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e-mail: mirko.hornak@upjs.sk
stanislav.jendrol@upjs.sk

and

Ingo Schiermeyer

Institut für Diskrete Mathematik und Algebra

Technische Universität Bergakademie Freiberg

09596 Freiberg, Germany

e-mail: ingo.schiermeyer@tu-freiberg.de

Abstract

The weight of an edge xy of a graph is defined to be the sum of degrees
of the vertices x and y. The weight of a graph G is the minimum of weights
of edges of G. More than twenty years ago Erdős was interested in finding
the maximum weight of a graph with n vertices and m edges. This paper
presents a complete solution of a modification of the above problem in which
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Let G be a finite simple nonoriented graph. The weight wG(e) of an edge e =
xy ∈ E(G) is defined to be degG(x) + degG(y). The concept of the weight of an
edge was introduced by Kotzig [10] who proved that every planar 3-connected
graph contains an edge of the weight not exceeding 13.

The mentioned result was further developed in various directions. Grün-
baum [4], Jucovič [7], Borodin [1], Fabrici and Jendrol’ [3] studied inequalities
for the number of edges having weight at most 13 in planar 3-connected graphs.
Ivančo [5] found an analogue of Kotzig’s result for graphs with minimum degree
at least 3 and embedded on orientable 2-manifolds. Another analogue of Kotzig’s
result, this time for triangulations of orientable 2-manifolds, can be found in Zaks
[11]. The case of graphs embedded on nonorientable 2-manifolds was investigated
by Jendrol’ et al. [9].

In [3] it is proved that each 3-connected planar graph of maximum degree
at least k contains a path on k vertices such that each of its vertices has degree
at most 5k; moreover, the bound 5k is the best possible. Enomoto and Ota [2]
proved that each planar 3-connected graph of order at least k contains a connected
subgraph on k vertices such that the degree sum of the vertices of this subgraph
is at most 8k − 1.

Let p, q ∈ Z. Throughout the paper we shall use the notation

[p, q] :={z ∈ Z : p ≤ z ≤ q},
[p,∞) :={z ∈ Z : p ≤ z}

(for integer intervals).
Let the weight of a graph G, in symbols w(G), be the minimum of weights

of edges of G. At the Fourth Czechoslovak Symposium on Combinatorics held in
Prachatice in 1990, Erdős posed the question: What is the maximum weight of
an (n,m)-graph (having n vertices and m edges)? If P is a graph property, i.e., a
set of (isomorphism classes of) finite simple nonoriented graphs, n ∈ [2,∞) and
m ∈ [1,

(

n
2

)

] is such that

P(n,m) := {G ∈ P : |V (G)| = n, |E(G)| = m} 6= ∅,

then the above problem can be naturally generalised:

Problem 1. Determine w(P, n,m) := max{w(G) : G ∈ P(n,m)}.

Thus, Erdős was interested in finding w(I, n,m), where I is the set of all finite
simple nonoriented graphs, n ∈ [2,∞) and m ∈ [1,

(

n
2

)

]. In [6] Ivančo and Jendrol’
obtained some partial results. They observed that the weight of any edge e of a
graph G ∈ I(n,m) cannot be larger than m+ 1.

Proposition 2. If n ∈ [2,∞) and m ∈ [1, n − 1], then w(I, n,m) = m + 1 and

the bound is attained by the graph K1,m ∪ (n−m− 1)K1.
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The case of very dense graphs is solved by the following theorem of [6].

Theorem 3. If n ∈ [2,∞) and m =
(

n
2

)

− r with r ∈ [0, n− 2], then

w(I, n,m) =























2n− 2, if r = 0,
2n− 3, if r = 1,
2n− 4, if r ∈ [2, ⌊n2 ⌋] or r = 3,
2n− 5, if r ∈ [⌊n2 ⌋+ 1, ⌈n+2

2 ⌉] or r = 6,
2n− 6, otherwise.

Graphs that attain the extremal value can be obtained by takingKn and removing
from it r independent edges or edges of a triangle (if r = 3) in the cases when
w(I, n,m) ∈ [2n − 2, 2n − 4]. In the case of w(I, n,m) = 2n − 5 take Kn and
remove from it either r−3 independent edges and edges of an independent triangle
or edges of a K4 (if r = 6). Finally, in the case of w(I, n,m) = 2n− 6, edges of
a cycle of length r are deleted from Kn.

