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Abstract

Let G = (V,E) be a graph. A function f : V → {−1, 1} is called a bad

function of G if
∑

u∈NG(v) f(u) ≤ 1 for all v ∈ V , where NG(v) denotes the
set of neighbors of v in G. The negative decision number of G, introduced
in [12], is the maximum value of

∑

v∈V
f(v) taken over all bad functions of

G. In this paper, we present sharp upper bounds on the negative decision
number of a graph in terms of its order, minimum degree, and maximum
degree. We also establish a sharp Nordhaus-Gaddum-type inequality for the
negative decision number.
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1. Introduction

All graphs considered in this paper are simple and undirected. We follow [2]
in general for notation and terminologies in graph theory. For a graph G, let
V (G) and E(G) denote its vertex set and edge set, respectively. The order of
G is |V (G)|. For each vertex v ∈ V (G), let NG(v) = {u ∈ V (G) | uv ∈ E(G)}
and NG[v] = NG(v) ∪ {v}. The degree of v (in G) is dG(v) := |NG(v)|. The
minimum degree and maximum degree of G are δ(G) := minv∈V (G) dG(v) and
∆(G) := maxv∈V (G) dG(v), respectively. For an integer r, G is called r-regular if
∆(G) = δ(G) = r, and is called nearly r-regular if ∆(G) = r and δ(G) = r−1. For
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S ⊆ V (G), G[S] is the subgraph of G induced by S. Let Kn denote the complete
graph of order n, and Ka,b the complete bipartite graph with two partition parts
having order a and b respectively. Let G be the complement of G, that is, G is a
graph with vertex set V (G) and edge set {uv | u, v ∈ V (G);u 6= v;uv 6∈ E(G)}.
For any function f : V (G) → R, we define f(S) :=

∑

v∈S f(v) for all S ⊆ V (G),
and the weight of f is w(f) := f(V (G)).

A function f : V (G) → {−1, 1} is called a bad function of G if f(NG(v)) ≤ 1
for all v ∈ V (G). The negative decision number of G, denoted by βD(G), is
the maximum weight of a bad function of G. The negative decision number is
introduced in [12], and several variants of this parameter have been studied re-
cently; see e.g. [14, 15]. The negative decision number can be used to model the
minimum number of “negative votes” in a social network that can force every
individual in the network to have a “negative opinion” under certain rules (see
[12]). It can also be regarded as the “dual” of the concept signed domination,
which has attracted considerable attention and has been extensively explored in
the literature (see e.g. [1, 3, 4, 5, 9, 10, 11, 16, 17] and the references therein).
We mention that a somewhat similar (but essentially different) graph parame-
ter called the signed matching number (with the function defined on the edges
instead of vertices, and requiring that the sum of function values of all incident
edges to any vertex is at most 1) has been studied in [13]. For a comprehen-
sive treatment and detailed surveys on (earlier) results in domination theory, the
reader is referred to [7, 8].

In this paper, we continue the investigation of the negative decision number
in graphs. We present sharp upper bounds on the negative decision number of a
graph in terms of its order, minimum degree, and maximum degree, from which
several interesting results follow directly. We then establish a sharp Nordhaus-
Gaddum-type inequality for the negative decision number.

2. Sharp Upper Bounds on βD(G)

In this section we present upper bounds on βD(G) in terms of the order, minimum
degree, and maximum degree of G. Since an edgeless graph of order n trivially
has negative decision number n, throughout this section we will only consider
graphs G with ∆(G) ≥ 1. For notational convenience, let In = (n mod 2) for
each integer n; that is, In is the binary indicator variable of whether n is odd.
Obviously In = 1− In+1 = 1− In−1 for any integer n. It is also easy to see that
for every bad function f of G and v ∈ V (G), f(NG(v)) ≤ IdG(v).

