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Abstract

We provide a tight bound on the set chromatic number of a graph in
terms of its chromatic number. Namely, for all graphs G, we show that
χs(G) > ⌈log

2
χ(G)⌉ + 1, where χs(G) and χ(G) are the set chromatic

number and the chromatic number of G, respectively. This answers in the
affirmative a conjecture of Gera, Okamoto, Rasmussen and Zhang.
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1. Introduction

There is a plethora of work devoted to neighbor-distinguishing colorings in graphs.
Essentially, given a function f defined on the set of vertices of a graph, the goal is
to obtain a vertex coloring (or an edge-coloring) such that f(u) 6= f(v) whenever
u and v are two adjacent vertices. (Obviously, the values taken by f depend
on the coloring used.) This approach to graph coloring permits to gather in a
synthetic framework several variants of colorings such as set colorings, metric
colorings and sigma colorings. An interesting line of research is to estimate how
these notions relate to each others and, in particular, how they behave with
respect to the (usual) chromatic number of a graph. We refer the reader to the
survey by Chartrand, Okamoto and Zhang [2] for further information.

The notion of a set coloring was first introduced by Chartrand, Okamoto,
Rasmussen and Zhang [1]. Given a graph G = (V,E) and a (not necessarily
proper) k-coloring c : V → {1, 2, . . . , k} of its vertices, let

NC(v) := {c(u) | (u, v) ∈ E}

be the neighborhood color set of a vertex v ∈ V . The coloring c is set neighbor-

distinguishing, or simply a set coloring, if NC(u) 6= NC(v) for every pair (u, v)
of adjacent vertices in G.

The minimum number of colors, k, required for such a coloring is the set

chromatic number χs(G) of G. Note that χs(G) 6 χ(G) for every graph G.
Moreover, the set chromatic number is bounded from below by the logarithm of
the clique number as follows.

Theorem 1 [1]. For every graph G,

(1) χs(G) > 1 + ⌈log2 ω(G)⌉.

A natural strengthening of (1) would be to replace the clique number with the
chromatic number. In particular, if χ(G) = ω(G) then Gera, Okamoto, Ras-
mussen and Zhang [3] showed that not only does (1) holds, but that it is tight,
in a strong sense.

Theorem 2 [3]. For each pair (a, b) of integers such that 2 6 a 6 b 6 2a−1,

there exists a perfect graph G with χs(G) = a and χ(G) = b.

Furthermore, Gera, Okamoto, Rasmussen and Zhang [3] conjectured that for
every graph G,

(2) χs(G) > 1 + ⌈log2 χ(G)⌉.

Our purpose is to confirm this conjecture.

Theorem 3. For all graphs G,

χ(G) 6 2χs(G)−1.
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2. Proof of Theorem 3

Before starting the proof, notice that for every complete graph Kn with n > 2,

χs(Kn) = χ(Kn) = n.

This fact allows us to proceed by double induction: an ascending induction on the
number of vertices of the graph and, for a fixed number of vertices, a descending
induction on the number of edges.

Let G = (V,E) be a graph with n > 2 vertices and m edges. The assertion
of Theorem 3 holds if n = 2 or m =

(

n
2

)

(that is, G is complete). So we assume

now that n > 2, m <
(

n
2

)

and χ(H) 6 2χs(H)−1 for all graphs H with either less
than n vertices or exactly n vertices and more than m edges.

We shall study the structure of G under the additional assumption that
χ(G) > 2χs(G)−1. This will allow us to exhibit a proper coloring of G using at
most 2χs(G)−1, thereby obtaining a contradiction and concluding the proof.

First, notice that for any two non-adjacent vertices u and v of G,

(3) χs(G) < χs(G+ uv).

Indeed, if there exists a pair (u, v) of vertices violating (3), then

χ(G) 6 χ(G+ uv) 6 2χs(G+uv)−1
6 2χs(G)−1,

which contradicts our assumption on G.
Now, set a := χs(G) and let c : V → {1, . . . , a} be a set coloring. We consider

the a color classes V1, . . . , Va where Vi is the set of vertices assigned color i.
We observe that no two vertices u and v in a same color class can have the

same neighborhood color set. This follows from the definition of a set coloring
if u and v are adjacent, so suppose that u and v are not adjacent. Consider
the graph G′ that results from identifying the vertices u and v of G into a new
vertex z. Note that the vertex coloring of G′ naturally induced by c (that is,
with z being assigned color i) is a valid set coloring of G′, so χs(G) > χs(G

′).
However, as χ(G) 6 χ(G′), the induction hypothesis applied to G′ yields that
χ(G) 6 2χs(G′)−1 6 2χs(G)−1; a contradiction.

