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Abstract

Two vertices u and v in a nontrivial connected graph G are twins if u and
v have the same neighbors in V (G) − {u, v}. If u and v are adjacent, they
are referred to as true twins; while if u and v are nonadjacent, they are false
twins. For a positive integer k, let c : V (G) → Zk be a vertex coloring where
adjacent vertices may be assigned the same color. The coloring c induces
another vertex coloring c′ : V (G) → Zk defined by c′(v) =

∑

u∈N [v] c(u)

for each v ∈ V (G), where N [v] is the closed neighborhood of v. Then c is
called a closed modular k-coloring if c′(u) 6= c′(v) in Zk for all pairs u, v of
adjacent vertices that are not true twins. The minimum k for which G has
a closed modular k-coloring is the closed modular chromatic number mc(G)
of G. The closed modular chromatic number is investigated for trees and
determined for several classes of trees. For each tree T in these classes, it is
shown that mc(T ) = 2 or mc(T ) = 3. A closed modular k-coloring c of a tree
T is called nowhere-zero if c(x) 6= 0 for each vertex x of T . It is shown that
every tree of order 3 or more has a nowhere-zero closed modular 4-coloring.

Keywords: trees, closed modular k-coloring, closed modular chromatic
number.
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1. Introduction

In 1986, at the 250th Anniversary of Graph Theory Conference held at Indiana
University-Purdue University Fort Wayne, a weighting (or edge labeling with
positive integers) of a connected graph G was introduced for the purpose of
producing a weighted graph whose degrees (obtained by adding the weights of
the incident edges of each vertex) were distinct. Such a weighted graph was
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called irregular. This concept could be looked at in another manner, however.
In particular, let N denote the set of positive integers and let Ev denote the set
of edges of G incident with a vertex v. An edge coloring c : E(G) → N, where
adjacent edges may be colored the same, is said to be vertex-distinguishing if the
coloring c′ : V (G) → N induced by c and defined by c′(v) =

∑

e∈Ev
c(e) has the

property that c′(x) 6= c′(y) for every two distinct vertices x and y of G. A paper
[2] on this concept appeared in the proceedings of this conference. The main
emphasis of this research dealt with minimizing the largest color assigned to the
edges of the graph to produce an irregular graph. Vertex-distinguishing colorings
have received increased attention during the past 25 years (see [7]).

Two decades earlier, in 1968, Rosa [13] introduced a vertex labeling that
induces an edge-distinguishing labeling defined by subtracting labels. In par-
ticular, for a graph G of size m, a vertex labeling (an injective function) f :
V (G) → {0, 1, . . . ,m} was called a β-valuation by Rosa if the induced edge label-
ing f ′ : E(G) → {1, 2, . . . ,m} defined by f ′(uv) = |f(u) − f(v)| is bijective. In
1972 Golomb [10] called a β-valuation a graceful labeling and a graph possessing
a graceful labeling a graceful graph. It is this terminology that became standard.
Much research has been done on graceful graphs. A popular conjecture in graph
theory, due to Kotzig and Ringel, is the following.

The Graceful Tree Conjecture. Every nontrivial tree is graceful.

In 1991 Gnana Jothi [9] introduced a concept that, in a certain sense, reverses
the roles of vertices and edges in graceful labelings (also see [8]). For a connected
graph G of order n ≥ 3, let f : E(G) → Zn be an edge labeling of G that induces a
bijective function f ′ : V (G) → Zn defined by f ′(v) =

∑

e∈Ev
f(e) for each vertex

v of G. Such a labeling f is called a modular edge-graceful labeling, while a graph
possessing such a labeling is called modular edge-graceful. Verifying a conjecture
by Gnana Jothi on trees, Jones, Kolasinski and Zhang [11] showed not only that
every tree of order n ≥ 3 is modular edge-graceful if and only if n 6≡ 2
(mod 4) but a connected graph of order n ≥ 3 is modular edge-graceful if and
only if n 6≡ 2 (mod 4).

Many of these weighting or labeling concepts were later interpreted as color-
ing concepts with the resulting vertex-distinguishing labeling becoming a vertex-
distinguishing coloring. A neighbor-distinguishing coloring is a coloring in which
every pair of adjacent vertices are colored differently. Such a coloring is more
commonly called a proper coloring. The minimum number of colors in a proper
vertex coloring of a graph G is its chromatic number χ(G).

In 2004 a neighbor-distinguishing edge coloring c : E(G) → {1, 2, . . . , k} of
a graph G was introduced (see [6, p. 385]) in which an induced vertex coloring
s : V (G) → N is defined by s(v) =

∑

e∈Ev
c(e) for each vertex v of G. The

minimum k for which such a neighbor-distinguishing coloring exists is called the
sum distinguishing index, denoted by sd(G) of G. This is therefore the proper
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coloring analogue of the irregular weighting mentioned earlier. It was shown in
[12] that if χ(G) ≤ 3, then sd(G) ≤ 3. In [1] it was shown for every connected
graph G of order at least 3 that sd(G) ≤ 4. In fact, Karoński,  Luczak and
Thomason [12] made the following conjecture, which has acquired a name used
by many.

The 1-2-3 Conjecture. If G is a connected graph of order 3 or more, then

sd(G) ≤ 3.

Consequently, if the 1-2-3 Conjecture is true, then for every connected graph G
of order 3 or more, it is possible to assign each edge of G one of the colors 1, 2,
3 in such a way that if u and v are adjacent vertices of G, then the sums of the
colors of the incident edges of u and v are different.

A number of neighbor-distinguishing vertex colorings different from standard
proper colorings have been introduced in the literature (see [6, p.379–385], for
example). In 2010 a neighbor-distinguishing vertex coloring of a graph was intro-
duced based on sums of colors (see [3]). For a nontrivial connected graph G, let
c : V (G) → N be a vertex coloring of G where adjacent vertices may be colored
the same. If k colors are used by c, then c is a k-coloring of G. The color sum

σ(v) of a vertex v is defined by σ(v) =
∑

u∈N(v) c(u) where N(v) denotes the
neighborhood of v (the set of vertices adjacent to v). If σ(u) 6= σ(v) for every two
adjacent vertices u and v of G, then c is neighbor-distinguishing and is called a
sigma coloring of G. The minimum number of colors required in a sigma coloring
of a graph G is called the sigma chromatic number of G and is denoted by σ(G).
It was shown in [3] that for each pair a, b of positive integer with a ≤ b, there is
a connected graph G with σ(G) = a and χ(G) = b.

In 2011 another neighbor-distinguishing vertex coloring was introduced in [4]
that is closely related to colorings discussed above. We describe this next.

