Discussiones Mathematicae Graph Theory 33 (2013) 429–435 doi:10.7151/dmgt.1680

UNDERLYING GRAPHS OF 3-QUASI-TRANSITIVE DIGRAPHS AND 3-TRANSITIVE DIGRAPHS

RUIXIA WANG AND SHIYING WANG

School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi, 030006, PR China

e-mail: wangrx@sxu.edu.cn shiying@sxu.edu.cn

Abstract

A digraph is 3-quasi-transitive (resp. 3-transitive), if for any path x_0x_1 x_2x_3 of length 3, x_0 and x_3 are adjacent (resp. x_0 dominates x_3). César Hernández-Cruz conjectured that if D is a 3-quasi-transitive digraph, then the underlying graph of D, UG(D), admits a 3-transitive orientation. In this paper, we shall prove that the conjecture is true.

Keywords: graph orientation, 3-quasi-transitive digraph, 3-transitive digraph.

2010 Mathematics Subject Classification: 05C20.

1. TERMINOLOGY AND INTRODUCTION

We only consider finite graphs and digraphs without loops and multiple edges or multiple arcs. Let G be a graph with vertex set V(G) and edge set E(G). A *complete graph* is a graph in which any two vertices are adjacent. A *complete bipartite graph* G is a graph in which the vertices of G can be partitioned into two partite sets such that every partite set is an independent set and for every pair x, y of vertices from distinct partite sets, $(x, y) \in E(G)$.

Let D be a digraph with vertex set V(D) and arc set A(D). For any $x, y \in V(D)$, we will write \overline{xy} or $x \to y$ if $xy \in A(D)$, and also, we will write \overline{xy} if \overline{xy} or \overline{yx} . For disjoint subsets X and Y of V(D) or subdigraphs of $D, X \to Y$ means that every vertex of X dominates every vertex of $Y, X \Rightarrow Y$ means that there is no arc from Y to X and $X \mapsto Y$ means that both of $X \to Y$ and $X \Rightarrow Y$ hold. Let D' be a subdigraph of D and $x \in V(D) - V(D')$. We say that x and D' are adjacent if x and some vertex of D' are adjacent.

For any digraph D, we can associate a graph G on the same vertex set simply by replacing each arc by an edge with the same ends. This graph is the *underlying* graph of D, denoted UG(D). By a path of a digraph D, we mean a directed path of D. The length of a path is the number of its arcs. A path of length k is called a k-path; the path is odd or even according to the parity of k. A digraph D is said to be strongly connected or just strong, if for every pair x, y of vertices of D, there is a path from x to y. A strong component of a digraph D is a maximal induced subdigraph of D which is strong. The strong component digraph SC(D)of D is obtained by contracting strong components of D and deleting any parallel arcs obtained in this process.

A digraph D is semicomplete if there is at least one arc between any pair of distinct vertices of D. A tournament is a semicomplete digraph with no cycle of length 2. A digraph D is semicomplete bipartite, if the vertices of D can be partitioned into two partite sets such that every partite set is an independent set and for every pair x, y of vertices from distinct partite sets, xy or yx (or both) is in D. A bipartite tournament is a semicomplete bipartite digraph with no cycle of length 2. A digraph is k-quasi-transitive, where $k \ge 2$, if for any path $x_0x_1x_2...x_k$ of length k, x_0 and x_k are adjacent. A 2-quasi-transitive digraph is also called a quasi-transitive digraph. A 3-quasi-transitive, where $k \ge 2$, if for any path $x_0x_1x_2...x_k$ of length k, x_0 dominates x_k . A 2-transitive digraph is also called a transitive digraph. k-transitive digraphs and k-quasi-transitive digraphs have been studied by several authors. See [1, 2, 3, 5, 6, 7]. For a graph G, a digraph D is called an orientation of G if D is obtained from G by replacing each edge (x, y) of G by either xy or yx.

In [4], see also [2], Ghouila-Houri proved the following theorem.

Theorem 1 [2, 4]. A graph G has a quasi-transitive orientation if and only if it has a transitive orientation.

It seems natural to consider an analogue of Theorem 1 for 3-quasi-transitive digraphs and 3-transitive digraphs.

In [3], the author proposed the following conjecture.

Conjecture 2 [3]. Let D be a 3-quasi-transitive oriented graph. Then the underlying graph of D, UG(D), admits a 3-transitive orientation.

In Section 2, we will prove that the conjecture is true.

2. MAIN RESULT

We begin with some useful lemmas. Let F_n be the digraph with vertex set $\{x_0, x_1, \ldots, x_n\}$ and arc set $\{x_0x_1, x_1x_2, x_2x_0\} \cup \{x_0x_{i+3}, x_{i+3}x_1 : i = 0, 1, \ldots, n-3\}$, where $n \geq 3$.

