
Discussiones Mathematicae
Graph Theory 33 (2013) 437–456
doi:10.7151/dmgt.1681

EDGE DOMINATING SETS AND VERTEX COVERS

Ronald Dutton

Department of Computer Science
University of Central Florida,

Orlando, FL, USA

e-mail: dutton@cs.ucf.edu

and

William F. Klostermeyer

School of Computing
University of North Florida

Jacksonville, FL 32224-26 USA

e-mail: wkloster@unf.edu

Abstract

Bipartite graphs with equal edge domination number and maximum
matching cardinality are characterized. These two parameters are used to
develop bounds on the vertex cover and total vertex cover numbers of graphs
and a resulting chain of vertex covering, edge domination, and matching pa-
rameters is explored. In addition, the total vertex cover number is compared
to the total domination number of trees and grid graphs.
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1. Introduction

Let G = (V,E) be a graph with n vertices. Denote the open and closed neigh-
borhoods of a vertex x ∈ V by N(x) and N [x], respectively. That is, N(x) =
{v : xv ∈ E} and N [x] = N(x) ∪ {x}. For a set of vertices X ⊆ V , let N [X]
denote the union of N [x] over all x ∈ X. Let [H] denote the subgraph induced
by a set of vertices H ⊆ V (G). For a set C ⊆ V , let E(C) denote the set of
edges in [C]. For an edge uv, we call u and v the endvertices of uv. For a set
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of edges S ⊆ E(G), let V (S) = {u : uv ∈ S}. In other words, V (S) consists of
both endvertices of each edge in S. A vertex covers the edges incident to it and
dominates itself and the vertices adjacent to it. An edge covers its endvertices
and dominates itself and the edges adjacent to it (edges incident to its endver-
tices). Two edges are independent if they have no endvertices in common. For
v ∈ C, x is a private neighbor of v if N(x) ∩ C = {v}. For two sets X,Y , let
∇(X,Y ) = (X − Y ) ∪ (Y −X).

A dominating set of G is a set D ⊆ V with the property that for each
u ∈ V −D, there exists x ∈ D adjacent to u. The minimum cardinality amongst
all dominating sets is the domination number γ(G). A total dominating set of
G is a set X ⊆ V with the property that for each u ∈ V , there exists x ∈ X
adjacent to u. The minimum cardinality amongst all total dominating sets is the
total domination number γt(G) and is only defined for graphs without isolated
vertices.

A vertex cover of G is a set C ⊆ V such that for each edge uv ∈ E at least
one of u and v is in C. Let α(G) be the vertex cover number of G, the minimum
number of vertices required to cover all edges of G. A total vertex cover of G is
a vertex cover C ⊆ V with the property that for each u ∈ C, there exists x ∈ C
adjacent to u. The minimum cardinality amongst all total vertex covers is the
total vertex cover number αt(G). Total vertex covers were studied in [3, 4, 6]. As
observed in [3], a total vertex cover is simultaneously a vertex cover and a total
dominating set.

A matching is any independent set of edges. A maximal matching is a match-
ing X so that V − V (X) is an independent set of vertices. A perfect matching
in graph G is a matching X so that V (X) = V (G). Let β1(G) denote the size
of a maximum matching in G. The number of edges in a smallest maximal inde-
pendent set of edges in G is denoted by β′

1(G). Of course, β′
1(G) ≤ β1(G) ≤ n

2 .
It is well-known that α(G) ≥ β1(G) and the two quantities are equal when G is
bipartite [2]. A set of edges M is a minimum matching when M is a maximal
matching and |M | ≤ |M ′| for all maximal matchings M ′.

An edge dominating set of a graph is a set of edges E′ such that each edge in E
is either in E′ or shares an endvertex with some edge in E′. The edge domination
number of a graph is the number of edges of a smallest edge dominating set.
Corollary 1.2 of [1] states that for all graphs G, the edge domination number of
G is equal to β′

1(G). In other words, if E′ is a minimum edge dominating set of
G, there is an independent edge dominating set of G of cardinality |E′|.

In Section 2, we prove some basic results, present a chain of inequalities, and
state a conjecture. Sections 3 and 4 focus on matchings and edge dominating sets
and characterize the bipartite graphs with β′

1(G) = β1(G). Then, in Sections 5
and 6, we study bounds on the vertex cover and total vertex cover numbers
including bounds that relate them to the matching, edge domination, and total
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domination numbers. Additionally, in Section 6, we consider total vertex covers
in grid graphs.

2. Fundamentals

The first bound on the total vertex cover number shown in the literature is stated
next.

Theorem 1 [6]. For all connected graphs G, αt(G) ≤ 2α(G) with equality if and
only if G = K1,m with m ≥ 1.

Note that this implies αt(G) ≤ 2α(G) − 1 if G is not a star. A star is a graph
isomorphic to K1,m with m ≥ 1.

Proposition 2. Let G be a graph. Then, α(G)
2 ≤ β′

1(G) ≤ α(G).

Proof. Since β′
1(G) ≤ β1(G) and β1(G) ≤ α(G), the right inequality follows. For

the left inequality, consider a minimum edge dominating set D. Let C = V (D).
Then, C is a vertex cover, otherwise if it were note there would be an edge not
dominated by D. Therefore |C| ≤ 2|D| = 2β′

1(G).

It is possible to combine P4’s together in a “ladder” fashion to obtain infinitely
many graphs where the left inequality in Proposition 2 is sharp. For example,
take a P4 with vertices v1, v2, v3, v4, make a copy of it and add an edge between
the two vertices labeled v3. Then α(G)

2 = β′
1(G) = 2 in this graph. Note that

in these examples, there exist minimum vertex covers that are also total vertex
covers. Furthermore αt(G) = 2β′

1(G) if G is a star, but there exists graphs that
are not stars, such as P4, with αt(G) = 2β′

1(G).
The following are from [3].

Theorem 3 [3]. Let G be a graph with n vertices,
(i) if n ≥ 2 then αt(G) ≤ 2β′

1(G),

(ii) if n ≥ 2 then αt(G) ≤ α(G) + γ(G),

(iii) if n ≥ 3 then αt(G) ≤ n+α(G)
2 .

Proposition 4. For any graph G, C is a total vertex cover if and only if E(C)
is an edge dominating set.

Proof. Suppose C is a set such that E(C) is an edge dominating set. Then from
the definitions, C must be a total vertex cover, since if uv ∈ E(C), both u and v
must be in C.

