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Abstract

A digraph is 3-quasi-transitive (resp. 3-transitive), if for any path x0x1

x2x3 of length 3, x0 and x3 are adjacent (resp. x0 dominates x3). César
Hernández-Cruz conjectured that if D is a 3-quasi-transitive digraph, then
the underlying graph of D, UG(D), admits a 3-transitive orientation. In
this paper, we shall prove that the conjecture is true.
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1. Terminology and Introduction

We only consider finite graphs and digraphs without loops and multiple edges or
multiple arcs. Let G be a graph with vertex set V (G) and edge set E(G). A
complete graph is a graph in which any two vertices are adjacent. A complete

bipartite graph G is a graph in which the vertices of G can be partitioned into
two partite sets such that every partite set is an independent set and for every
pair x, y of vertices from distinct partite sets, (x, y) ∈ E(G).

Let D be a digraph with vertex set V (D) and arc set A(D). For any x, y ∈
V (D), we will write −→xy or x → y if xy ∈ A(D), and also, we will write xy if −→xy or
−→yx. For disjoint subsets X and Y of V (D) or subdigraphs of D, X → Y means
that every vertex of X dominates every vertex of Y , X ⇒ Y means that there is
no arc from Y to X and X 7→ Y means that both of X → Y and X ⇒ Y hold.
Let D′ be a subdigraph of D and x ∈ V (D)− V (D′). We say that x and D′ are
adjacent if x and some vertex of D′ are adjacent.
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For any digraph D, we can associate a graph G on the same vertex set simply by
replacing each arc by an edge with the same ends. This graph is the underlying

graph of D, denoted UG(D). By a path of a digraph D, we mean a directed path
of D. The length of a path is the number of its arcs. A path of length k is called
a k-path; the path is odd or even according to the parity of k. A digraph D is
said to be strongly connected or just strong, if for every pair x, y of vertices of D,
there is a path from x to y. A strong component of a digraph D is a maximal
induced subdigraph of D which is strong. The strong component digraph SC(D)
of D is obtained by contracting strong components of D and deleting any parallel
arcs obtained in this process.

A digraph D is semicomplete if there is at least one arc between any pair of
distinct vertices of D. A tournament is a semicomplete digraph with no cycle
of length 2. A digraph D is semicomplete bipartite, if the vertices of D can be
partitioned into two partite sets such that every partite set is an independent
set and for every pair x, y of vertices from distinct partite sets, xy or yx (or
both) is in D. A bipartite tournament is a semicomplete bipartite digraph with
no cycle of length 2. A digraph is k-quasi-transitive, where k ≥ 2, if for any path
x0x1x2 . . . xk of length k, x0 and xk are adjacent. A 2-quasi-transitive digraph is
also called a quasi-transitive digraph. A 3-quasi-transitive digraph is also called
a quasi-arc-transitive digraph (see [7]). A digraph is k-transitive, where k ≥ 2, if
for any path x0x1x2 . . . xk of length k, x0 dominates xk. A 2-transitive digraph
is also called a transitive digraph. k-transitive digraphs and k-quasi-transitive
digraphs have been studied by several authors. See [1, 2, 3, 5, 6, 7]. For a graph
G, a digraph D is called an orientation of G if D is obtained from G by replacing
each edge (x, y) of G by either xy or yx.

In [4], see also [2], Ghouila-Houri proved the following theorem.

Theorem 1 [2, 4]. A graph G has a quasi-transitive orientation if and only if it

has a transitive orientation.

It seems natural to consider an analogue of Theorem 1 for 3-quasi-transitive
digraphs and 3-transitive digraphs.

In [3], the author proposed the following conjecture.

Conjecture 2 [3]. Let D be a 3-quasi-transitive oriented graph. Then the un-

derlying graph of D, UG(D), admits a 3-transitive orientation.

In Section 2, we will prove that the conjecture is true.