2. Closed Modular Colorings of Graphs

For a nontrivial connected graph G, let c : V (G) → Zk (k ≥ 2) be a vertex
coloring where adjacent vertices may be assigned the same color. The coloring c
induces another vertex coloring c′ : V (G) → Zk, where

(1) c′(v) =
∑

u∈N [v]
c(u),

N [v] = N(v)∪{v} is the closed neighborhood of v and the sum in (1) is performed
in Zk. A coloring c of G is called a closed modular k-coloring if for every pair x, y
of adjacent vertices in G either c′(x) 6= c′(y) or N [x] = N [y], in the latter case
of which we must have c′(x) = c′(y). Closed modular colorings of graphs were
introduced in [4] and inspired by a domination problem. The minimum k for
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which G has a closed modular k-coloring is called the closed modular chromatic

number of G and is denoted by mc(G). It was observed in [4] that the nontrivial
complete graphs are the only nontrivial connected graphs G for which mc(G) = 1.

Two vertices u and v in a connected graph G are twins if u and v have the
same neighbors in V (G)−{u, v}. If u and v are adjacent, they are referred to as
true twins; while if u and v are nonadjacent, they are false twins. If u and v are
adjacent vertices of a graph G such that N [u] = N [v] (that is, u and v are true
twins), then c′(u) = c′(v) for every vertex coloring c of G. The following result
appeared in [4].

Proposition 2.1. If G is a nontrivial connected graph, then mc(G) exists. Fur-

thermore, if G contains no true twins, then mc(G) ≥ χ(G).

To illustrate these concepts, consider the bipartite graph G of Figure 1. Since
χ(G) = 2 and G has no true twins, it follows that mc(G) ≥ 2 by Proposition 2.1.
We show that mc(G) = 3. Figure 1 shows a closed modular 3-coloring of G
(where the color of a vertex is placed within the vertex) together with the color
c′(v) for each vertex v of G (where the color c′(v) of a vertex is placed next to
the vertex). Thus mc(G) ≤ 3. Assume, to the contrary, that there exists a closed
modular 2-coloring c of G. Since U = {u1, u2, u3, u4} and V = {v1, v2} are the
partite sets of G and the induced coloring c′ is a proper 2-coloring of G, the color
classes of c′ are U and V .
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00

u2 u3 u4

Figure 1. A graph G with χ(G) = 2 and mc(G) = 3.

Assume first that c′(x) = 0 for all x ∈ U and c′(x) = 1 for all x ∈ V . Since
c′(u1) = 0, either c(u1) = c(v1) = 0 or c(u1) = c(v1) = 1. In either case,
it follows because c′(v1) = 1 that {c(u2), c(u3)} = {0, 1} and so c(u2) 6= c(u3).
However then, since c(u2) 6= c(u3) and N(u2) = N(u3), we have c′(u2) 6= c′(u3), a
contradiction. Consequently, c′(x) = 1 for all x ∈ U and c′(x) = 0 for all x ∈ V .
Since c′(u1) = 1, it follows that {c(u1), c(v1)} = {0, 1}. Because c′(v1) = 0,
we have {c(u2), c(u3)} = {0, 1}. Again, c(u2) 6= c(u3) and so c′(u2) 6= c′(u3),
once again a contradiction. Therefore, mc(G) = 3, as claimed. Observe for the
false twins u2 and u3 in the graph G of Figure 1 that if c(u2) 6= c(u3), then
c′(u2) 6= c′(u3). This example illustrates the following useful result (see [4]).
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Proposition 2.2. Let c be a closed modular coloring of a connected graph G and

let u and v be false twins in G. Then c(u) = c(v) if and only if c′(u) = c′(v).

By Proposition 2.1, if G is a nontrivial connected graph that contains no true
twins, then mc(G) ≥ χ(G). On the other hand, if G contains true twins, then it
is possible that mc(G) < χ(G). In fact, it was shown in [4] that for each pair a, b
of positive integers with a ≤ b and b ≥ 2, there is a connected graph G such that
mc(G) = a and χ(G) = b.

For an edge uv of a graph G, the graph G/uv obtained from G by contracting

the edge uv has the vertex set V (G) in which u and v are identified. If we denote
the vertex u = v in G/uv by w, then V (G/uv) = (V (G) ∪ {w}) − {u, v} and the
edge set of G/uv is

E(G/uv) = {xy : xy ∈ E(G), x, y ∈ V (G) − {u, v}}

∪ {wx : ux ∈ E(G) or vx ∈ E(G), x ∈ V (G) − {u, v}}.

The graph G/uv is referred to as an elementary contraction of G. For a nontriv-
ial connected graph G, define the true twins closure TC(G) of G as the graph
obtained from G by a sequence of elementary contractions of pairs of true twins
in G until no such pair remains. In particular, if G contains no true twins,
then TC(G) = G. Thus TC(G) is a minor of G. It was shown in [4] that
mc(G) = mc(TC(G)) for every nontrivial connected graph G. Therefore, it suf-
fices to consider nontrivial connected graphs containing no true twins.

Closed modular chromatic numbers were determined for several classes of
regular graphs in [4]. In particular, it was shown that for each integer k ≥ 2, if
G is a regular complete k-partite graph such that each of its partite sets has at
least 2k + 1 vertices, then mc(G) ≤ 2χ(G) − 1 and this bound is sharp. In this
work, we investigate the closed modular chromatic numbers of trees. We refer to
[5] for graph theory notation and terminology not described in this paper.

3. Some Results on Trees

Since a tree T of order at least 3 contains no true twins, it follows by Proposi-
tion 2.1 that mc(T ) ≥ χ(T ) = 2. Closed modular chromatic numbers of paths
and stars were determined in [4]. We state this result below.

Proposition 3.1. For each integer n ≥ 3

mc(Pn) =

{

3 if n ≡ 2 ( mod 6),
2 otherwise.

(2)

mc(K1,n−1) =

{

2 if n is odd,

3 if n is even.
(3)
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A double star is a tree whose diameter is 3.

Proposition 3.2. For integers a, b ≥ 2, let Sa,b be the double star of order a+ b
whose central vertices have degrees a and b, respectively. Then

mc(Sa,b) =

{

2 if at least one of a and b is even,

3 if a and b are both odd.

Proof. Let G = Sa,b be a double star with central vertices u and v such that
deg u = a and deg v = b, let U be the set of end-vertices adjacent to u and let V
be the set of end-vertices adjacent to v. We consider two cases.

Case 1. At least one of a and b is even. Since χ(G) = 2, it remains only
to show that G has a closed modular 2-coloring. If a and b are both even, then
define c : V (G) → Z2 by c(x) = 0 for all x ∈ V and c(x) = 1 for x /∈ V . Then
c′(x) = 0 if x ∈ U ∪ {v} and c′(x) = 1 if x ∈ {u} ∪ V . If a and b are of opposite
parity, say a is odd and b is even, then define c : V (G) → Z2 by c(x) = 0 if x ∈ U
and c(x) = 1 if x /∈ U . Then c′(x) = 0 if x ∈ {u}∪V and c′(x) = 1 if x ∈ U ∪{v}.
In each case, c is a closed modular 2-coloring of G and so mc(G) = 2.