In [6] there was also found a lower bound for w(I, n,m). The result reads as
follows:

Theorem 4. Let n ∈ [2,∞), m ∈ [1,
(

n
2

)

], a =
⌈

1
2(1 +

√
1 + 8m)

⌉

, b = 1
2(a

2 −
a − 2m), h =

⌈

1
2(2n− 1−

√

(2n− 1)2 − 8m)
⌉

and let p, k be integers such that

hk+ p = m, h+ k ≤ n and h(h− 3) < 2p ≤ h(h− 1). Let f(n,m) = h+ k+ ⌊2p
h
⌋

and let g(n,m) be defined by

g(n,m) =























2a− 2, if b = 0,
2a− 3, if b = 1,
2a− 4, if 2 ≤ b ≤ ⌊a2⌋ or b = 3,
2a− 5, if either ⌊a2⌋+ 1 ≤ b ≤ ⌈a+2

2 ⌉ or a = 8 and b = 6,
2a− 6, otherwise.

Then w(I, n,m) ≥ max{f(n,m), g(n,m)}.

The authors of [6] conjectured that the lower bound of Theorem 4 is in fact equal
to w(I, n,m). The conjecture was proved by Jendrol’ and Schiermeyer in [8].

Theorem 5. If n ∈ [2,∞), m ∈ [1,
(

n
2

)

] and f(n,m), g(n,m) are functions

defined in Theorem 4, then w(I, n,m) = max{f(n,m), g(n,m)}.

In this paper we are dealing with the graph property

B := {G ∈ I : G is bipartite}

and we solve completely the corresponding “portion” of Problem 1. Namely,
we prove that there is w∗(n,m) ∈ [2, n] such that w∗(n,m) ≤ w(B, n,m) ≤
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w∗(n,m) + 1. Moreover, w(B, n,m) ≤ n and w(B, n,m) = w∗(n,m) + 1 implies
w(B, n,m) = n− 1.

It is well known that B(n,m) 6= ∅ if and only if n ∈ [2,∞) and m ∈
[1, ⌊n2 ⌋⌈n2 ⌉]. Henceforth we shall suppose implicitly that n and m are fixed and

B(n,m) 6= ∅. Then 1 ≤ m ≤ n2

4 and m = n2−4k
4 for some k ∈ [0, n

2−4
4 ] provided

that n ≡ 0 (mod 2), while n ≡ 1 (mod 2) means that m = n2−4k−1
4 for some

k ∈ [0, n
2−5
4 ].

Let G be a bipartite graph with a bipartition {X,Y }. An edge xy ∈ E(G),
x ∈ X, y ∈ Y , is universal in G provided that degG(x) = |Y | and degG(y) = |X|
(or, equivalently, if NG(x) = Y and NG(y) = X).

Lemma 6. If G ∈ B(n,m) and e ∈ E(G), then wG(e) ∈ [2, n]. Moreover,

wG(e) = n if and only if e is universal in G.

Proof. Suppose that {X,Y } is a bipartition of G and e = xy with x ∈ X
and y ∈ Y . Then 1 ≤ degG(x) ≤ |Y |, 1 ≤ degG(y) ≤ |X| and 2 ≤ wG(e) =
degG(x) + degG(y) ≤ |Y | + |X| = n. Moreover, wG(e) = n is equivalent to
degG(x) = |Y | and degG(y) = |X|.

Corollary 7. w(B, n,m) ∈ [2, n].

Lemma 8. Suppose that n ∈ [2,∞) and l ∈ [1, ⌊n2

4 ⌋]. Then
√
n2 − 4l is an

integer if and only if there is k ∈ [1, ⌊n2 ⌋] such that l = k(n− k).

Proof. If
√
n2 − 4l is an integer, then

√
n2 − 4l = n − j for some j ∈ [1, n],

4l = j(2n− j), hence j is even, j = 2k with k ∈ [1, ⌊n2 ⌋] and l = k(n− k).

If l = k(n− k), where k ∈ [1, ⌊n2 ⌋], then n− 2k ≥ 0, n2 − 4l = (n− 2k)2 and√
n2 − 4l = n− 2k is an integer.

Proposition 9. w(B, n,m) = n if and only if
√
n2 − 4m is an integer.