We are now in a position to describe the structure of the color classes. We
assert that for each i ∈ {1, . . . , a}, the subgraph Hi of G induced by the vertices
in Vi is either a clique or a clique and an isolated vertex.

We prove the assertion in two steps. Fix i ∈ {1, . . . , a}. First, we show that
for every two non-adjacent vertices u and v in Vi, it holds that i /∈ NC(u)∩NC(v),
that is one of u and v has no neighbors in Vi. Indeed, as reported earlier the
graph G′ := G+uv has set chromatic number at least a+1, so that c is not a set
coloring of G′. Consequently, NCG′(u) 6= NCG(u) or NCG′(v) 6= NCG(v) hence
i /∈ NC(u) ∩NC(v), as wanted.
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Now, to prove the assertion, assume that Vi does not induce a clique in G. What
precedes implies that there is a vertex v ∈ Vi that has no neighbors in Vi. If two
vertices u and w in Vi \ {v} are not adjacent then, similarly, we may assume that
u has no neighbors in Vi. We now prove that every neighbor of u in G is also
a neighbor of v. By symmetry of the roles played by u and v, this would imply
that u and v have the same neighborhood, hence the same neighborhood color
set; a contradiction. So let x be a neighbor of u in G and assume that x is not
adjacent to v. Note that x ∈ Vj for some j 6= i and i ∈ NC(x) \NC(v). Let G′

be the graph obtained from G by adding the edge xv. We know that c cannot
be a set coloring of G′. Moreover, NCG′(x) = NCG(x) and i /∈ NCG′(v) =
NCG(v) ∪ {j}. Consequently, we infer that v has a neighbor y in G such that
NCG(y) = NCG′(v). However, i ∈ NCG(y) yet i /∈ NCG′(v). This contradiction
finishes the proof of the assertion.

We can now exhibit a proper coloring of G using at most 2a−1 colors, which
will complete the proof of Theorem 3.

We color the vertices of G using the alphabet {0, 1}a−1. Let 0 be the zero
vector and let ej := 1 · · · 101 · · · 1 where the zero is in position j. Call a vertex
of Type 1 if v ∈ Vi but i 6∈ NC(v), and of Type 2, otherwise. Now, we define a
coloring χ, which is related to the characteristic vector of the neighborhood color
set. Let v be a vertex of G, so v ∈ Vi for some i ∈ {1, . . . , a}. If v is of Type 1,
let

χ(v) :=

{

0 if i = a,

ei if i 6= a.

Suppose that v is of Type 2. If v ∈ Va then for each j ∈ {1, . . . , a− 1} let

χ(v)j :=

{

1 if j ∈ NC(v),

0 if j 6∈ NC(v).

Otherwise, that is, if v is of Type 2 and v ∈ Vi with i < a, then for each
j ∈ {1, . . . , a− 1} let

χ(v)j :=























1 if j 6= i and j ∈ NC(v),

0 if j 6= i and j 6∈ NC(v),

1 if j = i and a ∈ NC(v),

0 if j = i and a 6∈ NC(v).

We now show that χ is a proper coloring of G.
First note that the coloring χ is proper on each part Vi, since two (adjacent)

vertices in Vi have different neighborhood color sets (both containing i). Fur-
thermore, any two vertices of Type 1 are assigned distinct vectors by χ. Now,
let u ∈ Vi and v ∈ Vj be two adjacent vertices with i 6= j. Suppose first that u
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is of Type 1 but v is of Type 2. Then χ(v)i = 1 and χ(u)i = 0 if i 6= a, whereas
χ(u)j = 1 and χ(v)j = 0 if i = a. Finally, assume that both u and v are of Type
2. As c is a set coloring of G, there must exist ℓ ∈ NC(u)△NC(v). If ℓ 6= a, then
χ(u)ℓ 6= χ(v)ℓ since ℓ /∈ {i, j}. If ℓ = a, we may assume without loss of generality
that a 6∈ NC(u). Then χ(u)i = 0 while χ(v)i = 1 since u and v are adjacent.
Thus, the coloring χ is proper, which concludes the proof of Theorem 3.
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