UNDERLYING GRAPHS OF 3-QUASI-TRANSITIVE DIGRAPHS AND 3-TRANSITIVE DIGRAPHS

Ruixia Wang and Shiying Wang
School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi, 030006, PR China
e-mail: wangrx@sxu.edu.cn
shiying@sxu.edu.cn

Abstract

A digraph is 3 -quasi-transitive (resp. 3 -transitive), if for any path $x_{0} x_{1}$ $x_{2} x_{3}$ of length $3, x_{0}$ and x_{3} are adjacent (resp. x_{0} dominates x_{3}). César Hernández-Cruz conjectured that if D is a 3 -quasi-transitive digraph, then the underlying graph of $D, U G(D)$, admits a 3 -transitive orientation. In this paper, we shall prove that the conjecture is true.

Keywords: graph orientation, 3 -quasi-transitive digraph, 3 -transitive digraph.
2010 Mathematics Subject Classification: 05C20.

1. Terminology and Introduction

We only consider finite graphs and digraphs without loops and multiple edges or multiple arcs. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. A complete graph is a graph in which any two vertices are adjacent. A complete bipartite graph G is a graph in which the vertices of G can be partitioned into two partite sets such that every partite set is an independent set and for every pair x, y of vertices from distinct partite sets, $(x, y) \in E(G)$.

Let D be a digraph with vertex set $V(D)$ and arc set $A(D)$. For any $x, y \in$ $V(D)$, we will write $\overrightarrow{x y}$ or $x \rightarrow y$ if $x y \in A(D)$, and also, we will write $\overline{x y}$ if $\overrightarrow{x y}$ or $\overrightarrow{y x}$. For disjoint subsets X and Y of $V(D)$ or subdigraphs of $D, X \rightarrow Y$ means that every vertex of X dominates every vertex of $Y, X \Rightarrow Y$ means that there is no arc from Y to X and $X \mapsto Y$ means that both of $X \rightarrow Y$ and $X \Rightarrow Y$ hold. Let D^{\prime} be a subdigraph of D and $x \in V(D)-V\left(D^{\prime}\right)$. We say that x and D^{\prime} are adjacent if x and some vertex of D^{\prime} are adjacent.

For any digraph D, we can associate a graph G on the same vertex set simply by replacing each arc by an edge with the same ends. This graph is the underlying graph of D, denoted $U G(D)$. By a path of a digraph D, we mean a directed path of D. The length of a path is the number of its arcs. A path of length k is called a k-path; the path is odd or even according to the parity of k. A digraph D is said to be strongly connected or just strong, if for every pair x, y of vertices of D, there is a path from x to y. A strong component of a digraph D is a maximal induced subdigraph of D which is strong. The strong component digraph $S C(D)$ of D is obtained by contracting strong components of D and deleting any parallel arcs obtained in this process.

A digraph D is semicomplete if there is at least one arc between any pair of distinct vertices of D. A tournament is a semicomplete digraph with no cycle of length 2. A digraph D is semicomplete bipartite, if the vertices of D can be partitioned into two partite sets such that every partite set is an independent set and for every pair x, y of vertices from distinct partite sets, $x y$ or $y x$ (or both) is in D. A bipartite tournament is a semicomplete bipartite digraph with no cycle of length 2 . A digraph is k-quasi-transitive, where $k \geq 2$, if for any path $x_{0} x_{1} x_{2} \ldots x_{k}$ of length k, x_{0} and x_{k} are adjacent. A 2-quasi-transitive digraph is also called a quasi-transitive digraph. A 3 -quasi-transitive digraph is also called a quasi-arc-transitive digraph (see [7]). A digraph is k-transitive, where $k \geq 2$, if for any path $x_{0} x_{1} x_{2} \ldots x_{k}$ of length k, x_{0} dominates x_{k}. A 2 -transitive digraph is also called a transitive digraph. k-transitive digraphs and k-quasi-transitive digraphs have been studied by several authors. See $[1,2,3,5,6,7]$. For a graph G, a digraph D is called an orientation of G if D is obtained from G by replacing each edge (x, y) of G by either $x y$ or $y x$.

In [4], see also [2], Ghouila-Houri proved the following theorem.
Theorem 1 [2, 4]. A graph G has a quasi-transitive orientation if and only if it has a transitive orientation.
It seems natural to consider an analogue of Theorem 1 for 3 -quasi-transitive digraphs and 3 -transitive digraphs.