Proof. Suppose that w(B, n,m) = n = w(G) for some G ∈ B(n,m) with a
bipartition {X,Y }. By Lemma 6 then each edge of G is universal in G and E(G)
consists of all edges joining X to Y . Therefore, G ∼= Kk,n−k, where k = |X|,
m = |E(G)| = k(n− k) and k2 − nk+m = 0. Thus k, as a root of the quadratic
equation x2 − nx+m = 0, is either 1

2(n−
√
n2 − 4m) or 1

2(n+
√
n2 − 4m), from

which it follows that
√
n2 − 4m is an integer.

If
√
n2 − 4m is an integer, then, by Lemma 8, m = k(n − k) with k ∈

[1, ⌊n2 ⌋], Kk,n−k ∈ B(n,m) and, since w(Kk,n−k) = n, using Corollary 7 we obtain
w(B, n,m) = n.

Proposition 10. The following two statements are equivalent:

(1) w(B, n,m) = n− 1.
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(2) The number
√
n2 − 4m is not an integer, while (exactly) one of the numbers

√

(n− 1)2 − 4m and
√
n2 − 4m− 4 is.

Proof. (1) ⇒ (2): The fact that
√
n2 − 4m is not an integer follows from Propo-

sition 9.

To prove the rest consider a pair (n,m) with w(B, n,m) = n − 1 = w(G),
where G ∈ B(n,m) has a bipartition {X,Y }. Without loss of generality we may
suppose that X does not contain isolated vertices of G. Let d := min{degG(x) :
x ∈ X} and pick x ∈ X so that degG(x) = d. Clearly, d < |Y |, because d = |Y |
means that G is a complete bipartite graph with w(G) = n. On the other hand,
d > |Y |−2, since d = |Y |−i with i ≥ 2 yields wG(xy) ≤ |Y |−i+|X| = n−i < n−1
for any edge xy ∈ E(G). Thus, d = |Y | − 1.

Now let y be the unique vertex of Y with xy /∈ E(G). If y is isolated in G,
then G−y ∈ B(n−1,m) and w(G−y) = w(G) = n−1 so that, by Proposition 9,
√

(n− 1)2 − 4m is an integer.

If y is not isolated in G, then degG(y) = |X|−1, since from degG(y) = |X|−j
with j ≥ 2 we obtain wG(x

′y) ≤ |Y | + |X| − j = n − j < n − 1 for any edge
x′y ∈ E(G). Further, if x1y1 6= xy, x1 ∈ X and y1 ∈ Y , then x1y1 ∈ E(G).
Indeed, if x1y1 /∈ E(G), then y1 6= y and wG(xy1) ≤ |Y |− 1+ |X|− 1 = n− 2. So
with k := |X| we have G = Kk,n−k − e, m = k(n− k)− 1, k2 − nk +m+ 1 = 0
and

√
n2 − 4m− 4 is an integer.

(2) ⇒ (1): As a consequence of Proposition 9 and Corollary 7 we obtain
w(B, n,m) ≤ n− 1.

If
√

(n− 1)2 − 4m is an integer, then, by Lemma 8, m = k(n−1−k) for some
k ∈ [1, ⌊n−1

2 ⌋], hence Kk,n−1−k ∪K1 ∈ B(n,m) and w(B, n,m) ≥ w(Kk,n−1−k ∪
K1) = n− 1.

If
√
n2 − 4m− 4 is an integer, then, again by Lemma 8, m + 1 = k(n − k),

where k ∈ [1, ⌊n2 ⌋], Kk,n−k−e ∈ B(n,m) and w(B, n,m) ≥ w(Kk,n−k−e) = n−1.

If G ∈ B(n,m), there are i1 ∈ [1, ⌊n2 ⌋] and i2 ∈ [i1, n − i1] such that G ⊆
Ki1,i2 ∪ (n− i1− i2)K1. In general, the pair (i1, i2) is not necessarily unique; it is
said to be standard for G if it is lexicographically minimal from among all such
pairs. Clearly, if (i1, i2) is standard for G, then no vertex of G belonging to Ki1,i2

is isolated.

