because each of these
graphs contains S4�Pn as a subgraph.

By Theorem 3, cr(G5�Pn) = 2(n−1). The graph G5�Pn is a subgraph of all
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(a) (b) (c)

(d) (e)

Figure 4. The graphs G18�Pn, G27�Pn, G31�Pn, G17�Pn, and G35�Pn.

graphsGi�Pn for i = 10, 14, 17, 21, 23, 31 and therefore, the crossing number of all
these graphs is at least 2(n−1). To show the reverse inequality, we need suitable
drawings of two of the considered six graphs. Except of the graph G17�Pn, all
other graphs Gi�Pn, i = 10, 14, 21, 23, are subgraphs of the graph G31�Pn. In
Figure 4(c) and Figure 4(d) one can find the drawings of the graphs G31�Pn

and G17�Pn, respectively, both with 2(n − 1) crossings. This implies that for
i = 10, 14, 17, 21, 23, 31, the crossing number of the graphs Gi�Pn is 2(n− 1).

The drawing of the graph G35�Pn with 4(n − 1) crossings is shown in Fig-
ure 4(e). Thus, cr(G35�Pn) ≤ 4(n− 1). As G35�Pn contains all graphs Gi�Pn,
i = 13, 22, 24, 26, 28, as subgraphs, the value 4(n − 1) is the upper bound for
crossing numbers of these graphs. On the other hand, each of the graphs Gi�Pn,
i = 13, 22, 24, 26, 28, 35, contains S5�Pn as a subgraph. Bokal in [2] proved that
cr(S5�Pn) = 4(n − 1). Hence, cr(G13�Pn) = cr(G22�Pn) = cr(G24�Pn) =
cr(G26�Pn) = cr(G28�Pn) = cr(G35�Pn) = 4(n− 1).

In [6], the crossing number of the Cartesian product K2,3�Pn is given.
Namely, cr(K2,3�Pn) = 2n. We use these result and we give the values of crossing
numbers of two other Cartesian products of paths with graphs of order six. The
graph G20 is a subdivision of the complete bipartite graph K2,3 and the graph
G29 contains a subdivision of K2,3 as a subgraph. Hence, the crossing number
of both Cartesian products G20�Pn and G29�Pn is at least 2n. In Figure 5(a)
there is a drawing of G29�Pn with 2n crossings. Thus, cr(G29�Pn) ≤ 2n and
therefore, cr(G29�Pn) = 2n. Moreover, as G20�Pn is a subgraph of G29�Pn, the
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(a) (b)

(c)

Figure 5. The graphs G29�Pn, G36�Pn, and G34�Pn.

crossing number of the graph G20�Pn is 2n too.

Let H5 be the graph obtained from the complete graph on five vertices K5

by deleting three edges incident with the same vertex. It was shown in [7] that
cr(H5�Pn) = 3n − 1. Both graphs G30 and G36 contain a subdivision of the
graph H5 as a subgraph. This implies that the crossing number of both Cartesian
products G30�Pn and G36�Pn is greater or equal 3n − 1, which is the crossing
number of the graph H5�Pn. The graph G30�Pn is a subgraph of G36�Pn and
therefore, cr(G30�Pn) ≤ cr(G36�Pn). In the drawing of the graph G36�Pn in
Figure 5(b) it is easy to see that cr(G36�Pn) ≤ 3n − 1. Thus, cr(G30�Pn) =
cr(G36�Pn) = 3n− 1.

Recently, some few results concerning crossing numbers of Cartesian products
of paths with graphs on six vertices were obtained. For the graph G33 = P (3, 1),
Peng and Yiew proved that the Cartesian product G33�Pn has crossing number
4n, see [10]. The graph G37 is isomorphic with the second power of the path of
length five denoted by P 2

5 . It was proved in [9] that cr(P 2
5�Pn) = cr(G37�Pn) =

4(n−1). For two other graphs, namely for G38 and G39, the crossing numbers are
also known. In [12] one can find that cr(G38�Pn) = 4n and cr(G39�Pn) = 6n.
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Gi Gi Gi

G1

G
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G3

G4

5G

6
G
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7G

13G

11G

12G

( )Gi nPcr ( )Gi nPcr ( )Gi nPcr
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G33

G34

G35

G36

G37

G38

G39

G40
n - 1

n - 1

n - 1

n - 1

n - 1

n - 1

2(n - 1)

2(n - 1)

2(n - 1)2(n - 1)

2(n - 1)

2(n - 1)

2(n - 1)

2(n - 1) 2(n - 1)

2(n - 1)

2(n - 1)

2(n - 1)

2(n - 1) 2(n - 1)

4(n - 1)

4(n - 1)

4(n - 1)

4(n - 1)

4(n - 1)

4(n - 1)

4(n - 1)

4(n - 1)

2n

2n

4n

4n

4n

4n

3n - 1

3n - 1

6n

15n + 3

0

0

Table 1. The known crossing numbers of Gi�Pn for graphs Gi on six vertices.

For the complete graph on six vertices, it is shown in [13] that the crossing
number of its Cartesian product with the path Pn is 15n+3. Thus, we have that
cr(K6�Pn) = cr(G40�Pn) = 15n+ 3. The last known result one can find in [11].
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It is shown that the crossing number of the graph G32�Pn = K2,4�Pn is 4n. This
result we use to establish the crossing number of the Cartesian product G34�Pn.
The graph G34 contains a subgraph K2,4 and therefore, cr(G34�Pn) ≥ 4n. On
the other hand, in Figure 5(c) there is a drawing of the graph G34�Pn with 4n
crossings. This confirms that cr(G34�Pn) = 4n. All known results concerning
crossing numbers of Cartesian products of paths with graphs on six vertices are
collected in Table 1.
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[9] D. Kravecová, The crossing number of P 2

5
× Pn, Creat. Math. Inform. 28 (2012)

49–56.

[10] Y.H. Peng and Y.C. Yiew, The crossing number of P (3, 1)×Pn, Discrete Math. 306
(2006) 1941–1946.
doi:10.1016/j.disc.2006.03.058

http://dx.doi.org/10.1002/jgt.3190040203
http://dx.doi.org/10.1016/j.jctb.2006.06.003
http://dx.doi.org/10.7151/dmgt.1085
http://dx.doi.org/10.1016/S0012-365X\(00\)00251-X
http://dx.doi.org/10.1016/j.disc.2006.03.058
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