Theorem 1. For every graph G of order n, minimum degree δ and maximum

degree ∆ ≥ 1,

βD(G) ≤ min
{

n−∆+ I∆, n · ∆−δ+I∆+Iδ
∆+δ+I∆−Iδ

}

.
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Proof. Let G be any graph of order n, minimum degree δ and maximum degree
∆, and f a bad function of G of weight βD(G). Let v ∈ V (G) be a vertex of degree
∆. Then we have w(f) = f(NG(v)) + f(V (G) \NG(v)) ≤ IdG(v) + n − dG(v) =
n−∆+ I∆, which proves that βD(G) ≤ n−∆+ I∆. Now it suffices to show that
βD(G) ≤ n · ∆−δ+I∆+Iδ

∆+δ+I∆−Iδ
.

When δ = ∆, the inequality becomes exactly Theorem 4 in [12]. Thus,
in the remainder of the proof we suppose ∆ ≥ δ + 1. We need to introduce
some notations. Let P = {v ∈ V (G) | f(v) = 1} and Q = V (G) \ P = {v ∈
V (G) | f(v) = −1}. Let Pδ = {v ∈ P | dG(v) = δ}, P∆ = {v ∈ P | dG(v) = ∆},
and Pm = P \ (Pδ ∪ P∆). Define Qδ, Q∆ and Qm analogously. For each c ∈
{δ,∆,m}, let Vc = Pc ∪ Qc. Finally let R = {v ∈ V (G) | dG(v) ≡ 0 (mod 2)}.
Clearly f(NG(v)) ≤ 0 for all v ∈ R and f(NG(v)) ≤ 1 for all v ∈ V (G) \R. Also,
δ + 1 ≤ dG(v) ≤ ∆− 1 for all v ∈ Vm. Thus, we have

n− |R| ≥
∑

x∈V (G)
f(NG(x)) =

∑

x∈V (G)
dG(x)f(x)

= δ|Pδ|+∆|P∆|+
∑

x∈Pm

dG(x)− δ|Qδ| −∆|Q∆| −
∑

x∈Qm

dG(x)

≥ δ|Pδ|+∆|P∆|+ (δ + 1)|Pm| − δ|Qδ| −∆|Q∆| − (∆− 1)|Qm|

= δ|Vδ|+∆|V∆|+ (δ + 1)|Vm| − 2δ|Qδ| − 2∆|Q∆| − (∆ + δ)|Qm|

= δn+ (∆− δ)|V∆|+ |Vm| − (∆ + δ)|Q|+ (∆− δ)|Qδ| − (∆− δ)|Q∆|

(since n = |Vδ|+ |V∆|+ |Vm| and |Q| = |Qδ|+ |Q∆|+ |Qm|)

= δn+ (∆− δ)|P∆|+ |Vm| − (∆ + δ)|Q|+ (∆− δ)|Qδ|.

By our definition, Vδ ⊆ R if δ ≡ 0 (mod 2) and V∆ ⊆ R if ∆ ≡ 0 (mod 2), and
hence |R| ≥ (1− Iδ)|Vδ|+ (1− I∆)|V∆|. Therefore,

(∆ + δ)|Q| ≥ (δ − 1)n+ |R|+ (∆− δ)|P∆|+ |Vm|+ (∆− δ)|Qδ|

≥ (δ − 1)n+ (1− Iδ)|Vδ|+ (1− I∆)|V∆|+ (∆− δ)|P∆|+ |Vm|

+(∆− δ)|Qδ|

= (δ − 1)n+ (1− Iδ)|Pδ|+ (1− Iδ)|Qδ|+ (1− I∆)|P∆|

+(1− I∆)|Q∆|+ (∆− δ)|P∆|+ |Pm|+ |Qm|+ (∆− δ)|Qδ|

= (δ − 1)n+ (∆− δ + 1− I∆)|P∆|+ (1− Iδ)|Pδ|+ |Pm|

+(∆− δ + 1− Iδ)|Qδ|+ (1− I∆)|Q∆|+ |Qm|.