Let C be a total vertex cover of G. Since C is a vertex cover, V (G) − C is
an independent set. Therefore, E(C) is an edge dominating set.
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It follows immediately from Proposition 4 that αt(G) is the minimum number of
vertices in the set of endvertices of any edge dominating set. Let β3(G) denote
the minimum cardinality of V (D) over all minimum edge dominating sets D.
(We use the notation β3(G), as β2(G) is used for other purposes in [7]). Note
that αt(G) ≤ β3(G) ≤ 2β′

1(G) since some vertices may be the endvertices of more
than one edge in an edge dominating set.

The above results give rise to a chain of inequalities, reminiscent of the famous
domination chain of inequalities [5]. An “edge domination” chain is described in
[7].

(1) β′
1(G) ≤ β1(G) ≤ α(G) ≤ αt(G) ≤ β3(G) ≤ 2β′

1(G).

While the following may seem obvious, its formal verification has thus far eluded
us.

Conjecture 1. For every graph G, αt(G) = β3(G).

For any graph G and a total vertex cover C, partition the vertex set of C into
C1, C2, . . . , Ck where each Ci has a spanning subgraph Si that is a star with at
least two vertices. Since C is a total vertex cover, such a partitioning exists. In
other words, each total vertex cover can be reduced, by edge removals, to a forest
of stars whose edges form an edge dominating set of G. With the validity of
Conjecture 1, there is an αt-set with a spanning forest containing exactly β′

1(G)
edges.

Proposition 5. αt(G) = 2β′
1(G) if and only if there exists an αt-set C of G such

that [C] contains a perfect matching.

Proof. Assume αt(G) < 2β′
1(G) and let C be an αt-set of G, where [C] contains a

perfect matching, MC . From the preceding comments, MC is an edge dominating
set, since V (MC) = C. Thus, αt(G) = 2|MC | > 2β′

1(G), contradicting equation
(1).

Next, suppose αt(G) = 2β′
1(G). Let V (M) be the endvertices of a minimum

matching M . Then, V (M) is an αt-set of G and V (M) is a total vertex cover
satisfying |V (M)| = 2β′

1(G). The edges of M comprise a perfect matching of the
subgraph induced by V (M).

Proposition 6. α(G) = 2β′
1(G) if and only if there exists an α-set C of G such

that [C] contains a perfect matching.

Proof. Suppose G has an α-set C that possesses a perfect matching of [C]. Thus,
α(G) = 2|MC | ≥ 2β′

1(G). From equation (1), equality must hold.
For the other direction, suppose α(G) = 2β′

1(G). Then, since α(G) =
αt(G) = 2β′

1(G), equality holds and the result follows from Proposition 5.
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The bound of Proposition 6 is sharp for K4 minus an edge and for P4. Graphs
with α(G) = 2β′

1(G) must have β1(G) = 2β′
1(G). Such graphs have at least two

edge-disjoint maximal matchings: one is of size β′
1 and one is of size 2β′

1.

3. Matchings

Section 4 characterizes bipartite graphs G with equal maximum and minimum
matching numbers, β1(G) and β′

1(G), respectively. It is helpful to have bounds
on the change in these values upon the removal of any edge and its endpoints.
It is well known that if e is an edge of a maximum matching, then removing e
and its endvertices, V (e), results in a graph G−V (e) with a maximum matching
number that is one less than that of the original graph. When e is not a member
of a maximum matching, G − V (e) may or may not have a reduced maximum
matching number. In this section, we show that when β′

1(G) = β1(G), the mini-
mum and maximum numbers are both reduced by one upon the removal of any
edge e and its endvertices.

Observations.

(a) Every independent set of k edges, 1 ≤ k < β′
1(G), is a subset of a maximal

matching M where β′
1(G) ≤ |M | ≤ β1(G).

(b) β′
1(G) = β1(G) = 1 if and only if G = K1,n−1, for n ≥ 2.

Proposition 7. β′
1(G) = β1(G) if and only if every matching is subset of a

maximum matching.

Proof. When β′
1(G) = β1(G), by Observation (a) every matching is a subset of a

maximal matching with β′
1(G) = β1(G) edges. When β′

1(G) < β1(G), a minimum
matching cannot be a subset of a larger matching.

Besides Observation (b), the only other characterization we know to exist for
graphs G with β′

1(G) = β1(G) is due to Arumugam and Velammal and is given
next.

Theorem 8 [1]. For any graph G, β′
1(G) = β1(G) = n/2 if and only if n is even

and G = Kn or G = Kn/2,n/2.

For arbitrary graphs G, Lemma 9 places bounds on the change in β1(G) when an
edge and its endvertices are removed from G. Lemma 10 provides similar bounds
for minimum matchings.

Lemma 9. For any graph G and edge e

(i) β1(G)− 2 ≤ β1(G− V (e)) ≤ β1(G)− 1, and
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(ii) β1(G − V (e)) = β1(G) − 1 if and only if e is a member of a maximum
matching.

Proof. Let e = vw be any edge of G, M any maximum matching of G, and M ′

any maximum matching of G−V (e). Notice that M ′ ∪ e is a maximal matching
in G.

(i) The endvertices of e are endvertices of at most two edges of M . Therefore,
at least β1(G)− 2 edges of M are independent edges in G−V (e) and establishes
the left inequality of (i).

For the right inequality, since M ′ ∪ e is a maximal matching of G, β1(G) ≥
|M ′∪ e| = β1(G−V (e))+1, and establishes the right inequality. Thus, (i) holds.

(ii) Suppose e ∈ M . Then, M − e is a maximal matching of G − V (e) and,
thus, β1(G− V (e)) ≥ |M − e| = β1(G)− 1. From (i), β1(G)− 1 ≥ β1(G− V (e)).
Therefore, equality holds. Finally, assume e is not a member M or any other
maximum matching of G. Since M ′∪e is a maximal matching in G that contains
e, β1(G) > |M ′ ∪ e|. That is, β1(G − V (e)) < β1(G) − 1, and shows that (ii)
holds.

Lemma 10. For any graph G and edge e

(i) β′
1(G)− 1 ≤ β′

1(G− V (e)) ≤ β′
1(G),

(ii) β′
1(G − V (e)) = β′

1(G) − 1 if and only if e is a member of a minimum
matching of G.

Proof. Let e = vw be any edge of G, M any minimum matching of G, and M ′

any minimum matching of G − V (e). We may assume v ∈ V (M). Notice that
M ′ ∪ e is a maximal matching in G.