Lemma 3 [5]. Let D be a strong 3-quasi-transitive digraph of order n. Then D is either a semicomplete digraph, a semicomplete bipartite digraph or isomorphic to F_n .

Lemma 4 [7]. Let D' be a non-trivial strong induced subdigraph of a 3-quasitransitive digraph D. For any $s \in V(D) - V(D')$, if there exists a directed path between s and D', then s and D' are adjacent.

Lemma 5 [5]. Let D be a 3-quasi-transitive digraph. For a pair x, y of V(D), if there exists an (x, y)-path of odd length, then x and y are adjacent.

Lemma 6 [7]. Let D' be a non-trivial strong induced subdigraph of a 3-quasitransitive digraph D and let $s \in V(D) - V(D')$ with at least one arc from s to D'and $s \Rightarrow D'$. Then each of the following holds:

- (a) If D' is a bipartite digraph with bipartition (X;Y) and s dominates a vertex of X, then $s \mapsto X$.
- (b) If D' is a non-bipartite digraph, then $s \mapsto D'$.

Lemma 7 [7]. Let D' be a non-trivial strong induced subdigraph of a 3-quasitransitive digraph D and let $s \in V(D) - V(D')$ with at least one arc from D' to s and $D' \Rightarrow s$. Then each of the following holds:

- (a) If D' is a bipartite digraph with bipartition (X, Y) and there exists a vertex of X which dominates s, then $X \mapsto s$.
- (b) If D' is a non-bipartite digraph, then $D' \mapsto s$.

Lemma 8 [7]. Let D_1 and D_2 be two distinct non-trivial strong components of a 3-quasi-transitive digraph with at least one arc from D_1 to D_2 . Then either $D_1 \mapsto D_2$ or $D_1 \cup D_2$ is a semicomplete bipartite digraph.

Lemma 9. If a graph G has a strong 3-quasi-transitive orientation, then it has a transitive orientation.

Proof. Let D be a strong 3-quasi-transitive orientation of G and let the order of D be n. By Lemma 3, D is either a tournament, a bipartite tournament or isomorphic to F_n because D has no cycle of length 2. If D is a tournament (resp. a bipartite tournament), then G is a complete graph (resp. a complete bipartite graph). Any acyclic orientation of a complete graph is transitive and orienting the edges of a complete bipartite graph from one side of the bipartition to the other results in a transitive orientation. Now suppose that D is isomorphic to F_n with vertex set $\{x_0, x_1, \ldots, x_n\}$ and arc set $\{x_0x_1, x_1x_2, x_2x_0\} \cup \{x_0x_{i+3}, x_{i+3}x_1 :$ $i = 0, 1, \ldots, n - 3\}$, where $n \ge 3$. We reorient D as a digraph D' with arc set $\{x_0x_1\} \cup \{x_{i+2} \to x_0, x_{i+2} \to x_1 : i = 0, 1, \ldots, n - 2\}$. Clearly, D' is a transitive digraph. The proof of Lemma 9 is complete. **Lemma 10** [3]. If D is a k-transitive digraph with $k \ge 2$, then D is (k+n(k-1))-transitive for any $n \ge 1$ such that $k+n(k-1) \le diam(D)$, where diam(D) is the diameter of D.

The following theorem is our main result.

Theorem 11. A graph G has a 3-quasi-transitive orientation if and only if it has a 3-transitive orientation.

Proof. Since every 3-transitive digraph is also a 3-quasi-transitive digraph, the sufficiency is trivial.

We shall prove the necessity below. Suppose that D is a 3-quasi-transitive orientation of G and D is not a 3-transitive orientation. If D is strong, then, by Lemmas 9 and 10, we are done. Suppose now that D is non-strong and D_1, D_2, \ldots, D_t are its strong components. Note that every $D_i, i = 1, 2, \ldots, t$, is also a strong 3-quasi-transitive digraph. Hence, according to Lemma 9, every D_i , for $i = 1, 2, \ldots, t$, can be reoriented as a transitive digraph. Now, we reorient every D_i as a transitive digraph D'_i as in the proof of Lemma 9 and keep the directions of remaining arcs in D. Denote the resulting digraph by D'. From Lemma 10, we know that if a digraph is transitive, then it must be 3-transitive. Hence D'_i is 3-transitive, i = 1, 2, ..., t. Now we shall show that D' is 3-transitive. It suffices to prove that for any path $x_0x_1x_2x_3$ in D', $x_0 \to x_3$ in D'. By the definition of D', we can see that D' is acyclic. Hence it is sufficient to show that $\overline{x_0x_3}$ in D'. Observe that $\overline{x_0x_3}$ in D' if and only if $\overline{x_0x_3}$ in D. Hence we shall prove that $\overline{x_0x_3}$ in D or $\overline{x_0x_3}$ in D'. Furthermore, in order to show that $\overline{x_0x_3}$ in D, by Lemma 5, we only need to prove that there is an odd path from x_0 to x_3 in D.