Let us define some numbers that will be important in our analysis:

imin :=

⌈

n−
√
n2 − 4m

2

⌉

, imid := ⌈√m ⌉, imax :=

⌊

n+
√
n2 − 4m

2

⌋

;
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it is easily seen that imin ≤ ⌊n2 ⌋ and imin ≤ imax. Further, for i ∈ [1, n− 1] let

ai := i, bi := ⌈m/ai⌉, si := aibi −m, pi := min{si, 2}, wi := ai + bi − pi,

a∗ := imin, b
∗ := ⌈m/a∗⌉, s∗ := a∗b∗ −m, p∗ := min{s∗, 2}, w∗ := a∗ + b∗ − p∗.

Clearly, w∗ = w∗(n,m) is an integer depending on n and m.

Proposition 11. If G ∈ B(n,m) and (i1, i2) is the standard pair for G, then

imin ≤ i1 ≤ i2 ≤ imax.

Proof. For both l = 1, 2, the graph G is a subgraph of the graph Kil,n−il .
Therefore, m = |E(G)| ≤ il(n − il), i

2
l − nil +m ≤ 0, and so il ∈ [⌈x1⌉, ⌊x2⌋] =

[imin, imax], where x1,2 :=
n∓

√
n2−4m
2 are solutions of the quadratic equation x2 −

nx+m = 0.

Proposition 12. For every i ∈ [1, n− 1] the following hold:

1. i+ bi ≤ n if and only if i ∈ [imin, imax].

2. If i+ bi ≤ n and i ≤ bi + 1, then w(B, n,m) ≥ wi.

Proof. 1. If i+ bi ≤ n, then i+ m
i
≤ n, i2 − ni+m ≤ 0 and (as in the proof of

Proposition 11) i ∈ [⌈x1⌉, ⌊x2⌋]. To show that i ∈ [⌈x1⌉, ⌊x2⌋] implies i + bi ≤ n
we prove an equivalent assertion i + bi > n ⇒ (i < ⌈x1⌉ ∨ i > ⌊x2⌋). For that
purpose notice that i+ m

i
+ 1 > i+ bi ≥ n+ 1, i2 − ni+m > 0, and then either

i < ⌈x1⌉ or i > ⌊x2⌋, as required.
2. We have 0 ≤ si = i⌈m

i
⌉ − m ≤ im+i−1

i
− m = i − 1. If i − 1 ≤ bi,

then the graph Ki,bi ∪ (n − i − bi)K1 has a matching of size si, and so Gi :=
(Ki,bi −siK2)∪ (n− i−bi)K1 is a bipartite graph of order n and size ibi−si = m.
If pi = 0, then si = 0 and all edges of Gi are of weight i+ bi = wi. If pi = 1, then
si = 1 and the weight of Gi is attained on any edge sharing a vertex with the
unique non-edge of Gi so that w(Gi) = i + bi − 1 = wi. Finally, pi = 2 implies
si ≥ 2 and the weight of Gi is attained on any edge joining a vertex of a non-edge
of Gi to a vertex of another non-edge of Gi, which yields w(Gi) = i+ bi−2 = wi.
Thus w(B, n,m) ≥ w(Gi) = wi.

Lemma 13. The following statements are equivalent:

(1) a∗ = k.

(2) (k − 1)(n− k + 1) + 1 ≤ m ≤ k(n− k).

(3)
⌈

m
k

⌉

+ k ≤ n ≤
⌊

m+k(k−2)
k−1

⌋

.

Proof. The equivalence of (1) and (2) follows from the defining inequalities for

a∗ =
⌈

n−
√
n2−4m
2

⌉

, i.e., n−
√
n2−4m
2 ≤ a∗ < n−

√
n2−4m
2 + 1, and from the fact that

m is an integer.
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The equivalence of (2) and (3) is an obvious consequence of the fact that n is an
integer. (For k = 1 the righthand side of (3) can be formally set to ∞ indicating
that n is not bounded from above.)

Corollary 14. If a∗ = k, then m ≥ k2.

Proof. The assumption a∗ = k by Lemma 13 means that m
k
+ k ≤ ⌈m

k
⌉ + k ≤

n ≤
⌊

m+k(k−2)
k−1

⌋

≤ m+k(k−2)
k−1 . Standard manipulations applied to the inequality

m
k
+ k ≤ m+k(k−2)

k−1 yield the desired result.

Theorem 15. w(B, n,m) = max{wi : i ∈ [imin, imid]}.