(i) Since M ′ ∪ e is a maximal matching in G, |M ′ ∪ e| ≥ β′
1(G). That is,

β′
1(G− V (e)) + 1 ≥ β′

1(G), and establishes the left inequality of (i).
For the right inequality, when w /∈ V (M), then vv′ ∈ M and M − vv′ is an

independent set of β′
1(G)− 1 edges in G−V (e). If N(v′) ⊆ V (M), then M − vv′

is a maximal matching of G−V (e), hence, β′
1(G−V (e)) ≤ |M−vv′| = β′

1(G)−1.
If v′ has a neighbor x /∈ V (M), then (M − vv′) ∪ v′x is a maximal matching of
G− V (e), with β′

1(G) edges. Therefore, β′
1(G− V (e)) ≤ β′

1(G).
When w ∈ V (M), we consider two cases.

Case 1. When w = v′, M −e is a maximal matching of G−V (w). Therefore,
β′
1(G− V (e)) ≤ |M − e| = β′

1(G)− 1.

Case 2. When w 6= v′, vv′ and ww′ are both members ofM . Then, M ′ = M−
{vv′, ww′} is an independent set of β′

1(G)−2 edges in G−V (e). All undominated
edges have either v′ or w′ as one endvertex and the other in V −V (M). Therefore,
M ′, and at most one edge with an endvertex v′, and one edge with an endvertex
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w′ is a maximal matching in G−V (e). Again, β′
1(G−V (e)) ≤ β′

1(G). Thus, the
right inequality holds and establishes the validity of (i).

(ii) Assume e ∈ M . Since M − e is a maximal matching of G − V (e),
β′
1(G − V (e)) ≤ |M − e| = β′

1(G) − 1. From (i), β′
1(G) − 1 ≤ 1′(G − V (e)).

Therefore, equality holds. Now, assume e is an edge that is not a member of M or
any other minimum matching of G. Since M ′∪e is a maximal matching of G that
contains e, β′

1(G) < |M ′∪e| = β′
1(G−V (e))+1. Thus, β′

1(G)−1 < β′
1(G−V (e))

and completes the proof of (ii).

The next result follows directly from Lemmas 9 and 10 and is given without
additional justification.

Theorem 11. β′
1(G) = β1(G) if and only if, for every edge e of G, β′

1(G −
V (e)) = β1(G− V (e)) = β1(G)− 1.

Theorem 11 implies β′
1(G) = β1(G) is a “hereditary” property.

Corollary 12. Let G be a graph for which β′
1(G) = β1(G). For any set X of

independent edges, β′
1(G− V (X)) = β1(G− V (X)) = β1(G)− |X| .

Following Chartrand et al. [2], let M1 and M2 be maximal matchings in a graph
G. Let H be the subgraph of G for which E(H) = ∇(M1,M2). First, notice that

M1 = ∇(M2, E(H)) and M2 = ∇(M1, E(H)).

Since M1 and M2 are independent sets of edges, no vertex in H can have degree
greater than two. Therefore, the non-trivial components of H are cycles and/or
paths where edges in a cycle or path alternate between M1 and M2. Thus,
alternating cycles have even length and alternating paths have length at least
two. One endvertex of each even length alternating path is in V (M1) − V (M2)
and the other is in V (M2)−V (M1). Endvertices of odd length alternating paths
are both in V (M1)− V (M2) or both in V (M2)− V (M1).

Let H∗ be any subset of the set of components of H. Then, M3 = ∇(M1,
E(H∗)) is a maximal matching of G. Further, |M3| = |M1| − O1 + O2 edges,
where O1 is the number of odd length alternating paths with both endvertices in
V (M1)−V (M2) and O2 is the number of odd length alternating paths with both
end vertices in V (M2)− V (M1).

Lemma 13. Let M ′ be an arbitrary minimum matching of a graph G. Then,
for any maximal matching M , ∇(M,M ′) contains |M | − β′

1(G) odd alternating
length paths, where the endvertices of each path lie in V (M)− V (M ′). No other
odd length alternating paths exist.
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Proof. Let H be the subgraph of G for which E(H) = ∇(M,M ′). Therefore,
M = ∇(M ′, E(H)). The degree one vertices of any odd length alternating path
must both lie in V (M ′)−V (M), or both lie in V (M)−V (M ′). If both degree one
vertices of alternating path P in H lie in V (M ′)−V (M), then ∇(M ′, E(P )) is a
maximal matching with |M ′| − 1 = β′

1(G)− 1 edges, a contradiction. Therefore,
both endvertices of every odd length alternating path lie in V (M)− V (M ′).

Let k be the number of odd length paths in H. Then, M = ∇(M ′, E(H)) is
a maximal matching and |M | = |M ′|+k = β′

1(G)+k. That is, the number of odd
length alternating paths in H is k = |M | − β′

1(G) and each has both endvertices
in V (M)− V (M ′).

Theorem 14. For any graph G, if β1(G) = β′
1(G) + k, then there exists a

minimum matching M ′ and a maximum matching M such that ∇(M,M ′) consists
of k odd length paths with endvertices in V (M) − V (M ′). There are no other
alternating cycles or paths.

Proof. Let M be an arbitrary maximum matching and M∗ an arbitrary mini-
mum matching of G. By the Lemma 13, H = ∇(M,M∗) contains a set of k =
β1(G)−β′

1(G) odd length alternating paths with all endvertices in V (M)−V (M∗),
no other odd length alternating paths exist, and possibly a collection H∗

e ⊆ H
of even length alternating paths and cycles. Let M ′ = ∇(M∗, E(H∗

e )). Since the
number of edges of M ′ and M∗ are equal in number in H∗

e , M
′ is a matching with

|M ′| = |M∗|. That is M ′ is a minimum matching and H = ∇(M ′,M) contains
no even length cycles or paths, but does contain the original k odd length paths
in H∗. That is, H = H∗ −H∗

e . Therefore, M and M ′ establish the theorem.

Corollary 15. For any graph G, β1(G) = 2β′
1(G) if and only if for any maximum

matching M and minimum matching M ′, (M ∩ M ′) = ∅, and (M ∪ M ′) =
∇(M,M ′) is a collection of β′

1(G) vertex independent P4’s.

While alternating cycles and paths are usually defined as the set difference be-
tween two maximal matchings, their usefulness often arises when defined between
a single maximal matching M and the edges in E −M to aid in determining if
M is a maximum or minimum matching.

In the following, four types of alternating cycles and paths are defined and a
brief statement of what their existence implies. The implications are utilized in
Section 4. In the following, a cycle will be referred to as a path P with adjacent
endvertices.