Case 2. Both a and b are odd. Let U = {u1, u2, . . . , ua−1} and V =
{v1, v2, . . . , vb−1}. Define c0 : V (G) → Z3 by c0(x) = 0 if x ∈ (U −{u1})∪ V and
c0(x) = 1 if x ∈ {u, u1, v}. Then c′0(u) = 0, c′0(u1) = c′0(v) = 2 and c′0(x) = 1 for
x ∈ (U − {u1}) ∪ V . Since c0 is a closed modular 3-coloring of G, it follows that
mc(G) ≤ 3. Assume, to the contrary, that mc(G) = 2. Let c : V (G) → Z2 be a
closed modular 2-coloring of G. Then the induced vertex coloring c′ is a proper
2-coloring of G. Thus, we may assume, without loss of generality, that c′(x) = 0
if x ∈ U ∪ {v} and c′(x) = 1 if x ∈ {u} ∪ V . First, assume that c(u) = 0. Since
c′(u) = 1 and c′(ui) = 0 for 1 ≤ i ≤ a−1, it follows that c(ui) = 0 (1 ≤ i ≤ a−1)
and c(v) = 1. Since c′(vj) = 1 for 1 ≤ j ≤ b− 1 and c(v) = 1, we have c(vj) = 0
for 1 ≤ j ≤ b − 1. However then, c′(v) = 1, a contradiction. Next, assume that
c(u) = 1. Since c′(u) = 1 and c′(ui) = 0 for 1 ≤ i ≤ a−1, it follows that c(ui) = 1
(1 ≤ i ≤ a− 1) and c(v) = 0. Since c′(vj) = 1 for 1 ≤ j ≤ b− 1 and c(v) = 0, it
follows that c(vj) = 1 for 1 ≤ j ≤ b − 1. However then, c′(v) = deg v = 1 in Z2,
a contradiction. Therefore, mc(G) = 3.

By (3) and Proposition 3.2, if T is a tree of diameter 2 or 3 containing only odd
vertices, then mc(T ) = 3. In fact, this is true in general.

Theorem 3.3. If T is a tree of order at least 4 each of whose vertices is odd,

then mc(T ) = 3.

Proof. First, we show that mc(T ) ≥ 3. Assume, to the contrary, that this
statement is false. Among all trees each of whose vertices is odd and having
closed modular chromatic number 2, let T be one of minimum order n. Thus n
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is even. By (3) and Proposition 3.2, T is neither a star nor a double star and
so n ≥ 8. Let v be an end-vertex of T with maximum eccentricity and let u be
the vertex adjacent to v in T that is not an end-vertex of T . Since T contains
no vertex of degree 2, it follows that u is adjacent to at least two end-vertices in
T . Suppose that u1, u2, . . . , uk (k ≥ 2) are end-vertices of T that are adjacent to
u. Let c : V (T ) → Z2 be a closed modular 2-coloring of T . Since the induced
vertex coloring c′ is a proper 2-coloring of T , it follows that either c′(ui) = 0 for
1 ≤ i ≤ k or c′(ui) = 1 for 1 ≤ i ≤ k. This implies that either c(ui) = 0 for
1 ≤ i ≤ k or c(ui) = 1 for 1 ≤ i ≤ k. However then, the restriction of c to the
tree T ′ = T − u1 − u2 is a closed modular 2-coloring of T ′ and so mc(T ′) = 2.
Since each vertex of T ′ has odd degree, this contradicts the defining property of
T .

To show that mc(T ) ≤ 3, we proceed by induction on the even order of trees
each of whose vertices is odd. By (3) and Proposition 3.2, the result is true for all
trees of order 4 and 6. Suppose that if T ′ is a tree of order n for some even n ≥ 6
each of whose vertices is odd, then mc(T ′) ≤ 3. Let T be a tree of order n + 2
each of whose vertices is odd. Note that T contains a vertex u that is adjacent
to at least two end-vertices of T , say u is adjacent to the end-vertices x and y in
T . Then T0 = T −x− y is a tree of order n each of whose vertices is odd. By the
induction hypotheses, mc(T0) = 2 or mc(T0) = 3. We consider these two cases.

Case 1. mc(T0) = 2. Let c0 : V (T0) → Z2 be a closed modular 2-coloring of
T0. We extend c0 to a closed modular 2-coloring c of T . There are two subcases,
according to whether c′0(u) = 0 or c′0(u) = 1.

Subcase 1.1. c′0(u) = 0. If c0(u) = 0, then define c(v) = c0(v) for v ∈ V (T0)
and c(x) = c(y) = 1. Thus c′(v) = c′0(v) for v ∈ V (T0) and c′(x) = c′(y) = 1.
If c0(u) = 1, then define c(v) = c0(v) for v ∈ V (T0) and c(x) = c(y) = 0. Thus
c′(v) = c′0(v) for v ∈ V (T0) and c′(x) = c′(y) = 1.

Subcase 1.2. c′0(u) = 1. If c0(u) = 0, then define c(v) = c0(v) for v ∈ V (T0)
and c(x) = c(y) = 0. Thus c′(v) = c′0(v) for v ∈ V (T0) and c′(x) = c′(y) = 0.
If c0(u) = 1, then define c(v) = c0(v) for v ∈ V (T0) and c(x) = c(y) = 1. Thus
c′(v) = c′0(v) for v ∈ V (T0) and c′(x) = c′(y) = 0.

Case 2. mc(T0) = 3. Let c0 : V (T0) → Z3 be a closed modular 3-coloring of
T0. We extend c0 to a closed modular 3-coloring c of T . Since c′0(u) ∈ {0, 1, 2},
we consider these subcases. As in Case 1, in each of these subcases, define
c(v) = c0(v) for v ∈ V (T0).

Subcase 2.1. c′0(u) = 0. If c0(u) = 0, then define c(x) = 1 and c(y) = 2.
Thus c′(v) = c′0(v) for for v ∈ V (T0) and c′(x) = 1 and c′(y) = 2. If c0(u) = i
where i = 1, 2 then define c(x) = c(y) = 0. Thus c′(v) = c′0(v) for v ∈ V (T0) and
c′(x) = c′(y) = i for i = 1, 2.
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Subcase 2.2. c′0(u) = 1. If c0(u) = i for i = 0, 2, then define c(x) = c(y) = 0.
Thus c′(v) = c′0(v) for v ∈ V (T0) and c′(x) = c′(y) = i for i = 0, 2. If c0(u) = 1,
then define c(x) = 1 and c(y) = 2. Thus c′(v) = c′0(v) for v ∈ V (T0) and c′(x) = 2
and c′(y) = 0.

Subcase 2.3. c′0(u) = 2. If c0(u) = i for i = 0, 1, then define c(x) = c(y) = 0.
Thus c′(v) = c′0(v) for v ∈ V (T0) and c′(x) = c′(y) = i for i = 0, 1. If c0(u) = 2,
then define c(x) = 1 and c(y) = 2. Thus c′(v) = c′0(v) for v ∈ V (T0) and c′(x) = 0
and c′(y) = 1.