Proof. Let us first show that imid (in the role of i) satisfies the assumptions of

Proposition 12.2. We have imid ≤
⌈

√

n2/4
⌉

≤ n+1
2 , and so imid = n+k

2 with

k ∈ [2 − n, 1] and k ≡ n (mod 2). From
(

n+k−2
2

)2
< m ≤

(

n+k
2

)2
it follows

that
⌈

m
imid

⌉

≤
⌈

(n+k
2 )2/(n+k

2 )
⌉

= n+k
2 and imid +

⌈

m
imid

⌉

≤ n + k. If k ≤ 0, then

imid +
⌈

m
imid

⌉

≤ n+ k ≤ n. On the other hand, the assumption imid = n+1
2 yields

n ≡ 1 (mod 2),m ≤ n2−1
4 ,

⌈

m
imid

⌉

≤
⌈

(n
2−1
4 )/(n+1

2 )
⌉

= n−1
2 and imid+

⌈

m
imid

⌉

≤ n.

Thus, by Proposition 12.1, imid ∈ [imin, imax], and i+bi ≤ n for any i ∈ [imin, imid].

Moreover, m
imid

>
(

n+k−2
2

)2
/
(

n+k
2

)

> n+k−4
2 , and hence

⌈

m
imid

⌉

≥ n+k−2
2 =

imid − 1. Let us prove by descending induction that
⌈

m
i

⌉

≥ i − 1 for every
i ∈ [imin, imid]. The first step has been performed above. So, suppose that

i ∈ [imin + 1, imid] and
⌈

m
i

⌉

≥ i − 1. If the inequality
⌈

m
i−1

⌉

≥ i − 2 is not

true, then m
i−1 ≤ i − 3, m ≤ (i − 1)(i − 3) < (i − 2)2, i >

√
m + 2 and i ≥

⌈√m ⌉+ 2 > imid, a contradiction. By Proposition 12.1 we know that i+ bi ≤ n
for any i ∈ [imin, imid]. Therefore, with help of Proposition 12.2, we see that
w(B, n,m) ≥ M := max{wi : i ∈ [imin, imid]}.

To prove the inequality w(B, n,m) ≤ M consider an arbitrary graph G ∈
B(n,m). Let (i1, i2) be the standard pair for G and let U1, U2 be partite sets
of the graph Ki1,i2 with E(Ki1,i2) ⊇ E(G) satisfying |Ul| = il, l = 1, 2. Then

m = |E(G)| ≤ i1i2, i2 ≥
⌈

m
i1

⌉

, i1+
⌈

m
i1

⌉

≤ i1+i2 ≤ n, and so, by Proposition 12.1,

i1 ≥ imin.

If i1 ≤ imid, we can show that w(G) ≤ wi1 . Suppose first that there is a
vertex u2 ∈ U2 such that degG(u2) ∈ [1, i1 − 1], say degG(u2) = i1 − t for some
t ∈ [1, i1 − 1]. If w(G) ≥ wi1 + 1 = i1 + bi1 − pi1 + 1, it follows that degG(u1) ≥
bi1+t+1−pi1 for all vertices u1 ∈ NG(u2) ⊆ U1. Further, degG(u1) ≥ bi1+1−pi1
for all vertices u1 ∈ U1 −NG(u2). Since min{x(i1 − x) : x ∈ 〈1, i1 − 1〉} = i1 − 1
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and i1(2− pi1) > 1− pi1 (which is a consequence of pi1 ∈ [0, 2]), we have

m = |E(G)| ≥ t(bi1 + 1− pi1) + (i1 − t)(bi1 + t+ 1− pi1)

= i1(bi1 + 1− pi1) + t(i1 − t) ≥ i1(bi1 + 1− pi1) + i1 − 1

= i1bi1 − 1 + i1(2− pi1) > i1bi1 − pi1 ≥ i1bi1 − si1 = m,

a contradiction.
Now we may assume that degG(u2) = i1 for every u2 ∈ U2. In such a case

m = i1i2, i2 =
m
i1

= bi1 , pi1 = 0, G = Ki1,i2 ∪ (n− i1− i2)K1 and w(G) = i1+ i2 =
i1 + bi1 − pi1 = wi1 .