Since ∆− δ + 1− I∆ ≥ 1− Iδ and ∆− δ + 1− Iδ ≥ 1− I∆, we obtain

(∆ + δ)|Q| ≥ (δ − 1)n+ (1− Iδ)(|P∆|+ |Pδ|+ |Pm|)

+(1− I∆)(|Qδ|+ |Q∆|+ |Qm|)

= (δ − 1)n+ (1− Iδ)(n− |Q|) + (1− I∆)|Q|

= (δ − Iδ)n+ (Iδ − I∆)|Q|.
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As ∆ + δ + I∆ − Iδ > 0, we have

|Q| ≥ n ·
δ − Iδ

∆+ δ + I∆ − Iδ
,

and thus

w(f) = n− 2|Q| ≤ n

(

1−
2(δ − Iδ)

∆ + δ + I∆ − Iδ

)

= n ·
∆− δ + I∆ + Iδ
∆+ δ + I∆ − Iδ

,

completing the proof of Theorem 1.

We next show that Theorem 1 is best possible for all minimum and maximum
degrees. Note that our theorem has a “high degree of sharpness” as it applies
not only to specific values of degrees but to all of them.

Theorem 2. For any integers δ and ∆ for which ∆ ≥ δ ≥ 0 and ∆ ≥ 1, there
exists a graph G of order n with minimum degree δ and maximum degree ∆ such

that

βD(G) = min

{

n−∆+ I∆, n ·
∆− δ + I∆ + Iδ
∆+ δ + I∆ − Iδ

}

.

Proof. When δ = 1, let G be the graph K1,∆, which has minimum degree δ,
maximum degree ∆, and order n = ∆ + 1. It is clear that βD(G) = 1 + I∆ =

min
{

n−∆+ I∆, n · ∆−δ+I∆+Iδ
∆+δ+I∆−Iδ

}

. When δ = 0, just take G to be the union of

K1,∆ and K1 (a single vertex), and the statement still holds. Thus, we assume
in what follows that ∆ ≥ δ ≥ 2.

Let a = (∆ + I∆)/2, b = (δ − Iδ)/2, and m = 2∆. It is easy to verify that
a and b are integers satisfying 1 ≤ a ≤ ∆ and 1 ≤ b ≤ δ. Let K be the union
of m disjoint copies of Ka,b. Hence, K itself is a bipartite graph with partition
(A,B), where each vertex in A has exactly b neighbors in B and each vertex in
B has exactly a neighbors in A. We then add some edges between the vertices in
A to make K[A] become (δ− b)-regular. (This can be done in the following way:
Imagine that there is a complete graph Ka with vertex set A. Since |A| = ma is
even and every complete graph of even order is 1-factorable (see e.g. Theorem 9.1
in [6]), the edges of Ka can be partitioned into |A|−1 ≥ δ perfect matchings of it.
Taking δ − b of these matchings and adding them to K will make K[A] become
(δ − b)-regular.) Similarly, add some edges between vertices in B to make K[B]
(∆− a)-regular. Denote the finally obtained graph by G. Then, G is a graph of
order n = |A|+ |B| = m(a+ b), minimum degree δ, and maximum degree ∆. It
is also clear that dG(v) = δ for all v ∈ A and dG(u) = ∆ for all u ∈ B.

Now define a function f : A ∪B → {−1, 1} by letting f(v) = 1 for all v ∈ A
and f(u) = −1 for all u ∈ B. Then, for each v ∈ A, f(NG(v)) = δ− 2b = Iδ ≤ 1,
and for each u ∈ Q, f(NG(u)) = 2a − ∆ = I∆ ≤ 1. Therefore, f is a bad
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function of G of weight |A| − |B|. Since n = |A| + |B| and |A|/|B| = a/b =
(∆+ I∆)/(δ − Iδ), we obtain

βD(G) ≥ w(f) = |A| − |B| = n

(

1−
2

|A|/|B|+ 1

)

= n ·
∆− δ + I∆ + Iδ
∆+ δ + I∆ − Iδ

≥ min

{

n−∆+ I∆, n ·
∆− δ + I∆ + Iδ
∆+ δ + I∆ − Iδ

}

.