By Theorem 3.1, if n ≥ 8 is even and n ≡ 2 (mod 3), then mc(Pn) = 3. Thus the
converse of Theorem 3.3 is not true. Furthermore, Theorem 3.3 does not hold
for bipartite graphs in general. For example, each vertex is odd in the bipartite
graph G of Figure 2 but mc(G) = 2. A closed modular 2-coloring of G is also
shown in Figure 2.
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0 0

G :

1 1
0 0 00

1 10 0

1 1 1 1

Figure 2. A bipartite graph G with mc(G) = 2.

We next consider a well-known class of trees, namely caterpillars. A caterpillar

is a tree of order 3 or more, the removal of whose end-vertices produces a path
called the spine of the caterpillar. Thus every path and star (of order at least 3)
and every double star is a caterpillar. By (3) and Proposition 3.2, if T is a star
or a double star, then mc(G) ≤ 3. In fact, this is true for all caterpillars.

Theorem 3.4. If T is a caterpillar of order at least 3, then mc(T ) ≤ 3.

Proof. Let T be a caterpillar of order at least 3 and let Pk = (v1, v2, . . . , vk) be
the spine of T . Since mc(T ) ≤ 3 if T is a star or a double star, we may assume
that k ≥ 3. Define a coloring c : V (T ) → Z3 by c(vi) = 1 if i is odd and 1 ≤ i ≤ k,
c(vi) = 2 if i is even and 2 ≤ i ≤ k and c(x) = 0 for all end-vertices x of T . Let
sc′ = (c′(v1), c

′(v2), . . . , c
′(vk)) be the color sequence of the induced coloring c′ on

the spine Pk of T . Then

sc′ = (0, 1, 2, 1, 2, . . . , 1, 2, 1, 0) if k is odd,

= (0, 1, 2, 1, 2, . . . , 1, 2, 0) if k is even.

Let x and y be two adjacent vertices of T . If x, y ∈ V (Pk), then c′(x) 6= c′(y).
Thus, we may assume that x is an end-vertex of T and y = vi for some i with
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1 ≤ i ≤ s. If i ∈ {1, k}, then c′(x) = c(vi) 6= 0 and c′(vi) = 0; if 2 ≤ i ≤ k− 1 and
i is even, then c′(x) = c(vi) = 2 and c′(y) = 1; if 3 ≤ i ≤ k− 1 and i is odd, then
c′(x) = c(vi) = 1 and c′(y) = 2. In any case, c′(x) 6= c′(y). Hence c is a closed
modular 3-coloring of T and so mc(G) ≤ 3.

If T is a caterpillar with an added property, then the exact value of mc(T ) can
be determined.

Theorem 3.5. Let T be a caterpillar of order at least 3 where Pk = (v1, v2, . . . , vk)
is the spine of T . For each i with 1 ≤ i ≤ k, let Wi be the set of end-vertices

adjacent to vi in T .
(a) If |Wi| is even for 1 ≤ i ≤ k, then

mc(T ) =

{

3 if k is even and k ≡ 2 (mod 3),
2 otherwise.

(b) If |Wi| is odd for 1 ≤ i ≤ k, then

mc(T ) =

{

3 if k ≡ 1 (mod 4),
2 otherwise.

Proof. We first verify (a) which says that mc(T ) = mc(Pk) by Proposition 3.1.
Since mc(Pk) = 2 or mc(Pk) = 3, we consider these two cases.

Case 1. mc(Pk) = 2. Let cPk
be a closed modular 2-coloring of Pk. Define

a coloring c : V (T ) → Z2 by c(vi) = cPk
(vi) for 1 ≤ i ≤ k, c(w) = 1 if w ∈ Wi

(1 ≤ i ≤ k) such that cPk
(vi) = c′Pk

(vi) in Z2 and c(w) = 0 if w ∈ Wi (1 ≤ i ≤ k)
such that cPk

(vi) 6= c′Pk
(vi) in Z2. We show that c is a closed modular 2-coloring of

T . Let x and y be two adjacent vertices of T . Since c′(vi) = c′Pk
(vi) for 1 ≤ i ≤ k,

it follows that c′(x) 6= c′(y) if x, y ∈ V (Pk). Thus we may assume that x is an
end-vertex and y = vi for some i with 1 ≤ i ≤ k. It follows by the definition of c
that (1) if c(x) = 0, then c(x) = c(vi) = cPk

(vi) 6= c′Pk
(vi) = c′(vi) in Z2 and (2)

if c(x) = 1, then c(x) = c(vi) + 1 = cPk
(vi) + 1 6= c′Pk

(vi) + 1 6= c′Pk
(vi) = c′(vi) in

Z2. Thus c is a closed modular 2-coloring of T and so mc(T ) = 2.

Case 2. mc(Pk) = 3. Assume, to the contrary, that mc(T ) = 2. Let c
be a closed modular 2-coloring of T . Since the induced vertex coloring c′ is a
proper 2-coloring of T , it follows that for each i with 1 ≤ i ≤ k, if x, y ∈ Wi,
then c′(x) = c′(y). By Proposition 2.2, c(x) = c(y) for all x, y ∈ Wi where
1 ≤ i ≤ k. Thus c′(vi) = c(vi−1) + c(vi) + c(vi+1) +

∑

w∈Wi
c(w), where we define

c(vi−1) = 0 if i = 1 and c(vi+1) = 0 if i = k. Since |Wi| ≡ 0 (mod 2), it follows
that

∑

w∈Wi
c(w) = 0 in Z2 and so c′(vi) = c(vi−1) + c(vi) + c(vi+1) for 1 ≤ i ≤ k.

However then, this implies that if we restrict c to Pk, then we obtain a closed
modular 2-coloring of Pk, which is a contradiction. Therefore, mc(T ) = 3.

Next, we verify (b). First, suppose that k ≡ 1 (mod 4). Since the result is
true for stars by (3), we may assume that k ≥ 5. Assume, to the contrary, that
there is a closed modular 2-coloring c of T . Since the induced vertex coloring c′
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is a proper 2-coloring, it follows that for each i with 1 ≤ i ≤ k, if x, y ∈ Wi, then
c′(x) = c′(y). By Proposition 2.2, c(x) = c(y) for all x, y ∈ Wi where 1 ≤ i ≤ k.
First, we claim that

c(v1) 6= c(v1) + c(v2) = c∗(v1),

c(vi) 6= c(vi−1) + c(vi) + c(vi+1) = c∗(vi) for 2 ≤ i ≤ k − 1,

c(vk) 6= c(vk−1) + c(vk) = c∗(vk).

For otherwise, suppose that there is i with 1 ≤ i ≤ k such that c(vi) = c∗(vi). If
c(w) = 0 for all w ∈ Wi, then c′(w) = c(vi) = c∗(vi) = c′(vi) in Z2, which is a
contradiction. Thus, we may assume that c(w) = 1 for all w ∈ Wi. Since |Wi| is
odd, c′(w) = c(vi) + 1 = c∗(vi) + 1 = c′(vi) in Z2, which is a contradiction. Thus,
as claimed, c(vi) 6= c∗(vi) for 1 ≤ i ≤ k.