Definition 16. For any graph G and maximal matching M , P = (v1, v2, . . . , vm)
is an alternating cycle or path when the edges of P alternate between edges in M
and edges in E −M , and are of one of the following types:
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Type 1: a cycle in G, m is even, and v1 is adjacent to vm. M ′ = ∇(M,E(P ))
is a maximal matching with |M ′| = |M |.

Type 2: an even length alternating path, m is odd, v1 /∈ V (M), and N [vm] ⊆
V (M). M ′ = ∇(M,E(P )) is a maximal matching with |M ′| = |M |.

Type 3: an odd length alternating path, m is even, v1 /∈ V (M), and vm /∈ V (M).
M ′ = ∇(M,E(P )) is a maximal matching with |M ′| = |M |+ 1.

Type 4: an odd length alternating path, m is even, N [v1] ⊆ V (M), N [m] ⊆
V (M), and v1 is not adjacent to vm. M ′ = ∇(M,E(P )) is a maximal
matching with |M ′| = |M | − 1.

4. Bipartite Graphs with β′
1(G) = β1(G)

Let G be a bipartite graph with partite sets A and B, where |A| ≤ |B|. For a
maximal matching M , let XM = V − V (M), and M0 = {e : e ∈ M and V (e) ∩
N(XM ) = ∅}. The edges in M0 have no neighbors in XM , and are critical for
graphs for which β′

1 = β1. It is possible for M0 and XM to be empty and, when
XM = ∅, M0 = M .

Definition 17. Let B be the set of bipartite graphs G such that for every maximal
matching M , with M0 = {e : e ∈ M and N(V (e)) ⊆ V (M)},

(1) each component of [V (M0)] is a complete bipartite graph, and

(ii) V (M) contains an independent vertex cover of G.

Theorem 18. G ∈ B if and only if G is bipartite and β′
1(G) = β1(G).

Proof. Assume G ∈ B and let M be a minimum matching of G. From Definition
17, G is bipartite and there is an independent vertex cover A ⊆ V (M). Therefore,
α(G) ≤ |A|. Since A is independent and a subset of V (M), A cannot contain two
endvertices of any edge, thus, |A| ≤ |M |. Since M was selected to be a minimum
matching, |M | = β′

1(G) ≤ β1(G). From equation (1), β1(G) ≤ α(G). Therefore,
α(G) ≤ |A| ≤ |M | = β′

1(G) ≤ β1(G) ≤ α(G). That is, β′
1(G) = β1(G).

Next, assume G is bipartite and that β′
1(G) = β1(G). Let M be an arbitrary

maximal matching of G and partition M into M0,M1, and M2 as follows.

M0 = {vv′ : vv′ ∈ M,N(v) ⊆ V (M), and N(v′) ⊆ V (M)},

M1 = {vv′ : vv′ ∈ M,N(v) 6⊂ V (M), and N(v′) ⊆ V (M)}, and

M2 = {vv′ : vv′ ∈ M,N(v) 6⊂ V (M), and N(v′) 6⊂ V (M)}.

We first show that M2 is empty. If not, there is an edge vv′ ∈ M2 with a vertex
x ∈ N(v) − V (M) and a vertex y ∈ N(v′) − V (M). Since G is bipartite, x 6= y
and P = (x, v, v′, y) forms an alternating path of Type 3 in Definition 16, a
contradiction since ∇(M,E(P )) would be a matching of G with |M |+1 > β1(G)
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edges. Therefore, we may assume M2 = ∅, and let G0 = [V (M0)] and G1 =
[V − V (M0) >].

From Corollary 12, β′
1(G0) = β1(G0) = |M0| and β′

1(G1) = β1(G1) = β1(G)−
|M0|. Since the number of vertices in G0 is 2|M0|, by Theorem 8, each component
of G0 is a complete bipartite graph as required by (1) of Definition 17.

In G1, let A1 = {v : vv′ ∈ M1 and N(v) 6⊂ V (M)} and A′
1 = V (M1) − A1.

Suppose v and w are adjacent members of A1. Then, P = (v′, v, w, w′) is a
Type 4 path in Definition 16 and is a contradiction, since ∇(M,E(P )) would
be a matching of G with |M | − 1 < β′

1(G) edges. Now, assume v and w are
members of A1, and v′ is adjacent to w′. Then, v and w have neighbors x and y,
respectively in V −V (M). If x = y, then {x, v, v′, w′, w} forms a C5, contradicting
G being bipartite. Therefore, x 6= y and, since both are members of V − V (M),
x and y are not adjacent. Thus, P = (x, v, v′, w′, w′y) is an alternating path of
Type 3 in Definition 16 and, hence, ∇(M,E(P )) would be a matching of G with
|M |+ 1 > β′

1(G) edges, a contradiction. Therefore, A1 is an independent vertex
cover of G1, and if M0 = ∅, G ∈ B.

WhenM0 6= ∅, letG′
0 be an arbitrary component ofG0. Suppose two adjacent

vertices, v and w, in G′
0 have, respectively, neighbors x and y in A1. Assume

xx′ and yy′ are edges in M1. Then, there is an odd length alternating path
P = (x′, x, v, . . . , w, y, y′) where x′ 6= y′, N(x′) ⊆ V (M), and N(y′) ⊆ V (M).
That is, P is an alternating path of Type 4 in Definition 16, a contradiction.
Suppose x and y are both members of V (M1) − A1. Again, we may assume xx′

and yy′ are edges in M1. In this case, x′ and y′ are both members of V − V (M),
and x and y are both members of A1 with distinct neighbors a and b, restrictively.
Therefore, P = (a, x, x′, v, . . . , w, y′, y, b) is an alternating path of Type 3 in
Definition 16. Again, this is a contradiction, and hence, every component in G0

has a partite set with no neighbors in A1. These sets, with A1, is a set A of
independent vertices in G and, since every edge has an endpoint in A, A is a
vertex cover of G. This final result establishes that G ∈ B.

Note: There are graphs with β1(G) = |A| > β′
1(G), such as P4.

5. Vertex Covers and Edge Dominating Sets

A goal in this section is to characterize extremal bounds on the total vertex cover
number as well as relating (total) vertex covers to edge dominating sets. We
begin with a definition, and then state a result from [6] in different terms than
given in [6]. A stem is a vertex that is adjacent to a degree one vertex. These
vertices are sometimes called support vertices in the literature, but since we will
also be referring to such vertices in trees (where degree one vertices are leaves),
we shall simply refer to them as stems for notational consistency.
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Theorem 19. Let G be a connected graph with n ≥ 3 vertices. Then, γ(G) =
αt(G) if and only if the set of stems is a total vertex cover.