In [3], the author proposed the following conjecture.
Conjecture 2 [3]. Let D be a 3-quasi-transitive oriented graph. Then the underlying graph of $D, U G(D)$, admits a 3 -transitive orientation.
In Section 2, we will prove that the conjecture is true.

2. Main Result

We begin with some useful lemmas. Let F_{n} be the digraph with vertex set $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ and arc set $\left\{x_{0} x_{1}, x_{1} x_{2}, x_{2} x_{0}\right\} \cup\left\{x_{0} x_{i+3}, x_{i+3} x_{1}: i=0,1, \ldots, n-\right.$ $3\}$, where $n \geq 3$.

Lemma 3 [5]. Let D be a strong 3-quasi-transitive digraph of order n. Then D is either a semicomplete digraph, a semicomplete bipartite digraph or isomorphic to F_{n}.

Lemma 4 [7]. Let D^{\prime} be a non-trivial strong induced subdigraph of a 3-quasitransitive digraph D. For any $s \in V(D)-V\left(D^{\prime}\right)$, if there exists a directed path between s and D^{\prime}, then s and D^{\prime} are adjacent.

Lemma 5 [5]. Let D be a 3-quasi-transitive digraph. For a pair x, y of $V(D)$, if there exists an (x, y)-path of odd length, then x and y are adjacent.

Lemma 6 [7]. Let D^{\prime} be a non-trivial strong induced subdigraph of a 3-quasitransitive digraph D and let $s \in V(D)-V\left(D^{\prime}\right)$ with at least one arc from s to D^{\prime} and $s \Rightarrow D^{\prime}$. Then each of the following holds:
(a) If D^{\prime} is a bipartite digraph with bipartition $(X ; Y)$ and s dominates a vertex of X, then $s \mapsto X$.
(b) If D^{\prime} is a non-bipartite digraph, then $s \mapsto D^{\prime}$.

Lemma 7 [7]. Let D^{\prime} be a non-trivial strong induced subdigraph of a 3 -quasitransitive digraph D and let $s \in V(D)-V\left(D^{\prime}\right)$ with at least one arc from D^{\prime} to s and $D^{\prime} \Rightarrow s$. Then each of the following holds:
(a) If D^{\prime} is a bipartite digraph with bipartition (X, Y) and there exists a vertex of X which dominates s, then $X \mapsto s$.
(b) If D^{\prime} is a non-bipartite digraph, then $D^{\prime} \mapsto s$.

Lemma 8 [7]. Let D_{1} and D_{2} be two distinct non-trivial strong components of a 3-quasi-transitive digraph with at least one arc from D_{1} to D_{2}. Then either $D_{1} \mapsto D_{2}$ or $D_{1} \cup D_{2}$ is a semicomplete bipartite digraph.

Lemma 9. If a graph G has a strong 3-quasi-transitive orientation, then it has a transitive orientation.

Proof. Let D be a strong 3-quasi-transitive orientation of G and let the order of D be n. By Lemma 3, D is either a tournament, a bipartite tournament or isomorphic to F_{n} because D has no cycle of length 2. If D is a tournament (resp. a bipartite tournament), then G is a complete graph (resp. a complete bipartite graph). Any acyclic orientation of a complete graph is transitive and orienting the edges of a complete bipartite graph from one side of the bipartition to the other results in a transitive orientation. Now suppose that D is isomorphic to F_{n} with vertex set $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ and arc set $\left\{x_{0} x_{1}, x_{1} x_{2}, x_{2} x_{0}\right\} \cup\left\{x_{0} x_{i+3}, x_{i+3} x_{1}\right.$: $i=0,1, \ldots, n-3\}$, where $n \geq 3$. We reorient D as a digraph D^{\prime} with arc set $\left\{x_{0} x_{1}\right\} \cup\left\{x_{i+2} \rightarrow x_{0}, x_{i+2} \rightarrow x_{1}: i=0,1, \ldots, n-2\right\}$. Clearly, D^{\prime} is a transitive digraph. The proof of Lemma 9 is complete.

Lemma 10 [3]. If D is a k-transitive digraph with $k \geq 2$, then D is $(k+n(k-1))$ transitive for any $n \geq 1$ such that $k+n(k-1) \leq \operatorname{diam}(D)$, where $\operatorname{diam}(D)$ is the diameter of D.

The following theorem is our main result.
Theorem 11. A graph G has a 3-quasi-transitive orientation if and only if it has a 3-transitive orientation.