Let s = (c(v1), c(v2), . . . , c(vk)) be the color sequence of c on the spine Pk

of T , where c(vi) ∈ Z2 for 1 ≤ i ≤ k. First, suppose that c(v1) = 0. Then
c∗(v1) = 1. This implies that c(v2) = 1 and c∗(v2) = 0. Since c(v1) = 0, c(v2) = 1
and c∗(v2) = 0, it follows that c(v3) = 1 and c∗(v3) = 0. Continuing in this
manner, we obtain that

s = (0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, . . . , 0, 0, 1, 1).

However, this implies that k ≡ 3 (mod 4), a contradiction. Next, suppose that
c(v1) = 1. Then c∗(v1) = 0. This implies that c(v2) = 1 and c∗(v2) = 0. Then
c(v3) = 0 and c∗(v3) = 1, which implies that c(v4) = 0 and c∗(v4) = 1. Continuing
in this manner, we obtain that s must be one of the following two sequences

s1 = (1, 1, 0, 0, 1, 1, 0, 0, . . . , 1, 1, 0, 0, 1, 1),

s2 = (1, 1, 0, 0, 1, 1, 0, 0, . . . , 1, 1, 0, 0, 1, 1, 0).

However then, this implies that k ≡ 2 (mod 4) or k ≡ 3 (mod 4), a contradiction.
Therefore, mc(T ) 6= 2 and so mc(T ) = 3 by Theorem 3.4.

Next, suppose that k 6≡ 1 (mod 4). We show mc(T )=2 by providing a closed
modular 2-coloring of T . First, suppose that k ≡ 0 (mod 4). Define the coloring
c : V (T ) → Z2 by c(vi)=0 if i ≡ 0, 1 (mod 4), c(vi)=1 if i ≡ 2, 3 (mod 4), c(w)=0
if w ∈ Wi and i ≡ 0, 3 (mod 4) and c(w)=1 if w ∈ Wi and i ≡ 1, 2 (mod 4). The
color sequence sc′ = (c′(v1), c

′(v2), . . . , c
′(vk)) of the induced coloring c′ on the

spine Pk of T is sc′ = (0, 1, 0, 1, . . . , 0, 1). Furthermore, c′(w) = 1 if w ∈ Wi and
i is odd and c′(w) = 0 if w ∈ Wi and i is even. Thus c′(x) 6= c′(y) for every pair
x, y of adjacent vertices of T . Hence c is a closed modular 2-coloring of T . Next,
suppose that k ≡ 2 (mod 4) or k ≡ 3 (mod 4). Define the coloring c : V (T ) → Z2

by c(vi) = 0 if i ≡ 0, 3 (mod 4), c(vi) = 1 if i ≡ 1, 2 (mod 4), c(w) = 0 if
w ∈ Wi and i ≡ 2, 3 (mod 4) and c(w) = 1 if w ∈ Wi and i ≡ 0, 1 (mod 4). For
k ≡ 2 (mod 4), the color sequence of the induced coloring c′ on the spine Pk of
T is sc′ = (1, 0, 1, 0, . . . , 1, 0); while for k ≡ 3 (mod 4), the color sequence of the
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induced coloring c′ on the spine Pk of T is sc′ = (1, 0, 1, 0, . . . , 1, 0, 1). In each
case, c′(w) = 0 if w ∈ Wi and i is odd and c′(w) = 1 if w ∈ Wi and i is even.
Thus c′(x) 6= c′(y) for every pair x, y of adjacent vertices of T . Hence c is a closed
modular 2-coloring of T . Therefore, mc(T ) = 2 if k 6≡ 1(mod 4).

4. A Four Color Theorem

While the closed modular chromatic number of every tree considered thus far is
either 2 or 3, no upper bound for mc(T ) has been determined for trees of order
at least 3 in general. We now show that mc(T ) ≤ 4 for every such tree. In fact,
we show that every tree of order at least 3 has a special type of closed modular
4-coloring. A closed modular k-coloring c : V (T ) → Zk of a tree T of order 3 or
more is a nowhere-zero coloring if c(x) 6= 0 for each vertex x of T .

Lemma 4.1. Every star of order at least 3 has a nowhere-zero closed modular

4-coloring.

Proof. Let T = K1,k be a star with V (T ) = {v, v1, v2, . . . , vk} where v is the
central vertex of T and k ≥ 2. First assume that k ≡ 0, 2, 3 (mod 4). Define the
coloring c : V (G) → Z4 by c(x) = 1 for each x ∈ V (T ). Then c′(vi) = 2 for
1 ≤ i ≤ k. If k ≡ 0 (mod 4), then c′(v) = 1; if k ≡ 2 (mod 4), then c′(v) = 3;
and if k ≡ 3 (mod 4), then c′(v) = 0. Next assume that k ≡ 1 (mod 4). Define
the coloring c : V (G) → Z4 by c(v1) = c(v2) = 2 and c(x) = 1 for each x ∈
V (T ) − {v1, v2}. Then c′(v) = 0 and c′(v1) = c′(v2) = 3 and c′(vi) = 2 for
3 ≤ i ≤ k. In each case, c is a nowhere-zero closed modular 4-coloring.

Theorem 4.2. Every tree of order at least 3 has a nowhere-zero closed modular

4-coloring.

Proof. We proceed by strong induction on the order of a tree. By Lemma 4.1,
the base step of induction holds. Assume for some integer n ≥ 4 that every tree
of order at least 3 and at most n has a nowhere-zero closed modular 4-coloring.
Let T be a tree of order n+1. We show that T has a nowhere-zero closed modular
4-coloring. By Lemma 4.1, we may assume that T is not a star.

Let z be a peripheral vertex of T and so z is an end-vertex of T . Suppose
that z is adjacent to the vertex u in T . Hence each vertex adjacent to u is an
end-vertex of T with exactly one exception. Let V = {z = v1, v2, . . . , vk} be
the set of end-vertices of T that are adjacent to u. Then T ∗ = T − V is a tree
of order at least 3 and u is an end-vertex of T ∗. By the induction hypothesis,
T ∗ has a nowhere-zero closed modular 4-coloring c : V (T ∗) → Z4. Next, we
show that the coloring c can be extended to a nowhere-zero closed modular 4-
coloring cT : V (T ) → Z4 of T ; that is, cT (x) = c(x) for each x ∈ V (T ∗) and
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so c′T (x) = c′(x) for each x ∈ V (T ∗) − {u}. Suppose that u is adjacent to the
vertex w in T ∗. Since c is a nowhere-zero closed modular coloring, it follows that
c(u), c(w) ∈ {1, 2, 3}. We consider three cases, according to the values of c(u).

Case 1. c(u) = 1. If c(w) = 1, then c′(u) = 2; if c(w) = 2, then c′(u) = 3;
and if c(w) = 3, then c′(u) = 0. Hence there are three subcases.

Subcase 1.1. c′(u) = 2. Then c′(w) ∈ {0, 1, 3}. We consider these three
subcases.