Proof. If S is a set of stems that forms a total vertex cover, then γ(G) ≤ αt(G) ≤
|S|. For any graph G, either each stem or all of its degree one neighbors must be
in any dominating set. Thus, |S| ≤ γ(G), and equality holds.

If γ(G) = αt(G) and C is an αt-set, then C is also a minimum dominating
set. Every vertex in a minimum dominating set must have a private neighbor that
is not dominated by any other member of C. Since C is a total vertex cover of
minimum cardinality, a vertex cannot be its own private neighbor, so the private
neighbor must be a vertex in V −C and, hence, has degree one. Thus, C is a set
of stems. No stem can be in V − C.

Theorem 20. For all graphs G, αt(G) > β′
1(G).

Proof. Let D be an independent minimum edge dominating set. Let C be a
minimum total vertex cover. Suppose by way of contradiction that |D| = |C| ≥ 2.
C consists of one vertex from each edge in D. Then, V (G)−C is an independent
set since C is a vertex cover. Since C is a total vertex cover, there must exist
two vertices u, v ∈ C such that uv ∈ E(G). Then uv /∈ D and thus, D is not
a minimum edge dominating set, since there exist vertices a, b /∈ C such that
D′ = (D − {ua, vb}) ∪ {uv} is an edge dominating set. That is, uv is incident to
any edges that ua and vb are, since a and b are independent. Furthermore, any
other vertices adjacent to a or b must be in C, so any other edges besides uv that
are incident to a are dominated by D′.

Theorem 21. For all graphs G, α(G) = β′
1(G) if and only if G is bipartite and

β′
1(G) = β1(G).

Proof. When α(G) = β′
1(G), by equation (1), β′

1(G) = β1(G) = α(G). Let D be
a minimum matching and let C be a minimum vertex cover. Then, C consists
of one vertex from each edge in D. Since the edges in D are independent, any
vertex cover must include at least one vertex from each edge in the matching.
Therefore, V (G) − C is an independent set, since C is a vertex cover. Observe
that C is an independent set, otherwise there is a smaller edge dominating set
(see the argument used in Theorem 20). Since C is an independent set and V −C
is also an independent set, G is bipartite.

For the other direction, suppose G is bipartite and β′
1(G) = β1(G). Since

α(G) = β1(G) for all bipartite graphs, the theorem is true.

Definition 17 and the results of Theorems 18 and 21 can be summarized as follows.

Corollary 22. For graphs G, the following are equivalent statements.
(1) G ∈ B.
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(2) α(G) = β′
1(G).

(3) β′
1(G) = β1(G) and G is bipartite.

Our next goal is to characterize the graphs G satisfying αt(G) = 2α(G)− 1.

Lemma 23. For any α-set C of a graph G, and any C ′ ⊆ C, let X be a smallest
X ⊆ V −C for which X dominates C ′. Then, |X| ≤ |C ′| and further, |X| = |C ′|
if and only if every vertex in V − C has at most one neighbor in C ′.

Proof. Since C is a minimum vertex cover, every vertex in C has a neighbor in
V − C. That is, V − C dominates C ′, hence, there is a smallest subset X that
dominates C ′. Each vertex in X dominates a vertex in C ′ that is not dominated
by any other vertex of X. Therefore, |X| ≤ |C ′|.

Suppose v ∈ V −C has m ≥ 2 neighbors in C ′. Then, v and a smallest set of
vertices from V − C that dominates C ′ −N(v) is a dominating set of C ′. Thus,
|X| ≤ 1 + |C ′ −N(v)| = |C ′| −m+ 1 < |C ′| when m ≥ 2. Therefore, |X| = |C ′|
and vertices in V − C have one neighbor in C ′.

If every vertex in V −C has at most one neighbor in C ′, then every dominating
set of C ′ must have |C ′| vertices.

Definition 24. A simple star is a K1,m with a degree m ≥ 2 center vertex. A
connected graph G, with k = α(G) ≥ 2 and α-set C = {w0, w1, w2, . . . , wk−1}, is
a k-star when the following conditions hold.

(1) C is an independent set

(2) Vertices in V − C have degree at most two and every pair of degree two
vertices in V − C has a common neighbor in C.

(3) Assume, of the vertices in C, w0 has a maximum number of degree two
neighbors.

(3.1) If N [w0] contains every degree two vertex in V − C, then G − {w0} is
a collection of zero or more isolated vertices and k − 1 simple stars with
respective center vertices w1, w2, . . . , wk−1, otherwise

(3.2) k = 3, every vertex in C has degree at least three, and every pair of vertices
in C has a common neighbor in V − C.

(4) deg(w0) ≥ k.

Lemma 25. If a graph G is a k-star, then αt(G) = 2α(G)− 1.

Proof. LetG be a k-star. By Theorem 1, sinceG is not a star, αt(G) ≤ 2α(G)−1.
When G satisfies (3.1) of Definition 24, w0 is adjacent to every degree two vertex
in V − C, and each wi, 1 ≤ i ≤ k − 1, is adjacent to at least one degree two
vertex in V − C. Let X = {x1, x2, . . . , xk−1} ⊆ V − C where, for 1 ≤ i ≤ k − 1,
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N(xi) = {w0, wi}. Suppose αt(G) < 2α(G) − 1 and let C ′ ⊆ V be an αt-set of
G, where C ′ ∩ C is as large as possible. Assume, for some i > 0, that wi /∈ C ′.
Then, N(wi) ⊆ C ′ and, since xi has only wi and w0 as neighbors, in order that xi
have a neighbor in C ′, w0 ∈ C ′. Further, wi cannot have a degree one neighbor,
since it would be in C ′ without a neighbor in C ′, a contradiction. Since wi is the
center vertex of a simple star, deg(wi) ≥ 2 and, hence, wi must have a second
degree two neighbor, say y, in C ′. The only edge uniquely covered by y is ywi.
Since wi also covers ywi and wi has xi as a neighbor in C ′, (C ′ − {y}) ∪ {wi} is
a total vertex cover and also has |C ′| vertices, but with one more vertex from C
than C ′ has from C, contradicting the assumption that C ′ contains the maximum
possible. Therefore, we may assume C ′ contains {w1, w2, . . . , wk−1} = C −{w0}.