Proof. Since every 3-transitive digraph is also a 3-quasi-transitive digraph, the sufficiency is trivial.

We shall prove the necessity below. Suppose that D is a 3 -quasi-transitive orientation of G and D is not a 3 -transitive orientation. If D is strong, then, by Lemmas 9 and 10, we are done. Suppose now that D is non-strong and $D_{1}, D_{2}, \ldots, D_{t}$ are its strong components. Note that every $D_{i}, i=1,2, \ldots, t$, is also a strong 3 -quasi-transitive digraph. Hence, according to Lemma 9, every D_{i}, for $i=1,2, \ldots, t$, can be reoriented as a transitive digraph. Now, we reorient every D_{i} as a transitive digraph D_{i}^{\prime} as in the proof of Lemma 9 and keep the directions of remaining arcs in D. Denote the resulting digraph by D^{\prime}. From Lemma 10, we know that if a digraph is transitive, then it must be 3 -transitive. Hence D_{i}^{\prime} is 3-transitive, $i=1,2, \ldots, t$. Now we shall show that D^{\prime} is 3 -transitive. It suffices to prove that for any path $x_{0} x_{1} x_{2} x_{3}$ in $D^{\prime}, x_{0} \rightarrow x_{3}$ in D^{\prime}. By the definition of D^{\prime}, we can see that D^{\prime} is acyclic. Hence it is sufficient to show that $\overline{x_{0} x_{3}}$ in D^{\prime}. Observe that $\overline{x_{0} x_{3}}$ in D^{\prime} if and only if $\overline{x_{0} x_{3}}$ in D. Hence we shall prove that $\overline{x_{0} x_{3}}$ in D or $\overline{x_{0} x_{3}}$ in D^{\prime}. Furthermore, in order to show that $\overline{x_{0} x_{3}}$ in D, by Lemma 5 , we only need to prove that there is an odd path from x_{0} to x_{3} in D.

If x_{0} and x_{3} belong to the same strong component in D, say D_{i}, then x_{1} and x_{2} both belong to D_{i}, otherwise, assume, without loss of generality, that $x_{1} \in$ $V\left(D_{j}\right)$ where $i \neq j$. Because the arcs of D between distinct strong components are not reoriented, it would be the case that D_{i} can reach D_{j} and D_{j} also can reach D_{i} in D, contradicting that they are distinct strong components. Since $x_{k} \in V\left(D_{i}\right)$, for $k=0,1,2,3$ and D_{i}^{\prime} is 3 -transitive, we have $x_{0} \rightarrow x_{3}$.

Now assume that x_{0} and x_{3} belong to distinct strong components and assume, without loss of generality, that $x_{0} \in V\left(D_{i}\right)$ and $x_{3} \in V\left(D_{j}\right)$ with $1 \leq i \neq j \leq t$. The following two claims will be useful.

Claim 1. D_{j} is reachable from D_{i} in D.
Proof. It suffices to show that there exists a path from D_{i} to D_{j} in D. If $x_{2} \in V\left(D_{i}\right)\left(x_{1} \in V\left(D_{j}\right)\right)$, then $x_{2} x_{3}\left(x_{0} x_{1}\right)$ is the desired path. So suppose $x_{2} \notin$ $V\left(D_{i}\right)$ and $x_{1} \notin V\left(D_{j}\right)$. If $x_{2} \in V\left(D_{j}\right)$, then since $x_{1} \notin V\left(D_{j}\right), x_{1} x_{2} \in A(D)$. If $x_{0} x_{1} \in A(D)$, then $x_{0} x_{1} x_{2}$ is the desired path; if not, then $x_{1} \in V\left(D_{i}\right)$ and so
$x_{1} x_{2}$ is the desired path. Thus suppose $x_{2} \in V\left(D_{s}\right)$, with $1 \leq s \leq t$ and $s \neq i, j$. So $x_{2} x_{3} \in A(D)$. If $x_{1} \in V\left(D_{i}\right)$, then $x_{1} x_{2} x_{3}$ is a path from D_{i} to D_{j} in D. Thus we may assume that $x_{1} \notin V\left(D_{i}\right)$ which implies $x_{0} x_{1} \in A(D)$. If $x_{1} x_{2} \in A(D)$, then $x_{0} x_{1} x_{2} x_{3}$ is the desired path; if not, then x_{1} and x_{2} both belong to D_{s}. Since D_{s} is strong, there exists a path P from x_{1} to x_{2} in D and then $x_{0} x_{1} P x_{2} x_{3}$ is the desired path.