Subcase 1.1.1. c′(w) = 0. Define the coloring cT on V as follows. If k ≡ 1, 3
(mod 4), then cT assigns the color 1 to each vertex in V . Hence c′T (v) = 2 for
each v ∈ V and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 1 (mod 4), then
c′T (u) = 3, while if k ≡ 3 (mod 4), then c′T (u) = 1. If k ≡ 2, 0 (mod 4), then cT
assigns the color 2 to each vertex in V . Hence c′T (v) = 3 for each v ∈ V and
c′T (x) = c′(x) for all x ∈ V (T ∗).

Subcase 1.1.2. c′(w) = 1. Define the coloring cT on V as follows. If k 6≡ 3
(mod 4), then define cT as in Subcase 1.1.1 (since c′T (u) 6= 1 in this coloring). If
k ≡ 3 (mod 4), then define the coloring cT on V by assigning 2 to each vertex
in V . Hence c′T (v) = 3 for each v ∈ V , c′T (u) = 0 and c′T (x) = c′(x) for all
x ∈ V (T ∗) − {u}.

Subcase 1.1.3. c′(w) = 3. Define the coloring cT on V as follows. If k ≡ 1
(mod 4), then cT assigns the color 2 to each vertex in V . Hence c′T (v) = 3,
c′T (u) = 0 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k 6≡ 1 (mod 4), then
define cT as in Subcase 1.1.2 (since c′T (u) 6= 3 in this coloring).

Subcase 1.2. c′(u) = 0. Then c′(w) ∈ {1, 2, 3}. We consider these three
subcases.

Subcase 1.2.1. c′(w) = 1. Define the coloring cT on V as follows. If k ≡ 1
(mod 4), then cT assigns the color 3 to each vertex in V . Hence c′T (v) = 0 for
each v ∈ V , c′T (u) = 3 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 2
(mod 4), then cT assigns the color 2 to each vertex in V . Hence c′T (v) = 3 for
each v ∈ V and c′T (x) = c′(x) for all x ∈ V (T ∗). If k ≡ 3, 0 (mod 4), then cT
assigns the color 1 to each vertex in V . Hence c′T (v) = 2 for each v ∈ V . If k ≡ 3
(mod 4), then c′T (u) = 3 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}; while if k ≡ 0
(mod 4), then c′T (x) = c′(x) for all x ∈ V (T ∗).

Subcase 1.2.2. c′(w) = 2. Define the coloring cT on V as the same in
Subcase 1.2.1 (since c′T (u) 6= 2 in this coloring).

Subcase 1.2.3. c′(w) = 3. Define the coloring cT on V as follows. If k ≡ 1
(mod 4), then cT assigns the color 1 to each vertex in V . Hence c′T (v) = 2 for
each v ∈ V , c′T (u) = 1 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 3
(mod 4), then cT assigns the color 2 to each vertex in V . Hence c′T (v) = 3 for each
v ∈ V , c′T (u) = 2 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 0, 2
(mod 4), then define cT as in Subcase 1.2.1 (since c′(u) 6= 3 in this coloring).
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Subcase 1.3. c′(u) = 3. Then c′(w) ∈ {0, 1, 2} and so we consider these three
subcases.

Subcase 1.3.1. c′(w) = 0. Define the coloring cT on V as follows. If k ≡ 1, 3
(mod 4), then cT assigns the color 2 to each vertex in V . Hence c′T (v) = 3 for
each v ∈ V , c′T (u) = 1 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 2
(mod 4), then cT assigns the color 2 to each vertex in V . Hence c′T (v) = 3 for
each v ∈ V and c′T (x) = c′(x) for all x ∈ V (T ∗). If k ≡ 0 (mod 4), then cT
assigns the color 1 to each vertex in V . Hence c′T (v) = 2 for each v ∈ V and
c′T (x) = c′(x) for all x ∈ V (T ∗).

Subcase 1.3.2. c′(w) = 1. Define the coloring cT on V as follows. If k ≡ 1
(mod 4), then cT assigns the color 1 to each vertex in V . Hence c′T (v) = 2 for
each v ∈ V , c′T (u) = 0 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 3
(mod 4), then cT assigns the color 1 to v1 and assigns the color 2 to each vertex
in V − {v1}. Hence c′T (v1) = 2, c′T (v) = 3 for each v ∈ V − {v1}, c′T (u) = 0 and
c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 0, 2 (mod 4), then define cT as in
Subcase 1.2.1 (since c′T (u) 6= 1 in this coloring).

Subcase 1.3.3. c′(w) = 2. Define cT on V as in Subcase 1.2.2 (since c′T (u) 6= 2
in this coloring).

Case 2. c(u) = 2. If c(w) = 1, then c′(u) = 3; if c(w) = 2, then c′(u) = 0;
and if c(w) = 3, then c′(u) = 1. We consider these three subcases, according to
the values of c′(u).

Subcase 2.1. c′(u) = 0. Then c′(w) ∈ {1, 2, 3}. There are three subcases.

Subcase 2.1.1. c′(w) = 1. Define the coloring cT on V as follows. If k ≡ 1
(mod 4), then cT assigns the color 3 to each vertex in V . Hence c′T (v) = 1 for
each v ∈ V , c′T (u) = 3 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 2
(mod 4), then cT assigns the color 1 to each vertex in V . Hence c′T (v) = 3 for
each v ∈ V , c′T (u) = 2 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 3
(mod 4), then cT assigns the color 2 to each vertex in V . Hence c′T (v) = 0 for
each v ∈ V , c′T (u) = 2 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 0
(mod 4), then cT assigns the color 1 to each vertex in V . Hence c′T (v) = 3 for
each v ∈ V and c′T (x) = c′(x) for all x ∈ V (T ∗).

Subcase 2.1.2. c′(w) = 2. Define the coloring cT on V as follows. If k ≡ 1, 0
(mod 4), then define cT as in Subcase 2.1.1 (since c′T 6= 2 in this coloring). If
k ≡ 2 (mod 4), then cT assigns the color 1 to v1 and 3 each vertex in V − {v1}.
Hence c′T (v1) = 3, c′T (v) = 1 for each v ∈ V − {v1} and c′T (x) = c′(x) for all
x ∈ V (T ∗). If k ≡ 3 (mod 4), then cT assigns the color 1 to v1 and the color 2
to each vertex in V − {v1}. Hence c′T (v1) = 3, c′T (v) = 0 for each v ∈ V − {v1},
c′T (u) = 1 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}.

Subcase 2.1.3. c′(w) = 3. Define the coloring cT on V as follows. If k ≡ 1
(mod 4), then cT assigns the color 1 to each vertex in V . Then c′T (v) = 3 for each



424 B. Phinezy and P. Zhang

v ∈ V , c′T (u) = 1 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k 6≡ 1 (mod 4),
then define cT as in Subcase 2.1.2 (since c′T (u) 6= 3 in this coloring).

Subcase 2.2. c′(u) = 1. Then c′(w) ∈ {0, 2, 3}. There are three subcases.