For C ′ to be a total vertex cover, each wi must have a neighbor in C ′. Since
w0 is adjacent to every degree two vertex in V − C, vertices in V − C have at
most one neighbor in C−{w0}. Therefore, from Lemma 23, all dominating sets of
C−{w0} must contain exactly k−1 vertices from V −C, for example and without
loss of generality, the set X formed above. Therefore, C ′ ⊇ {w1, w2, . . . , wk−1} ∪
{x1, x2, . . . , xk−1}. That is, |C ′| ≥ 2(k − 1). Since |C ′| < 2k − 1, |C ′| = 2k − 2.
Thus, C ′ cannot contain additional vertices and, in this case, w0 /∈ C ′. Since
N(w0) ∩ {w1, w2, . . . , wk−1} = ∅, w0 has exactly k − 1 neighbors in C ′. From
Condition 4, deg(w0) ≥ k, so w0 must have at least one neighbor that is not in
C ′, a contradiction, since C ′ would not be a total vertex cover.

Therefore, when G is a k-star and there is a vertex in an α-set that is adjacent
to every degree two vertex not in the α-set, αt(G) = 2α(G)− 1.

Now assume G is a k-star and Condition 3.1 of Definition 24 is not met. That
is, G is a 3-star and, for 0 ≤ i ≤ 2, N(wi) does not contain every degree two
vertex of V − C, and every pair of vertices in C possess a common neighbor in
V − C.

If αt(G) < 2α(G) − 1 = 5, there exists a total vertex cover, C ′, with four
vertices. If C ⊆ C ′, then C ′ contains exactly one vertex x ∈ V − C. Since C is
an independent set, to make C ′ a total vertex cover requires x to be adjacent to
all three members of C, contradicting that vertices in V −C have degree at most
two.

Therefore, without loss of generality, we may assume w2 /∈ C ′. Similar to
previous arguments for vertices not in a total vertex cover, w2 cannot have degree
one neighbors, implying it must have exactly three degree two neighbors in C ′,
which also must be members of V − C. Thus, C ′ contains exactly one member
of C, say w0. Therefore, w1 is also not in C ′ and, hence, has no degree one
neighbor, but has three neighbors in C ′, which must be the same set of neighbors
as w2. Then, one of these neighbors must also be adjacent to w0, contradicting
that vertices of V − C have degree at most two. Thus, for this case, every total
vertex cover of G requires at least five vertices and, again, αt(G) = 2α(G) − 1,



450 R. Dutton and W.F. Klostermeyer

and completes the proof of the Lemma.

Theorem 26. Let G be a connected graph. Then, G is a k-star if and only if
αt(G) = 2α(G)− 1.

Proof. If G is a k-star, the conclusion follows from Lemma 25. Therefore,
assume G is connected and that αt(G) = 2α(G) − 1. With k = α(G), let
C = {w0, w1, w2, . . . , wk−1} be an arbitrary α-set of G. We show each condi-
tion of Definition 24 holds.

Condition 1. Suppose wi and wj are adjacent. A total vertex cover of G can
be formed with {wi, wj}, C − {wi, wj}, and a smallest set X ⊆ V − C, where X
dominates C − {wi, wj}. From Lemma 23, |X| ≤ |C − {wi, wj}| = k − 2. Then,
αt(G) ≤ 2+2(k−2) = 2k−2 = 2α(G)−2 < 2(G)−1, a contradiction. Therefore,
C is an independent α-set.

Condition 2. Let x be an arbitrary largest degree vertex in V − C. A total
vertex cover can be formed with N [x], C −N(x), and a smallest set X ⊆ V −C
that dominates C−N(x). Again, from Lemma 23, |X| ≤ |C−N(x)| = k−deg(x).
Then, 2α(G) − 1 = αt(G) ≤ (1 + deg(x)) + 2(k − deg(x)) = 2k − deg(x) + 1 =
2α(G)− deg(x) + 1. Therefore, deg(x) ≤ 2. Since deg(x) ≥ 2, deg(x) = 2.

In the previous argument, a contradiction also occurs when |X| < |C−N(x)|.
Therefore, |X| = |C−N(x)|. Thus, no degree two vertex in V −C can have both
of its neighbors in C −N(x), otherwise a smaller set X would exist. Therefore,
x and every degree two vertex in V − C have a common neighbor. Since x was
selected arbitrarily from the set of degree two vertices in V − C, every pair of
degree two vertices in V − C has a common neighbor in C.

Condition 3. Suppose x ∈ V − C has neighbors w0 and w1, appropriately
relabeled so that w0 has a maximum number of degree two neighbors. Then,
every other degree two vertex in V − C is adjacent to either w0 or w1. Then,
either (Condition 3.1) every degree two vertex in V − C is adjacent to w0, or
(Condition 3.2) there is a degree two vertex in V −C that is not adjacent to w0.

Condition 3.1. When w0 is the common neighbor of every degree two vertex in
V −C, in G−{w0} the neighbors of each wi are degree one. That is, N [wi] induces
a simple star with center vertex wi. All other vertices (degree one neighbors of
w0 in G) are isolated vertices in G− {w0}.

Condition 3.2. No vertex of C dominates every degree two vertex in V − C.
If k = 2, every degree two vertex in V − C has w0 as a neighbor, Thus, k ≥ 3.
Every vertex in C has a degree two neighbor in V − C and each pair of degree
two vertices in V − C has a common neighbor. Without loss of generality, we
may assume, for 0 ≤ i 6= j ≤ 2, that xi,j is a degree two vertex in V − C with
N(xi,j) = {wi, wj}. Suppose k ≥ 4. Then, w3 must have a neighbor x other than
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x0,1, x0,2, and x1,2, but x must have a common neighbor with each of x0,1, x0,2
and x1,2, an impossibility. Therefore, k = 3 and every pair of vertices in C has a
common neighbor in V −C. Suppose, say, deg(w2) = 2. Then, {w0, w1, x0,2, x1,2}
is a total vertex cover, since the only edges not covered by w0 and w1 are the
two that are incident to w2, and these two are covered by x0,2 and x1,2. Hence,
αt(G) ≤ 4 < 2α(G)− 1 = 5, a contradiction.

Condition 4. If N(w0) contains every degree two vertex in V −C (Condition
3.1), then an αt-set consists of C ∪X, where each xi ∈ X is adjacent to both x0
and wi. If deg(w0) = k − 1, then every edge incident to w0 is covered by one of
the xi ∈ X. Therefore, (C − {w0}) ∪ X is a total vertex cover with 2α(G) − 2
vertices, a contradiction.