If x_0 and x_3 belong to the same strong component in D, say D_i , then x_1 and x_2 both belong to D_i , otherwise, assume, without loss of generality, that $x_1 \in V(D_j)$ where $i \neq j$. Because the arcs of D between distinct strong components are not reoriented, it would be the case that D_i can reach D_j and D_j also can reach D_i in D, contradicting that they are distinct strong components. Since $x_k \in V(D_i)$, for k = 0, 1, 2, 3 and D'_i is 3-transitive, we have $x_0 \to x_3$.

Now assume that x_0 and x_3 belong to distinct strong components and assume, without loss of generality, that $x_0 \in V(D_i)$ and $x_3 \in V(D_j)$ with $1 \le i \ne j \le t$. The following two claims will be useful.

Claim 1. D_j is reachable from D_i in D.

Proof. It suffices to show that there exists a path from D_i to D_j in D. If $x_2 \in V(D_i)$ $(x_1 \in V(D_j))$, then x_2x_3 (x_0x_1) is the desired path. So suppose $x_2 \notin V(D_i)$ and $x_1 \notin V(D_j)$. If $x_2 \in V(D_j)$, then since $x_1 \notin V(D_j)$, $x_1x_2 \in A(D)$. If $x_0x_1 \in A(D)$, then $x_0x_1x_2$ is the desired path; if not, then $x_1 \in V(D_i)$ and so

432

 x_1x_2 is the desired path. Thus suppose $x_2 \in V(D_s)$, with $1 \le s \le t$ and $s \ne i, j$. So $x_2x_3 \in A(D)$. If $x_1 \in V(D_i)$, then $x_1x_2x_3$ is a path from D_i to D_j in D. Thus we may assume that $x_1 \notin V(D_i)$ which implies $x_0x_1 \in A(D)$. If $x_1x_2 \in A(D)$, then $x_0x_1x_2x_3$ is the desired path; if not, then x_1 and x_2 both belong to D_s . Since D_s is strong, there exists a path P from x_1 to x_2 in D and then $x_0x_1Px_2x_3$ is the desired path.

Claim 2. If $x_1, x_2 \notin V(D_i) \cup V(D_j)$, then there exists an odd path from x_0 to x_3 in D.

Proof. Since $x_1, x_2 \notin V(D_i) \cup V(D_j)$, $x_0x_1, x_2x_3 \in A(D)$. If $x_1x_2 \in A(D)$, then $x_0x_1x_2x_3$ is the desired path. Now assume that $x_1x_2 \notin A(D)$. Then by the definition of D', we have that $x_2x_1 \in A(D)$ and x_1, x_2 belong to the same strong component in D, say D_k . If D_k is a non-bipartite digraph, then by Lemmas 6 and 7, $x_0 \mapsto D_k$ and $D_k \mapsto x_3$ and in particular, $x_0 \to x_2$ and $x_1 \to x_3$ in D. Note that $x_0x_2x_1x_3$ is a path length 3 in D. If D_k is a bipartite digraph, then x_1 and x_2 belong to different partite sets. Again since D_k is a strong bipartite digraph, there exists an odd path P from x_1 to x_2 in D. Then we have that $x_0x_1Px_2x_3$ is an odd path from x_0 to x_3 in D. Thus the claim holds. The proof of Claim 2 is complete.

We consider two cases.

Case 1. At least one of D_i and D_j is trivial, say D_i . Since D_i is trivial, by the definition of D', $x_0x_1 \in V(D)$. If $V(D_j)$ is also trivial, then $x_1, x_2 \notin V(D_i) \cup V(D_j)$. By Claim 2, we are done. Now assume that D_j is non-trivial. By Claim 1, Lemma 4 and the definition of strong components, there exists at least an arc from x_0 to D_j . If D_j is a non-bipartite digraph, then by Lemma 6, $x_0 \mapsto D_j$. In particular, $x_0 \to x_3$ and so we are done.

Now suppose that D_j is a bipartite digraph. Assume that (X_j, Y_j) is the bipartition of D_j and assume, without loss of generality, that $x_3 \in X_j$. By Lemma 6, $x_0 \mapsto X_j$ or $x_0 \mapsto Y_j$. If $x_0 \mapsto X_j$, then $x_0 \to x_3$ and so we are done. Suppose that $x_0 \mapsto Y_j$.

Subcase 1.1. $x_2 \in V(D_j)$. Since x_2 and x_3 are adjacent, we have $x_2 \in Y_j$. Since x_1 and x_2 are adjacent, we have that $x_1 \notin Y_j$. If $x_1 \in X_j$, then by $x_0x_1 \in A(D)$ and Lemma 6, $x_0 \mapsto X_j$. In particular, $x_0 \to x_3$ and so we are done. Now assume that $x_1 \notin V(D_j)$ and so $x_1x_2 \in A(D)$. Since D_j is a strong bipartite digraph, there exists an odd path P from x_2 to x_3 in D_j . Then $x_0x_1x_2Px_3$ is an odd path from x_0 to x_3 .