2. Main Result

We begin with some useful lemmas. Let Fn be the digraph with vertex set
{x0, x1, . . . , xn} and arc set {x0x1, x1x2, x2x0}∪{x0xi+3, xi+3x1 : i = 0, 1, . . . , n−
3}, where n ≥ 3.
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Lemma 3 [5]. Let D be a strong 3-quasi-transitive digraph of order n. Then D
is either a semicomplete digraph, a semicomplete bipartite digraph or isomorphic

to Fn.

Lemma 4 [7]. Let D′ be a non-trivial strong induced subdigraph of a 3-quasi-
transitive digraph D. For any s ∈ V (D) − V (D′), if there exists a directed path

between s and D′, then s and D′ are adjacent.

Lemma 5 [5]. Let D be a 3-quasi-transitive digraph. For a pair x, y of V (D), if
there exists an (x, y)-path of odd length, then x and y are adjacent.

Lemma 6 [7]. Let D′ be a non-trivial strong induced subdigraph of a 3-quasi-
transitive digraph D and let s ∈ V (D)−V (D′) with at least one arc from s to D′

and s ⇒ D′. Then each of the following holds:

(a) If D′ is a bipartite digraph with bipartition (X;Y ) and s dominates a vertex

of X, then s 7→ X.

(b) If D′ is a non-bipartite digraph, then s 7→ D′.

Lemma 7 [7]. Let D′ be a non-trivial strong induced subdigraph of a 3-quasi-
transitive digraph D and let s ∈ V (D) − V (D′) with at least one arc from D′ to

s and D′ ⇒ s. Then each of the following holds:

(a) If D′ is a bipartite digraph with bipartition (X,Y ) and there exists a vertex

of X which dominates s, then X 7→ s.

(b) If D′ is a non-bipartite digraph, then D′ 7→ s.

Lemma 8 [7]. Let D1 and D2 be two distinct non-trivial strong components of

a 3-quasi-transitive digraph with at least one arc from D1 to D2. Then either

D1 7→ D2 or D1 ∪D2 is a semicomplete bipartite digraph.

Lemma 9. If a graph G has a strong 3-quasi-transitive orientation, then it has

a transitive orientation.

Proof. Let D be a strong 3-quasi-transitive orientation of G and let the order
of D be n. By Lemma 3, D is either a tournament, a bipartite tournament or
isomorphic to Fn because D has no cycle of length 2. If D is a tournament (resp.
a bipartite tournament), then G is a complete graph (resp. a complete bipartite
graph). Any acyclic orientation of a complete graph is transitive and orienting
the edges of a complete bipartite graph from one side of the bipartition to the
other results in a transitive orientation. Now suppose that D is isomorphic to Fn

with vertex set {x0, x1, . . . , xn} and arc set {x0x1, x1x2, x2x0}∪{x0xi+3, xi+3x1 :
i = 0, 1, . . . , n − 3}, where n ≥ 3. We reorient D as a digraph D′ with arc set
{x0x1} ∪ {xi+2 → x0, xi+2 → x1 : i = 0, 1, . . . , n− 2}. Clearly, D′ is a transitive
digraph. The proof of Lemma 9 is complete.
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Lemma 10 [3]. If D is a k-transitive digraph with k ≥ 2, then D is (k+n(k−1))-
transitive for any n ≥ 1 such that k+n(k− 1) ≤ diam(D), where diam(D) is the
diameter of D.

The following theorem is our main result.

Theorem 11. A graph G has a 3-quasi-transitive orientation if and only if it

has a 3-transitive orientation.

Proof. Since every 3-transitive digraph is also a 3-quasi-transitive digraph, the
sufficiency is trivial.