Claim 2. If $x_{1}, x_{2} \notin V\left(D_{i}\right) \cup V\left(D_{j}\right)$, then there exists an odd path from x_{0} to x_{3} in D.

Proof. Since $x_{1}, x_{2} \notin V\left(D_{i}\right) \cup V\left(D_{j}\right), x_{0} x_{1}, x_{2} x_{3} \in A(D)$. If $x_{1} x_{2} \in A(D)$, then $x_{0} x_{1} x_{2} x_{3}$ is the desired path. Now assume that $x_{1} x_{2} \notin A(D)$. Then by the definition of D^{\prime}, we have that $x_{2} x_{1} \in A(D)$ and x_{1}, x_{2} belong to the same strong component in D, say D_{k}. If D_{k} is a non-bipartite digraph, then by Lemmas 6 and $7, x_{0} \mapsto D_{k}$ and $D_{k} \mapsto x_{3}$ and in particular, $x_{0} \rightarrow x_{2}$ and $x_{1} \rightarrow x_{3}$ in D. Note that $x_{0} x_{2} x_{1} x_{3}$ is a path length 3 in D. If D_{k} is a bipartite digraph, then x_{1} and x_{2} belong to different partite sets. Again since D_{k} is a strong bipartite digraph, there exists an odd path P from x_{1} to x_{2} in D. Then we have that $x_{0} x_{1} P x_{2} x_{3}$ is an odd path from x_{0} to x_{3} in D. Thus the claim holds. The proof of Claim 2 is complete.

We consider two cases.
Case 1. At least one of D_{i} and D_{j} is trivial, say D_{i}. Since D_{i} is trivial, by the definition of $D^{\prime}, x_{0} x_{1} \in V(D)$. If $V\left(D_{j}\right)$ is also trivial, then $x_{1}, x_{2} \notin$ $V\left(D_{i}\right) \cup V\left(D_{j}\right)$. By Claim 2, we are done. Now assume that D_{j} is non-trivial. By Claim 1, Lemma 4 and the definition of strong components, there exists at least an arc from x_{0} to D_{j}. If D_{j} is a non-bipartite digraph, then by Lemma 6 , $x_{0} \mapsto D_{j}$. In particular, $x_{0} \rightarrow x_{3}$ and so we are done.

Now suppose that D_{j} is a bipartite digraph. Assume that $\left(X_{j}, Y_{j}\right)$ is the bipartition of D_{j} and assume, without loss of generality, that $x_{3} \in X_{j}$. By Lemma 6, $x_{0} \mapsto X_{j}$ or $x_{0} \mapsto Y_{j}$. If $x_{0} \mapsto X_{j}$, then $x_{0} \rightarrow x_{3}$ and so we are done. Suppose that $x_{0} \mapsto Y_{j}$.

Subcase 1.1. $x_{2} \in V\left(D_{j}\right)$. Since x_{2} and x_{3} are adjacent, we have $x_{2} \in Y_{j}$. Since x_{1} and x_{2} are adjacent, we have that $x_{1} \notin Y_{j}$. If $x_{1} \in X_{j}$, then by $x_{0} x_{1} \in A(D)$ and Lemma $6, x_{0} \mapsto X_{j}$. In particular, $x_{0} \rightarrow x_{3}$ and so we are done. Now assume that $x_{1} \notin V\left(D_{j}\right)$ and so $x_{1} x_{2} \in A(D)$. Since D_{j} is a strong bipartite digraph, there exists an odd path P from x_{2} to x_{3} in D_{j}. Then $x_{0} x_{1} x_{2} P x_{3}$ is an odd path from x_{0} to x_{3}.

Subcase 1.2. $x_{2} \notin V\left(D_{j}\right)$. Since $x_{2} \notin V\left(D_{j}\right)$, we have $x_{2} x_{3} \in A(D)$. By the definition of strong components, $x_{1} \notin V\left(D_{j}\right)$. Combining this with Claim 2, there exists an odd path from x_{0} to x_{3} and so we are done.