In the remaining part of the proof we suppose that i1 ≥ imid+1 ≥ √
m+1. We

have ⌈√m ⌉(⌈√m ⌉− 2) < (
√
m+1)(

√
m− 1) < m, hence m/⌈√m ⌉ > ⌈√m ⌉− 2

and ⌈m/⌈√m ⌉⌉ ≥ ⌈√m ⌉ − 1; on the other hand, m/⌈√m ⌉ ≤ m/
√
m =

√
m,

which implies ⌈m/⌈√m ⌉⌉ ≤ ⌈√m ⌉. So,

(1) ⌈√m ⌉ − 1 ≤ bimid
=

⌈

m

⌈√m ⌉

⌉

≤ ⌈√m ⌉.

Choose ul ∈ Ul so as to satisfy degG(ul) = min{degG(u) : u ∈ Ul}, choose
v3−l ∈ NG(ul) ⊆ U3−l and put dl := degG(ul). Let us prove the inequality

(2) dl ≤ ⌊√m⌋ − 1, l = 1, 2.

First, a weaker (in general) inequality dl <
√
m is evident, since with dl ≥

√
m

we would obtain m ≥ ildl ≥ (
√
m+ 1)

√
m > m, a contradiction.

To show (2), admit that dl ≥ ⌊√m⌋ for some l ∈ [1, 2]. From the above
weaker inequality we see that then

√
m /∈ Z and

m =
∑

u∈Ul

degG(u) ≥ ildl ≥ (⌈√m ⌉+ 1)(⌈√m ⌉ − 1)

= ⌈√m ⌉2 − 1 ≥ m+ 1− 1 = m,

hence

(3) m = (⌈√m ⌉+ 1)(⌈√m ⌉ − 1),

every vertex in Ul is of degree ⌈√m ⌉ − 1 and

(4) w(G) = ⌈√m ⌉ − 1 + d3−l ≤ ⌈√m ⌉ − 1 + ⌊√m⌋ = 2⌈√m ⌉ − 2.

Because of (1), there are two cases to be considered.
If bimid

= ⌈√m ⌉, then, by (4), M ≥ wimid
= 2⌈√m ⌉−p⌈√m ⌉ ≥ 2⌈√m ⌉−2 ≥

w(G), which contradicts our assumption.
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If, however, ⌈√m ⌉−1 = bimid
= ⌈m/⌈√m ⌉⌉, then m/⌈√m ⌉ ≤ ⌈√m ⌉−1, so that

(3) yields ⌈√m ⌉−1 = m/(⌈√m ⌉+1) < m/⌈√m ⌉ ≤ ⌈√m ⌉−1, a contradiction.

Let us prove by the way of contradiction that w(G) ≤ M . So, suppose that
a∗ = k and

(5) e ∈ E(G) ⇒ wG(e) ≥ M + 1 ≥ max{w∗ + 1, wimid
+ 1}.

If k = 1, then b∗ = m, w∗ = m + 1 and, by (2), degG(v3−l) ≥ w∗ + 1 − dl ≥
m + 3 − √

m, l = 1, 2. We have d1 = d2 = 1, since dl ≥ 2 for some l ∈ [1, 2]
yields m =

∑

u∈U3−l
degG(u) ≥ ∑

u∈NG(ul)
degG(u) ≥ 2(m + 3 − √

m) > m, a

contradiction. Thus, wG(u1v2) ≤ 1 +m = w∗ in contradiction to (5).

If k = 2, then b∗ = ⌈m2 ⌉, s∗ = 2⌈m2 ⌉−m ≤ 1, p∗ = s∗ and w∗ = 2+⌈m2 ⌉−p∗ ≥
m+2
2 . Further, Corollary 14 yields m ≥ 4, hence i2 ≥ i1 ≥ ⌈√m ⌉ + 1 ≥ 3. If

l ∈ [1, 2], then, by (5) and (2), wG(ulv3−l) ≥ w∗ + 1 ≥ m+4
2 and degG(u) ≥

m+4
2 − dl ≥ m+6

2 −√
m. Now dl ≤ 2, for otherwise

m ≥
∑

u∈NG(ul)
degG(u) ≥ 3

(

m+ 6

2
−√

m

)

> m,

a contradiction. Therefore, degG(v3−l) ≥ m+4
2 − 2 = m

2 . In the case dl =
2 we obtain (having in mind that i3−l ≥ 3 > dl) m =

∑

u∈U3−l
degG(u) >

∑

u∈NG(ul)
degG(u) ≥ 2 · m

2 = m, a contradiction. If d1 = d2 = 1, then

degG(v3−l) ≥ m+4
2 − dl =

m+2
2 , l = 1, 2, and m ≥ degG(v1) + degG(v2) − 1 ≥

2 · m+2
2 − 1 > m, a contradiction.