We shall prove the necessity below. Suppose that D is a 3-quasi-transitive
orientation of G and D is not a 3-transitive orientation. If D is strong, then,
by Lemmas 9 and 10, we are done. Suppose now that D is non-strong and
D1, D2, . . . , Dt are its strong components. Note that every Di, i = 1, 2, . . . , t, is
also a strong 3-quasi-transitive digraph. Hence, according to Lemma 9, every Di,
for i = 1, 2, . . . , t, can be reoriented as a transitive digraph. Now, we reorient
every Di as a transitive digraph D′

i as in the proof of Lemma 9 and keep the
directions of remaining arcs in D. Denote the resulting digraph by D′. From
Lemma 10, we know that if a digraph is transitive, then it must be 3-transitive.
Hence D′

i is 3-transitive, i = 1, 2, . . . , t. Now we shall show that D′ is 3-transitive.
It suffices to prove that for any path x0x1x2x3 in D′, x0 → x3 in D′. By the
definition of D′, we can see that D′ is acyclic. Hence it is sufficient to show that
x0x3 in D′. Observe that x0x3 in D′ if and only if x0x3 in D. Hence we shall
prove that x0x3 in D or x0x3 in D′. Furthermore, in order to show that x0x3 in
D, by Lemma 5, we only need to prove that there is an odd path from x0 to x3
in D.

If x0 and x3 belong to the same strong component in D, say Di, then x1 and
x2 both belong to Di, otherwise, assume, without loss of generality, that x1 ∈
V (Dj) where i 6= j. Because the arcs of D between distinct strong components
are not reoriented, it would be the case that Di can reach Dj and Dj also can
reach Di in D, contradicting that they are distinct strong components. Since
xk ∈ V (Di), for k = 0, 1, 2, 3 and D′

i is 3-transitive, we have x0 → x3.

Now assume that x0 and x3 belong to distinct strong components and assume,
without loss of generality, that x0 ∈ V (Di) and x3 ∈ V (Dj) with 1 ≤ i 6= j ≤ t.
The following two claims will be useful.

Claim 1. Dj is reachable from Di in D.

Proof. It suffices to show that there exists a path from Di to Dj in D. If
x2 ∈ V (Di) (x1 ∈ V (Dj)), then x2x3 (x0x1) is the desired path. So suppose x2 /∈
V (Di) and x1 /∈ V (Dj). If x2 ∈ V (Dj), then since x1 /∈ V (Dj), x1x2 ∈ A(D). If
x0x1 ∈ A(D), then x0x1x2 is the desired path; if not, then x1 ∈ V (Di) and so
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x1x2 is the desired path. Thus suppose x2 ∈ V (Ds), with 1 ≤ s ≤ t and s 6= i, j.
So x2x3 ∈ A(D). If x1 ∈ V (Di), then x1x2x3 is a path from Di to Dj in D. Thus
we may assume that x1 /∈ V (Di) which implies x0x1 ∈ A(D). If x1x2 ∈ A(D),
then x0x1x2x3 is the desired path; if not, then x1 and x2 both belong to Ds.
Since Ds is strong, there exists a path P from x1 to x2 in D and then x0x1Px2x3
is the desired path.

Claim 2. If x1, x2 /∈ V (Di)∪V (Dj), then there exists an odd path from x0 to x3
in D.

Proof. Since x1, x2 /∈ V (Di) ∪ V (Dj), x0x1, x2x3 ∈ A(D). If x1x2 ∈ A(D), then
x0x1x2x3 is the desired path. Now assume that x1x2 /∈ A(D). Then by the
definition of D′, we have that x2x1 ∈ A(D) and x1, x2 belong to the same strong
component in D, say Dk. If Dk is a non-bipartite digraph, then by Lemmas 6 and
7, x0 7→ Dk and Dk 7→ x3 and in particular, x0 → x2 and x1 → x3 in D. Note
that x0x2x1x3 is a path length 3 in D. If Dk is a bipartite digraph, then x1 and
x2 belong to different partite sets. Again since Dk is a strong bipartite digraph,
there exists an odd path P from x1 to x2 in D. Then we have that x0x1Px2x3 is
an odd path from x0 to x3 in D. Thus the claim holds. The proof of Claim 2 is
complete.

We consider two cases.