Subcase 2.2.1. c′(w) = 0. Define the coloring cT on V as follows. If k ≡ 1 (
mod 4), then cT assigns the color 2 to each vertex in V . Hence c′T (v) = 0 for each
v ∈ V , c′T (u) = 3 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 2 (mod 4),
then cT assigns the color 1 to each vertex in V . Hence c′T (v) = 3 for each v ∈ V ,
c′T (u) = 3 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 3
(mod 4), then cT assigns the color 2 to each vertex in V . Hence c′T (v) = 0 for
each v ∈ V , c′T (u) = 3 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 0
(mod 4), then cT assigns the color 1 to each vertex in V . Hence c′T (v) = 3 for
each v ∈ V and c′T (x) = c′(x) for all x ∈ V (T ∗).

Subcase 2.2.2. c′(w) = 2. Define the coloring cT on V as in Subcase 2.2.1
(since c′T (u) 6= 2 in this coloring).

Subcase 2.2.3. c′(w) = 3. Define the coloring cT on V as follows. If k ≡ 1
(mod 4), then cT assigns the color 3 to each vertex in V . Hence c′T (v) = 1 for
each v ∈ V , c′T (u) = 0 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 2
(mod 4), then cT assigns the color 2 to each vertex in V . Hence c′T (v) = 0 for
each v ∈ V and c′T (x) = c′(x) for all x ∈ V (T ∗). If k ≡ 3 (mod 4), then cT assigns
the color 1 to each vertex in V . Hence c′T (v) = 3 for each v ∈ V , c′T (u) = 0 and
c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 0 (mod 4), then cT assigns the
color 1 to each vertex in V as in Subcase 2.2.1 (since c′T (u) 6= 3 in this coloring).

Subcase 2.3. c′(u) = 3. Then c′(w) ∈ {0, 1, 2}. There are three subcases.

Subcase 2.3.1. c′(w) = 0. Define the coloring cT assigns the color 2 to each
vertex in V . Then c′T (v) = 0 for each v ∈ V . If k ≡ 1, 3 (mod 4), c′T (u) = 1 and
c′T (x) = c′(x) for all x ∈ V (T ∗)−{u}. If k ≡ 0, 2 (mod 4), then c′T (x) = c′(x) for
all x ∈ V (T ∗).

Subcase 2.3.2. c′(w) = 1. Define the coloring cT as follows. If k ≡ 1 (mod 4),
the coloring cT assigns the color 3 to each vertex in V . Hence c′T (v) = 1 for each
v ∈ V , c′T (u) = 2 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 3 (mod 4),
then cT assigns the color 1 to each vertex in V . Hence c′T (v) = 3 for each v ∈ V ,
c′T (u) = 2 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 0, 2 (mod 4), then
define cT as Subcase 2.3.1 (since c′T (u) 6= 1 in this coloring).

Subcase 2.3.3. c′(w) = 2. Define the coloring cT as in Subcase 2.3.1 (since
c′T (u) 6= 2 in this coloring).

Case 3. c(u) = 3. If c(w) = 1, then c′(u) = 0; if c(w) = 2, then c′(u) = 1
and if c(w) = 3, then c′(u) = 2. We consider these three subcases, according to
the values of c′(u).

Subcase 3.1. c′(u) = 0. Then c′(w) ∈ {1, 2, 3}. There are three subcases.
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Subcase 3.1.1. c′(w) = 1. Define the coloring cT on V as follows. If k ≡ 1
(mod 4), then cT assigns the color 3 to each vertex in V . Hence c′T (v) = 2 for
each v ∈ V , c′T (u) = 3 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k 6≡ 1
(mod 4), then cT assigns the color 2 to each vertex in V . Hence c′T (v) = 1 for
each v ∈ V . If k ≡ 2, 0 (mod 4), then c′T (x) = c′(x) for all x ∈ V (T ∗). If k ≡ 3
(mod 4), then c′T (u) = 2 and c′T (x) = c(x) for all x ∈ V (T ∗) − {u}.

Subcase 3.1.2. c′(w) = 2. Define the coloring cT on V as follows. If k 6≡ 3
(mod 4), then define cT as in Subcase 3.1.1 (since c′T (u) 6= 2 in this coloring). If
k ≡ 3 (mod 4), then cT assigns the color 1 to each vertex in V . Then c′T (v) = 0
for each v ∈ V , c′T (u) = 3 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}.

Subcase 3.1.3. c′(w) = 3. Define the coloring cT on V as follows. If k ≡ 1
(mod 4), then cT assigns the color 1 to each vertex in V1. Hence c′T (v) = 0 for
each v ∈ V , c′T (u) = 1 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k 6≡ 1
(mod 4), then define cT as in Subcase 3.1.1 (since c′T (u) 6= 3 in this coloring).

Subcase 3.2. c′(u) = 1. Then c′(w) ∈ {0, 2, 3}. There are three subcases.

Subcase 3.2.1. c′(w) = 0. Define the coloring cT on V as follows. If k ≡ 1
(mod 4), then cT assigns the color 2 to each vertex in V . Hence c′T (v) = 1 for
each v ∈ V , c′T (u) = 3 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 2
(mod 4), then cT assigns the color 1 to each vertex in V . Hence c′T (v) = 0 for
each v ∈ V , c′T (u) = 3 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 3
(mod 4), then cT assigns the color 2 to each vertex in V . Hence c′T (v) = 1 for
each v ∈ V , c′T (u) = 3 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 0
(mod 4), then cT assigns the color 1 to each vertex in V . Hence c′T (v) = 0 for
each v ∈ V and c′T (x) = c′(x) for all x ∈ V (T ∗).

Subcase 3.2.2. c′(w) = 2. Define the coloring cT on V as in Subcase 3.2.1
(since c′T (u) 6= 2 in this coloring).

Subcase 3.2.3. c′(w) = 3. Define the coloring cT on V as follows. If k ≡ 1
(mod 4), then cT assigns the color 1 to each vertex in V . Hence c′T (v) = 0 for each
v ∈ V , c′T (u) = 2 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 2 (mod 4),
then cT assigns the color 1 to v1 and assigns the color 3 each vertex in V −{v1}.
Hence c′T (v1) = 0, c′T (v) = 2 for each v ∈ V − {v1} and c′T (x) = c′(x) for all
x ∈ V (T ∗). If k ≡ 3 (mod 4), then cT assigns the color 2 to v1 and v2 and assigns
the color 3 to each vertex in V − {v1, v2}. Hence c′T (v1) = c′T (v2) = 1, c′T (v) = 2
for each v ∈ V − {v1, v2}, c′T (u) = 0 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}.
If k ≡ 0 (mod 4), then define the coloring cT on V as in Subcase 3.2.1 (since
c′T (u) 6= 3 in this coloring).

Subcase 3.3. c′(u) = 2. Then c′(w) ∈ {0, 1, 3}. There are three subcases.