Subcase 1.2. $x_2 \notin V(D_j)$. Since $x_2 \notin V(D_j)$, we have $x_2x_3 \in A(D)$. By the definition of strong components, $x_1 \notin V(D_j)$. Combining this with Claim 2, there exists an odd path from x_0 to x_3 and so we are done.

Case 2. D_i and D_j are both non-trivial. By Claim 1 and Lemma 4, there exists at least an arc from D_i to D_j . By Lemma 8, we have $D_i \mapsto D_j$ or $D_i \cup D_j$ is a bipartite tournament. If $D_i \mapsto D_j$, then $x_0 \to x_3$ in D and so we are done. If $D_i \cup D_j$ is a bipartite tournament, then D_i and D_j are both bipartite. Assume that the bipartitions of D_i and D_j are (X_i, Y_i) and (X_j, Y_j) , respectively and the bipartition of $D_i \cup D_j$ is $(X_i \cup X_j, Y_i \cup Y_j)$. Assume, without loss of generality, that $x_0 \in X_i$. If $x_3 \in Y_j$, then $x_0x_3 \in A(D)$ and so we are done. Suppose that $x_3 \in X_j$.

Subcase 2.1. $x_2 \in V(D_j)$. Since x_2 and x_3 are adjacent, $x_2 \in Y_j$. This implies that $x_1 \notin V(D_j) \cup V(D_i)$, which follows from the fact that $D_i \cup D_j$ is bipartite. Thus we have $x_0x_1, x_1x_2 \in A(D)$. Since D_j is a strong bipartite digraph, there is an odd path P from x_2 to x_3 in D_j . Then $x_0x_1x_2Px_3$ is an odd path from x_0 to x_3 in D and so we are done.

Subcase 2.2. $x_2 \notin V(D_j)$. So $x_2x_3 \in A(D)$. By the definition of strong components, $x_1 \notin V(D_j)$.

If $x_2 \in V(D_i)$, then since x_2 and x_3 are adjacent, $x_2 \in Y_i$. Since x_1 and x_0, x_2 are both adjacent, $x_1 \notin V(D_i)$, which implies that $x_0x_1, x_1x_2 \in A(D)$, a contradiction to the definition of strong components. Thus $x_2 \notin V(D_i)$.

If $x_1 \in V(D_i)$, then since x_0 and x_1 are adjacent, $x_1 \in Y_i$ and $x_1x_2 \in A(D)$. Since D_i is a strong bipartite digraph, there is an odd path P from x_0 to x_1 in D_i . Then $x_0Px_1x_2x_3$ is an odd path from x_0 to x_3 in D and so we are done. Assume that $x_1 \notin A(D_i)$.

Note that now $x_1, x_2 \notin V(D_i) \cup V(D_j)$. By Claim 2, there exists an odd path from x_0 to x_3 in D and so we are done.

We have considered all the cases. The proof of Theorem 11 is complete.

Conjecture 2 then is an immediate consequence of Theorem 11.

Acknowledgement

The authors thank the anonymous referees for several helpful comments.

References

- J. Bang-Jensen, Kings in quasi-transitive digraphs, Discrete Math. 185 (1998) 19– 27. doi:10.1016/S0012-365X(97)00179-9
- [2] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2000).
- C. Hernández-Cruz, 3-transitive digraphs, Discuss. Math. Graph Theory 32 (2012) 205–219. doi:10.7151/dmgt.1613

- [4] A. Ghouila-Houri, Caractérization des graphes non orientés dont onpeut orienter les arrêtes de manière àobtenir le graphe dune relation dordre, Comptes Rendus de l'Académie des Sciences Paris 254 (1962) 1370–1371.
- H. Galeana-Sánchez, I.A. Goldfeder and I. Urrutia, On the structure of strong 3quasi-transitive digraphs, Discrete Math. 310 (2010) 2495–2498. doi:10.1016/j.disc.2010.06.008
- [6] H. Galeana-Sánchez and C. Hernández-Cruz, k-kernels in k-transitive and k-quasitransitive digraphs, Discrete Math. **312** (2012) 2522–2530. doi:10.1016/j.disc.2012.05.005
- S. Wang and R. Wang, Independent sets and non-augmentable paths in arc-locally insemicomplete digraphs and quasi-arc-transitive digraphs, Discrete Math. **311** (2011) 282–288. doi:10.1016/j.disc.2010.11.009

Received 5 November 2011 Revised 15 May 2012 Accepted 20 June 2012