Case 1. At least one of Di and Dj is trivial, say Di. Since Di is trivial,
by the definition of D′, x0x1 ∈ V (D). If V (Dj) is also trivial, then x1, x2 /∈
V (Di) ∪ V (Dj). By Claim 2, we are done. Now assume that Dj is non-trivial.
By Claim 1, Lemma 4 and the definition of strong components, there exists at
least an arc from x0 to Dj . If Dj is a non-bipartite digraph, then by Lemma 6,
x0 7→ Dj . In particular, x0 → x3 and so we are done.

Now suppose that Dj is a bipartite digraph. Assume that (Xj , Yj) is the
bipartition of Dj and assume, without loss of generality, that x3 ∈ Xj . By
Lemma 6, x0 7→ Xj or x0 7→ Yj . If x0 7→ Xj , then x0 → x3 and so we are done.
Suppose that x0 7→ Yj .

Subcase 1.1. x2 ∈ V (Dj). Since x2 and x3 are adjacent, we have x2 ∈ Yj .
Since x1 and x2 are adjacent, we have that x1 /∈ Yj . If x1 ∈ Xj , then by
x0x1 ∈ A(D) and Lemma 6, x0 7→ Xj . In particular, x0 → x3 and so we
are done. Now assume that x1 /∈ V (Dj) and so x1x2 ∈ A(D). Since Dj is a
strong bipartite digraph, there exists an odd path P from x2 to x3 in Dj . Then
x0x1x2Px3 is an odd path from x0 to x3.

Subcase 1.2. x2 /∈ V (Dj). Since x2 /∈ V (Dj), we have x2x3 ∈ A(D). By
the definition of strong components, x1 /∈ V (Dj). Combining this with Claim 2,
there exists an odd path from x0 to x3 and so we are done.
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Case 2. Di and Dj are both non-trivial. By Claim 1 and Lemma 4, there
exists at least an arc from Di to Dj . By Lemma 8, we have Di 7→ Dj or Di ∪Dj

is a bipartite tournament. If Di 7→ Dj , then x0 → x3 in D and so we are done.
If Di ∪Dj is a bipartite tournament, then Di and Dj are both bipartite. Assume
that the bipartitions of Di and Dj are (Xi, Yi) and (Xj , Yj), respectively and the
bipartition of Di ∪Dj is (Xi ∪Xj , Yi ∪ Yj). Assume, without loss of generality,
that x0 ∈ Xi. If x3 ∈ Yj , then x0x3 ∈ A(D) and so we are done. Suppose that
x3 ∈ Xj .

Subcase 2.1. x2 ∈ V (Dj). Since x2 and x3 are adjacent, x2 ∈ Yj . This implies
that x1 /∈ V (Dj) ∪ V (Di), which follows from the fact that Di ∪Dj is bipartite.
Thus we have x0x1, x1x2 ∈ A(D). Since Dj is a strong bipartite digraph, there
is an odd path P from x2 to x3 in Dj . Then x0x1x2Px3 is an odd path from x0
to x3 in D and so we are done.

Subcase 2.2. x2 /∈ V (Dj). So x2x3 ∈ A(D). By the definition of strong
components, x1 /∈ V (Dj).

If x2 ∈ V (Di), then since x2 and x3 are adjacent, x2 ∈ Yi. Since x1 and
x0, x2 are both adjacent, x1 /∈ V (Di), which implies that x0x1, x1x2 ∈ A(D), a
contradiction to the definition of strong components. Thus x2 /∈ V (Di).

If x1 ∈ V (Di), then since x0 and x1 are adjacent, x1 ∈ Yi and x1x2 ∈ A(D).
Since Di is a strong bipartite digraph, there is an odd path P from x0 to x1 in
Di. Then x0Px1x2x3 is an odd path from x0 to x3 in D and so we are done.
Assume that x1 /∈ A(Di).

Note that now x1, x2 /∈ V (Di)∪V (Dj). By Claim 2, there exists an odd path
from x0 to x3 in D and so we are done.

We have considered all the cases. The proof of Theorem 11 is complete.

Conjecture 2 then is an immediate consequence of Theorem 11.
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