In the proof for Condition 3.2, every vertex in C was shown to have at least
three neighbors. Thus, deg(w0) ≥ 3 = k. Since all conditions are satisfied, G is
a k-star.

It would be of interest to characterize graphs having αt(G) = 2β′
1(G) in a way that

lends itself to an efficient algorithm, as opposed to Proposition 6. For instance,
we state the following, where a subdivision of K1,m consists of m paths having
p1, p2, . . . , pm vertices, respectively, all sharing a common vertex v.

Proposition 27. Let G be a subdivision of K1,m. Then αt(G) = 2β′
1 if and only

if at most one path has length congruent to 2 (mod 3).

Proof. Number the edges of each path from 1 to pi starting with v. If two or
more paths have length 2 (mod 3), then we claim αt(G) < 2β′

1. To see this,
form a total dominating set as follows: include both vertices of every third edge
from the length 2 (mod 3) paths starting with the first edge of one of the paths
(so this includes v) and starting with the third edge from the other length 2
(mod 3) paths, and include the stems of each of the length 2 (mod 3) paths.
For all the other paths, we include both vertices from each edge of a minimum
edge dominating set.

Otherwise, if G does not have two paths of length 2 (mod 3), we can find a
minimum edge dominating set D such that no two edges in D have endvertices
with a common neighbor. There are three cases. If there is one path of length
2 (mod 3), include the edge of that path containing v (i.e., the first edge of the
path) and then every third edge of that path (starting with the fourth). For each
of the other paths, include the third edge and every subsequent third edge. If
there are no length 2 (mod 3) length paths, but there exists a path of length
1 (mod 3), include the first edge of the length 0 (mod 3) path, and then every
third edge (starting with the fourth) and every third edge (starting with the third
edge) of each path of length 0 (mod 3). If all the paths have length 0 (mod 3),
include the second edge of each path and then every third edge after that (starting
with the fifth).
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It would be interesting to characterize G having α(G) = αt(G). An elegant
characterization of trees with this property seems difficult, however. We mention
two special cases. Let T be a tree with stem set S such that every stem is adjacent
to another stem. Then, α(T ) = αt(T ) if and only if the subgraph induced by
G − N [S] consists of zero or more independent edges. To see this, note that in
such cases the subgraph induced by G− S contains leaves and P4’s, each P4 can
be covered by two adjacent vertices, and the edges between the stems and the
leaves or P4’s are covered by the stems.

On the other hand, if T contains no adjacent stems, α(T ) < αt(T ), since
in order for α(T ) = αt(T ), each stem would have to be adjacent to a leaf or an
interior vertex (i.e., a vertex that is not a leaf or a stem) in a minimum vertex
cover. We can assume there are no leaves in a minimum vertex cover (unless
T = K2) and any such interior vertex would have to be the endvertex of a path
in the subgraph induced by G− S, which cannot be the case.

As a result, subdivisions of stars satisfy α(G) = αt(G) only when every pi is
of length one or two with at least one of each length.

6. Total Domination

The following was asked in [6]:

Question 2. For which graphs G is γt(G) = αt(G)?

As pointed out in [6], it is not true that α(G) = γ(G) implies γt = αt(G). To see
this, consider C4 with one pendant vertex v attached to one of the vertices of the
cycle. Thus graph G has α(G) = γ(G) = 2, but γt(G) = 2 and αt(G) = 3. On
the other hand, γ(K3) < α(K3) and γt(K3) = αt(K3).

Theorem 28. If δ(G) ≥ 2 and γt(G) = αt(G), then αt(G) = 2β′
1(G).

Proof. Suppose δ(G) ≥ 2 and γt(G) = αt(G). Let C be an αt-set, so C is also a
γt-set. Then V −C is an independent set. Suppose by way of contradiction that
[C] does not contain a perfect matching. Let M be a maximum matching in [C].
Let v be a vertex in C such that v /∈ V (M). We claim C−v is a total dominating
set. Since every vertex in V −C has degree at least two, C− v dominates V −C.
Vertex v must have a neighbor in C, since C is a total dominating set. If u is a
vertex in C and v was its only neighbor in C, then M would not be a maximum
matching in [C], as M ∪ uv would be a larger matching. Thus, C − v is a total
dominating set smaller than C, a contradiction. Therefore, [C] contains a perfect
matching and by Corollary 5, αt(G) = 2β′

1(G).

Theorem 29. For any tree T , αt(T ) ≤
3
2γt(T )− 1.
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Proof. Consider a tree T on n vertices with minimum a total dominating set D.
Let D1, D2, . . . , Dk, k ≥ 1, be the distinct maximal connected subgraphs of T
induced by D. Note that each such Di contains at least two vertices of D, since
D is a total dominating set. This 1 ≤ k ≤ n/2.

Each [Di] contains exactly |Di| − 1 edges, since it is a subtree of T with |Di|
vertices. Thus, the set D covers exactly |D|−k edges. There are n−|D| vertices
not in D, and each is adjacent to at least one vertex contained in some Di set.
That is, D covers at least another n−|D| edges, for a total of n−|D|+ |D|−k =
n−k covered edges. Therefore, there are at most |E|−(n−k) = n−1−n+k = k−1
uncovered edges. Thus, D and at most k − 1 additional vertices (one endvertex
of each uncovered edge) from V −D is sufficient to cover all edges of T , that is, a
vertex cover of T . Since D is a total dominating set, D and any subset of V −D is
a total vertex cover. Therefore, αt(T ) ≤ |D|+k−1 ≤ |D|+|D|/2−1 = 3|D|/2−1.

A path P8 shows the bound of Theorem 29 is sharp. The proof of Theorem 29
shows that any tree having αt(T ) =

3
2γt(T ) − 1 must have each Di with exactly

two vertices and each vertex in V − D has exactly one neighbor in D. This
implies that P8 is the smallest tree with αt(T ) =

3
2γt(T )− 1 and αt(T ) > γt(T ).

In general, these trees can be formed by taking any number of trees of diameter
three and connecting them together until a tree is formed by repeatedly adding
an edge between the leaves of two distinct components.

There exist bipartite graphs where αt

γt
is arbitrarily large: Km,n, when m and

n are sufficiently large for one example. For another, take a P4 and combine it
with itself using a parallel construction a sufficient number of times to make the
ratio large.

Let Pm × Pn denote the m × n grid graph. Let us first show that αt(P2 ×
Pn) ≤ ⌈4n3 ⌉. Number the columns of P2 × Pn from 1 to n from left to right. If
n ≡ 0 (mod 3), the following pattern can be used. (“x” indicates a vertex in the
total vertex cover).