By Theorem 1, we have βD(G) ≤ min
{

n−∆+ I∆, n · ∆−δ+I∆+Iδ
∆+δ+I∆−Iδ

}

. Thus,

βD(G) = min

{

n−∆+ I∆, n ·
∆− δ + I∆ + Iδ
∆+ δ + I∆ − Iδ

}

,

and Theorem 2 is proved.

The following corollaries are immediate from Theorem 1.

Corollary 3. For any nearly r-regular graph G of order n, βD(G) ≤ n
r−Ir−1

.

Proof. Let G be a nearly r-regular graph. Then ∆(G) = r and δ(G) = r − 1.
By Theorem 1, we have

βD(G) ≤ n ·
r − (r − 1) + Ir + Ir−1

r + (r − 1) + Ir − Ir−1
=

2n

2r − 1 + 1− 2Ir−1
=

n

r − Ir−1
,

which finishes the proof of Corollary 3.

Corollary 4. Let c be a real number, 0 < c < 1. Then βD(G) ≤ cn for every

graph G of order n with ∆(G) ≤ (1+c)δ(G)−2
1−c

.

Proof. Let c ∈ (0, 1) and G be a graph of order n, minimum degree δ and

maximum degree ∆, such that ∆ ≤ (1+c)δ−2
1−c

. Then,

(1− c)∆ ≤ (1 + c)δ − (1− c)− (1 + c) ≤ (1 + c)δ − (1− c)I∆ − (1 + c)Iδ .

Hence, we have

∆− δ + I∆ + Iδ ≤ c(∆ + δ + I∆ − Iδ) ,

which, together with Theorem 1, indicates that

βD(G) ≤ n ·
∆− δ + I∆ + Iδ
∆+ δ + I∆ − Iδ

≤ cn.

The corollary is thus proved.
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3. Nordhaus-Gaddum Type Inequality for βD(G)

In this section we provide a sharp Nordhaus-Gaddum inequality for βD(G). Be-
fore presenting our results, we cite a remark from [12] that will be helpful to our
proof.

Lemma 5 (Remark at the beginning of Section 2.4 in [12], restated). For every

integer n ≥ 3, βD(Kn) = −In.

Theorem 6. For any graph G of order n ≥ 1,

βD(G) + βD(G) ≤

{

4 if n = 2;
n+ In if n 6= 2.

Moreover, the bound is sharp for every integer n ≥ 1.

Proof. The theorem is trivial for n ∈ {1, 2}. Thus, we assume in what follows
that n ≥ 3. Let G be a graph of order n. We first show that the inequality holds.
Consider the following cases.

Case 1. n is even, in which case n+ In = n.

Case 1.1. G is r-regular for some r ∈ {0, 1, . . . , n − 1}. If r = 0 or n − 1,
then G = Kn or Kn, and hence βD(G) + βD(G) = n + 0 = n by Lemma 5. If
1 ≤ r ≤ n − 2, then G is (n − 1 − r)-regular and 1 ≤ n − 1 − r ≤ n − 2. Since
n is even, exactly one of r and n − 1 − r is even. Thus, by Theorem 4 in [12],
βD(G) + βD(G) ≤ max{n

r
, n
n−1−r

} ≤ n. This case is completed.

Case 1.2. G is nearly r-regular for some r ∈ {1, 2, . . . , n − 1}. In this case
∆(G) = r,∆(G) = n − 1 − δ(G) = n − r, and G is nearly (n − r)-regular.
We know from Theorem 1 that βD(G) ≤ n − ∆(G) + I∆(G) = n − r + Ir, and

βD(G) ≤ n − ∆(G) + I∆(G) = r + In−r = r + Ir (recall that n is even). Thus

βD(G) + βD(G) ≤ n + 2Ir. If Ir = 0, then βD(G) + βD(G) ≤ n. If Ir = 1, then
we apply Corollary 3, which tells us that

βD(G) + βD(G) ≤
n

r − Ir−1
+

n

n− r − In−r−1
=

n

r
+

n

n− r
.