Subcase 3.3.1. c′(w) = 0. Define the coloring cT on V as follows. If k ≡ 1
(mod 4), then cT assigns the color 1 to each vertex in V . Hence c′T (v) = 0 for
each v ∈ V , c′T (u) = 3 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k ≡ 2, 0
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(mod 4), then cT assigns the color 2 to each vertex in V . Hence c′T (v) = 1 for
each v ∈ V and c′T (x) = c′(x) for all x ∈ V (T ∗). If k ≡ 3 (mod 4), then cT assigns
the color 1 to each vertex in V . Hence c′T (v) = 0 for each v ∈ V , c′T (u) = 1 and
c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}.

Subcase 3.3.2. c′(w) = 1. Define the coloring cT on V as follows. If k 6≡ 3
(mod 4), then define cT as in Subcase 3.3.1 (since c′T (u) 6= 1 in this coloring). If
k ≡ 3 (mod 4), then cT assigns the color 3 to each vertex in V . Hence c′T (v) = 2
for each v ∈ V , c′T (u) = 3 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}.

Subcase 3.3.3. c′(w) = 3. Define the coloring cT on V as follows. If k ≡ 1
(mod 4), then cT assigns the color 2 to each vertex in V . Hence c′T (v) = 1 for
each v ∈ V , c′T (u) = 1 and c′T (x) = c′(x) for all x ∈ V (T ∗) − {u}. If k 6≡ 1
(mod 4), then define cT as in Subcase 3.3.1 (since c′T (u) 6= 3 in this coloring).

In each case, c is a nowhere-zero closed modular 4-coloring.

Theorem 4.2 cannot be improved as there is an infinite class of trees that do not
have a nowhere-zero closed modular 3-coloring. In order to show this, we first
present a lemma.

Lemma 4.3. Suppose that T is a tree that contains a vertex u of degree 3
such that u is adjacent to two end-vertices u1 and u2 and one non-end-vertex w.
If c is a nowhere-zero closed modular 3-coloring of T , then c(u1) = c(u2) and

c′(w) 6= c(u).

Proof. Assume, to the contrary, that there is a nowhere-zero closed modular
3-coloring c : V (G) → Z3 − {0} such that either c(u1) 6= c(u2) or c′(w) = c(u).
First, suppose that c(u1) 6= c(u2), where say c(u1) = 1 and c(u2) = 2. Then
c′(ui) = c(u) + i for i = 1, 2 and c′(u) = c(u) + c(w). Since c(w) ∈ {1, 2}, it
follows that either c′(u) = c′(u1) or c′(u) = c′(u2), which is impossible. Thus,
c(u1) = c(u2). Next, suppose that c′(w) = c(u). Since c(u1) = c(u2) ∈ {1, 2},
there are two cases.

Case 1. c(ui) = 1 for i = 1, 2. Hence c′(ui) = 1 + c(u) for i = 1, 2 and
c′(u) = 2 + c(u) + c(w) in Z3. If c(w) = 1, then c′(u) = c(u) = c′(w), which is
impossible; while if c(w) = 2, then c′(u) = c(u) + 1 = c′(ui) for i = 1, 2, which
again is impossible.

Case 2. c(ui) = 2 for i = 1, 2. Hence c′(ui) = 2 + c(u) for i = 1, 2 and
c′(u) = 1 + c(u) + c(w) in Z3. If c(w) = 1, then c′(u) = c(u) + 2 = c′(ui) for
i = 1, 2, which is impossible; while if c(w) = 2, then c′(u) = c(u) = c′(w), which
again is impossible.

Theorem 4.4. There is an infinite class of trees that do not have a nowhere-zero

closed modular 3-coloring.
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Proof. For each integer k ≥ 2 with k ≡ 2 (mod 3), we construct a tree Tk that
does not have a nowhere-zero closed modular 3-coloring. We begin with the
star K1,k+1 with the central vertex v. Then the graph Tk is obtained by (1)
subdividing exactly k edges of K1,k+1 exactly once and (2) adding two pendant
edges at each end-vertex of K1,k+1. Suppose that N(v) = {u,w1, w2, . . . , wk}
where deg u = 3, degwi = 2 for 1 ≤ i ≤ k, u is adjacent to two end-vertices
u1 and u2 and k non-end-vertices w1, w2, . . . , w2, each vertex wi is adjacent to v
and xi and each vertex xi is adjacent to exactly two end-vertices for 1 ≤ i ≤ k.
Assume, to the contrary, that for some k ≥ 2 with k ≡ 2 (mod 3) the tree Tk

has a nowhere-zero closed modular 3-coloring c : V (Tk) → Z3 − {0}. For each i
with 1 ≤ i ≤ k, since deg xi = 3 and xi is adjacent to two end-vertices and one
non-end-vertex wi, it follows by Lemma 4.3 that

(4) c′(wi) 6= c(xi) for 1 ≤ i ≤ k.

Furthermore, since deg u = 3 and u is adjacent to two end-vertices u1 and u2 and
one non-end-vertex v, it follows by Lemma 4.3 that c(u1) = c(u2) ∈ {1, 2}. We
consider two cases.

Case 1. c(u1) = c(u2) = 1. Since c(u) ∈ {1, 2}, there are two possibilities. If
c(u) = 1, then c′(ui) = 2 for i = 1, 2. This forces c(v) = 1 and so c′(u) = 1. First,
suppose that c(wi) = 2 for some i with 1 ≤ i ≤ k, then c′(wi) = c(v) + c(wi) +
c(xi) = 1 + 2 + c(xi) = c(xi) in Z3, which contradicts (4). Thus c(wi) = 1 for all
i with 1 ≤ i ≤ k. Since k ≡ 2 (mod 3), it follows that c′(v) = 1 = c′(u), which is
a contradiction. If c(u) = 2, then c′(ui) = 0 for i = 1, 2. This forces c(v) = 1 and
so c′(u) = 2. By (4), an argument similar to the one in the case when c(u) = 1
shows that c(wi) = 1 for all i with 1 ≤ i ≤ k. Since k ≡ 2 (mod 3), it follows that
c′(v) = 2 = c′(u), which is a contradiction.

Case 2. c(u1) = c(u2) = 2. Since c(u) ∈ {1, 2}, there are two possibilities. If
c(u) = 1, then c′(ui) = 0 for i = 1, 2. This forces c(v) = 2 and so c′(u) = 1. First,
suppose that c(wi) = 1 for some i with 1 ≤ i ≤ k, then c′(wi) = c(v) + c(wi) +
c(xi) = 1 + 2 + c(xi) = c(xi) in Z3, which contradicts (4). Thus c(wi) = 2 for all
i with 1 ≤ i ≤ k. Since k ≡ 2 (mod 3), it follows that c′(v) = 1 = c′(u), which
is a contradiction. If c(u) = 2, then c′(ui) = 1 for i = 1, 2. This forces c(v) = 2
and so c′(u) = 2. By (4), an argument similar to the one used in the case when
(c(u) = 1 shows that c(wi) = 2 for all i with 1 ≤ i ≤ k. Since k ≡ 2 (mod 3), it
follows that c′(v) = 2 = c′(u), which is a contradiction.

We know of no trees T for which mc(T ) = 4. Therefore, we close this section
with the following conjecture.

Conjecture. For every tree T of order at least 3, mc(T ) ≤ 3.
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