Case 2. D_{i} and D_{j} are both non-trivial. By Claim 1 and Lemma 4, there exists at least an arc from D_{i} to D_{j}. By Lemma 8, we have $D_{i} \mapsto D_{j}$ or $D_{i} \cup D_{j}$ is a bipartite tournament. If $D_{i} \mapsto D_{j}$, then $x_{0} \rightarrow x_{3}$ in D and so we are done. If $D_{i} \cup D_{j}$ is a bipartite tournament, then D_{i} and D_{j} are both bipartite. Assume that the bipartitions of D_{i} and D_{j} are $\left(X_{i}, Y_{i}\right)$ and $\left(X_{j}, Y_{j}\right)$, respectively and the bipartition of $D_{i} \cup D_{j}$ is $\left(X_{i} \cup X_{j}, Y_{i} \cup Y_{j}\right)$. Assume, without loss of generality, that $x_{0} \in X_{i}$. If $x_{3} \in Y_{j}$, then $x_{0} x_{3} \in A(D)$ and so we are done. Suppose that $x_{3} \in X_{j}$.

Subcase 2.1. $x_{2} \in V\left(D_{j}\right)$. Since x_{2} and x_{3} are adjacent, $x_{2} \in Y_{j}$. This implies that $x_{1} \notin V\left(D_{j}\right) \cup V\left(D_{i}\right)$, which follows from the fact that $D_{i} \cup D_{j}$ is bipartite. Thus we have $x_{0} x_{1}, x_{1} x_{2} \in A(D)$. Since D_{j} is a strong bipartite digraph, there is an odd path P from x_{2} to x_{3} in D_{j}. Then $x_{0} x_{1} x_{2} P x_{3}$ is an odd path from x_{0} to x_{3} in D and so we are done.

Subcase 2.2. $x_{2} \notin V\left(D_{j}\right)$. So $x_{2} x_{3} \in A(D)$. By the definition of strong components, $x_{1} \notin V\left(D_{j}\right)$.

If $x_{2} \in V\left(D_{i}\right)$, then since x_{2} and x_{3} are adjacent, $x_{2} \in Y_{i}$. Since x_{1} and x_{0}, x_{2} are both adjacent, $x_{1} \notin V\left(D_{i}\right)$, which implies that $x_{0} x_{1}, x_{1} x_{2} \in A(D)$, a contradiction to the definition of strong components. Thus $x_{2} \notin V\left(D_{i}\right)$.

If $x_{1} \in V\left(D_{i}\right)$, then since x_{0} and x_{1} are adjacent, $x_{1} \in Y_{i}$ and $x_{1} x_{2} \in A(D)$. Since D_{i} is a strong bipartite digraph, there is an odd path P from x_{0} to x_{1} in D_{i}. Then $x_{0} P x_{1} x_{2} x_{3}$ is an odd path from x_{0} to x_{3} in D and so we are done. Assume that $x_{1} \notin A\left(D_{i}\right)$.

Note that now $x_{1}, x_{2} \notin V\left(D_{i}\right) \cup V\left(D_{j}\right)$. By Claim 2, there exists an odd path from x_{0} to x_{3} in D and so we are done.

We have considered all the cases. The proof of Theorem 11 is complete.
Conjecture 2 then is an immediate consequence of Theorem 11.

Acknowledgement

The authors thank the anonymous referees for several helpful comments.

References

[1] J. Bang-Jensen, Kings in quasi-transitive digraphs, Discrete Math. 185 (1998) 1927. doi:10.1016/S0012-365X(97)00179-9
[2] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2000).
[3] C. Hernández-Cruz, 3-transitive digraphs, Discuss. Math. Graph Theory 32 (2012) 205-219.
doi:10.7151/dmgt. 1613
[4] A. Ghouila-Houri, Caractérization des graphes non orientés dont onpeut orienter les arrêtes de manière àobtenir le graphe dune relation dordre, Comptes Rendus de l'Académie des Sciences Paris 254 (1962) 1370-1371.
[5] H. Galeana-Sánchez, I.A. Goldfeder and I. Urrutia, On the structure of strong 3-quasi-transitive digraphs, Discrete Math. 310 (2010) 2495-2498. doi:10.1016/j.disc.2010.06.008
[6] H. Galeana-Sánchez and C. Hernández-Cruz, k-kernels in k-transitive and k-quasitransitive digraphs, Discrete Math. 312 (2012) 2522-2530. doi:10.1016/j.disc.2012.05.005
[7] S. Wang and R. Wang, Independent sets and non-augmentable paths in arc-locally insemicomplete digraphs and quasi-arc-transitive digraphs, Discrete Math. 311 (2011) 282-288.
doi:10.1016/j.disc.2010.11.009