When 2 ≤ r ≤ n− 2 we have n
r
+ n

n−r
≤ n

2 + n
2 = n, and when r = 1 or n− 1, we

have n
r
+ n

n−r
= n + n

n−1 < n + 2 since n ≥ 3. As βD(G) + βD(G) is always an

even integer and n is even, it holds that βD(G) + βD(G) ≤ n. Thus this case is
finished.

Case 1.3. ∆(G) ≥ δ(G)+2. In this case ∆(G) = n−1−δ(G) ≥ n+1−∆(G).
It is easy to verify that n1 − In1

≥ n2 − In2
for any integers n1 ≥ n2. Thus, by

Theorem 1 we get βD(G) ≤ n−(∆(G)−I∆(G)) ≤ n−(n+1−∆(G)−In+1−∆(G)) =
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∆(G)−I∆(G), and thus βD(G)+βD(G) ≤ (n−∆(G)+I∆(G))+(∆(G)−I∆(G)) = n,
completing the proof of this case.

Case 2. n is odd, in which case n+ In = n+ 1.

Case 2.1. G is r-regular for some r ∈ {0, 1, . . . , n − 1}. In this case G is
(n − 1 − r)-regular. Since nr = 2|E(G)| and n is odd, r must be even, and
thus n − 1 − r is also even. If r = 0 or n − 1, then G = Kn or Kn, and by
Lemma 5 βD(G) + βD(G) = n + (−1) = n − 1. If 2 ≤ r ≤ n − 3, we have
βD(G) + βD(G) ≤ 0 < n+ 1 by Theorem 4 in [12]. This case is thus completed.

Case 2.2. ∆(G) ≥ δ(G) + 1. In this case ∆(G) = n− 1− δ(G) ≥ n−∆(G).
From Theorem 1 and the fact that n1−In1

≥ n2−In2
whenever n1 ≥ n2, we have

βD(G) ≤ n − (∆(G) − I∆(G)) ≤ n − (n −∆(G) − In−∆(G)) = ∆(G) + 1 − I∆(G)

(note that n is odd and hence In−∆(G) = 1−I∆(G)). Therefore, βD(G)+βD(G) ≤
(n −∆(G) + I∆(G)) + (∆(G) + 1 − I∆(G)) = n + 1, completing the proof of this
case.

We have established that βD(G) + βD(G) ≤ n + In for all n ≥ 3. Now we
show that the inequality is sharp for all n ≥ 3. If n is even, taking G to be Kn

gives that βD(G) + βD(G) = n+0 = n+ In. If n is odd, let V (G) = {xi, yi | 1 ≤
i ≤ (n− 1)/2} ∪ {z} and E(G) = {xiyi | 1 ≤ i ≤ (n− 1)/2}. Thus, G consists of
(n − 1)/2 independent edges and a single vertex, and clearly βD(G) = n. Note
that V (G) = V (G) and E(G) = {zxi | 1 ≤ i ≤ (n − 1)/2} ∪ {zyi | 1 ≤ i ≤
(n − 1)/2} ∪ {xiyj | i 6= j}. Define a function f : V (G) → {−1, 1} as follows:
f(z) = 1, and for all 1 ≤ i ≤ (n − 1)/2, f(xi) = 1 and f(yi) = −1. It is easy
to verify that f has weight 1, and that f(NG(v)) ≤ 1 for all v ∈ V (G). Thus
βD(G) ≥ 1 and βD(G) + βD(G) ≥ n+ 1 = n+ In. Since we already proved that
βD(G) + βD(G) ≤ n + In, we have βD(G) + βD(G) = n + In. This shows the
sharpness of the inequality, and hence concludes the proof of Theorem 6.
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