0--x--0--x--x--x--0--x--0

x--x--x--0--x--0--x--x--x

If n ≡ 1 (mod 3), we use the same pattern for the first n− 1 rows, but add both
vertices from column n. If n ≡ 2 (mod 3), we use the pattern for n ≡ 1 (mod 3)
(i.e., two vertices in column n − 1) and add one vertex from column n. This
shows that αt(P2 × Pn) ≤

4n+2
3 = ⌈4n3 ⌉.

Proposition 30. αt(P2 × Pn) = ⌈4n3 ⌉.

Proof. The argument above gives the upper bound. For the lower bound, it
is now proved that αt(P2 × Pn) ≥ ⌈4n3 ⌉. The proof is by induction on n. We
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establish four base cases: n = 1, is trivial, as ⌈43⌉ = 2. For n = 2, three vertices
are needed and ⌈83⌉ = 3. For n = 3, four vertices are needed, and ⌈123 ⌉ = 4. Lastly,
for n = 4, six vertices are needed and ⌈163 ⌉ = 6.

Now consider P2×Pn and assume that for any m < n, a total vertex cover of
P2 × Pm requires at least 4m

3 vertices. Let C be a total vertex cover of P2 × Pn.
First suppose there are two columns, k and k + 1, each containing two vertices
of C. Then, the first k columns of C are a total vertex cover of a P2 × Pk

and the last n − k columns of C are a total vertex of a P2 × Pn−k. Therefore

|C| ≥ 4k
3 + 4(n−k)

3 ≥ 4n
3 .

Next suppose no two adjacent columns each contain two vertices of C. So,
suppose two adjacent columns, k and k + 1, contain one vertex each from C.
Since C is a total vertex cover, that means columns k − 1 and k + 2 must each
have two vertices from C. This is because the vertices from C in columns k and
k+1 must lie in different rows. Again, this implies the first k columns of C form
a total vertex cover for a P2 × Pk and the last n− k columns form a total vertex
cover for a P2 × Pn−k. Thus, |C| ≥ 4k

3 + 4(n−k)
3 ≥ 4n

3 .

Lastly, if neither of the first two possibilities occur, then the configuration of
vertices in C alternates between columns with one vertex from C and columns
with two vertices from C. Then, |C| ≥ n+ ⌊n2 ⌋ ≥

4n
3 , as n ≥ 3.

We now examine P3×Pn. If n ∈ {1, 2, 4}, it is easy to see that αt(P3×Pn) = 2n.
For n = 3 or n > 4, it is now shown that αt(P3 ×Pn) ≤ 2n− 1. When n ≥ 3 and
n odd, use the following pattern (1, 3, 1, 3, . . . , 1, 3, 1), where each value indicates
the number of vertices in a total vertex cover from the respective columns. A “1”
means the middle vertex from the column is chosen and a “2” means the upper
and lower vertices are chosen. For n ≥ 6 and n even, use the following pattern
(1, 3, 1, 3, ..., 1, 3, 1, 2, 3, 1). The following diagram illustrates when n = 12. (“x”
indicates a vertex in the total vertex cover).

0--x--0--x--0--x--0--x--0--x--x--0

x--x--x--x--x--x--x--x--x--0--x--x

0--x--0--x--0--x--0--x--0--x--x--0

Proposition 31. For n = 3 or n > 4, αt(P3 × Pn) = 2n− 1.

Proof. The argument above gives the upper bound and also establishes that
αt(P3X × Pn) = 2n− 1 for 1 ≤ n ≤ 4.

Hence, we may assume n ≥ 5 and that αt(P3×Pm) ≥ 2m−1, for 1 ≤ m < n.
Let C be an αt-set of P3 × Pn.

Suppose there are two columns, k and k + 1, where one column contains
one vertex from C and the other contains two vertices from C. Notice that
2 ≤ k ≤ n − 1 and we may assume without loss of generality that column k
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contains one vertex from C. The configuration of C vertices in the first k columns
is a total vertex cover of the first k columns, that is, of a P3×Pk. This is because
the one vertex from C in column k cannot be adjacent to either vertex from C in
column k+1, otherwise the edges between columns k and k+1 are not covered.
Thus, there are at least 2k − 1 vertices in C in the leftmost k columns.

Observe that a column with only one vertex in C must have that vertex in the
middle row. The configuration of vertices from C in the rightmost n−k columns
is a total vertex cover for the rightmost n − k columns, but the two vertices in
column k + 1, when considering these columns as a P3 × Pn−k, can be replaced
with a single vertex in the middle row of the first column of this P3×Pn−k (since
in this case, the two vertices in column k+1 must be in the top and bottom rows).
That is, there are at least 2(n− k) entries of C in columns k + 1, k + 2, . . . , n of
the P3×Pn. Therefore, C contains at least (2k− 1)+ 2(n− k) = 2n− 1 vertices.

Suppose no column with exactly one vertex from C is next to a column with
just two entries from C. First, assume there is a column k, 1 < k < n, with only
one vertex in C. Then, columns k− 1 and k+1 both have three vertices from C.
As above, the first k columns contain a total vertex cover for a P3 × Pk and the
last n−(k−1) columns contain a total vertex cover of a P3×Pn−k+1. Notice, the
vertex in C in column k appears in both configurations and is “counted” twice.
Therefore, C must have at least (2k−1)+(2(n−k+1)−1)−1 = 2n−1 vertices.

If the only column(s) with a single vertex from C is(are) in columns 1 and/or
n, we may assume the top and bottom rows each contain at least n− 2 vertices
of C, and the middle row must contain at least four vertices from C. That is, at
least 2(n− 2) + 4 = 2n ≥ 2n− 1.

Finally, if there are no columns with just one C vertices, all columns must
contain either two or three vertices from C. That is, C contains at least 2n
vertices.

Let m ≤ n. When m or n is a multiple of 3 and the other is odd, it seems
that αt(Pm × Pn) ≤

2mn
3 − 1. If one of m,n is a multiple of three and the other

is even, it seems that αt(Pm × Pn) ≤ 2mn
3 . Notice, this formula gives 23 when

m = 3 and n = 12, agreeing with the diagram above. Otherwise, we think that
αt(Pm × Pn) ≤ 2mn+m−3

3 , but do not necessarily believe this is optimal in all
cases. For example, if neither m nor n is a multiple of 3 and n ≡ 2(mod 3), then

we think that αt(Pm × Pn) ≤
2mn−m+3⌊m

2
⌋

3 .
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