Henceforth we may suppose that k ≥ 3, and, consequently, by Corollary 14,
m ≥ k2 ≥ 9.

If k = 3, then b∗ =
⌈

m
3

⌉

, s∗ = 3⌈m3 ⌉ − m ≤ 2, p∗ = s∗ and w∗ = m + 3 −
2
⌈

m
3

⌉

≥ m+5
3 . If l ∈ [1, 2] and u ∈ NG(ul), then, by (5), wG(ulu) ≥ w∗+1 ≥ m+8

3
and degG(u) ≥ m+8

3 −dl. Since v3−l ∈ NG(ul), l = 1, 2, the assumption d1+d2 ≤ 5
leads to

n ≥
∑2

l=1
il ≥

∑2

l=1
degG(v3−l) ≥

∑2

l=1

(

m+ 8

3
− dl

)

=
2m+ 16

3
− (d1 + d2) ≥

2m+ 1

3
>

⌊

m+ 3

2

⌋

,

which contradicts Lemma 13. The above assumption is fulfilled if 9 ≤ m ≤ 15,
because then, by (2), dl ≤ 2, l = 1, 2.

So we may assume that d1 + d2 ≥ 6 and m ≥ 16. Pick l ∈ [1, 2]. Since

m ≥
∑

u∈NG(ul)
degG(u) ≥ dl

(

m+ 8

3
− dl

)

,
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the inequality dl(
m+8
3 − dl) > m equivalent to 3d2l − (m+ 8)dl + 3m < 0 suffices

for obtaining a contradiction. The discriminant of the quadratic equation

3x2 − (m+ 8)x+ 3m = 0

is D1(m) = m2 − 20m + 64 ≥ 0 and
√

D1(m) ≥ m − 16. Thus, a contradiction
will appear as soon as there is l ∈ [1, 2] with

dl ∈
(

m+ 8−
√

D1(m)

6
,
m+ 8 +

√

D1(m)

6

)

⊇
(

4,
m− 4

3

)

.

Therefore, for the rest of our analysis of the case k = 3 we may suppose that either
dl ≤ 4 or dl ≥ m−4

3 for both l = 1, 2. However, the latter possibility does not apply
at all, for otherwise, by (2), we would obtain m−4

3 ≤ dl ≤ ⌊√m⌋ − 1 ≤ √
m − 1,

which yields m ≤ 10, a contradiction; thus, 3 ≤ max{d1, d2} ≤ 4.
If there is l ∈ [1, 2] with dl = 4, then 4 = dl ≤

√
m − 1, m ≥ 25, degG(u) ≥

m−4
3 for each u ∈ NG(ul) and m ≥ 4 · m−4

3 ≥ m+ 3, a contradiction.
Finally, if d1 = d2 = 3, then

∑

u∈NG(u1)
degG(u) ≥ 3

(

m+ 8

3
− 3

)

= m− 1,

hence i2 = 3 (as a consequence of d2 = 3). Thus, in U2 there are two vertices of
degree m−1

3 and one vertex of degree m+2
3 , so that 3 = d1 = m−1

3 and m = 10, a
contradiction.

From now on suppose k ≥ 4, so that n ≥ 2k ≥ 8, and, by Lemma 13,
m ≥ 3n− 8 ≥ 16. Putting

jl := ⌊√m⌋ − dl

we see from (2) that jl ∈ [1, ⌊√m⌋ − 1], l = 1, 2.
The following assertion will be important for the rest of the proof of our

theorem.

Claim. If l ∈ [1, 2], then
(i) degG(u) ≥ ⌈√m ⌉ for every u ∈ NG(ul),

(ii) NG(ul) $ U3−l,

(iii) jl + j3−l ≥
√
m
2 .

Proof. Consider the distance

α := ⌈√m ⌉ − √
m ∈ 〈0, 1)

between
√
m and ⌈√m ⌉. First notice that Claim (ii) is a direct consequence of

Claim (i); indeed, if Claim (i) is true, then the assumption NG(ul) = U3−l would
mean

m =
∑

u∈U3−l

degG(u) ≥ i3−l⌈
√
m ⌉ ≥ (⌈√m ⌉+ 1)⌈√m ⌉ > m,
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a contradiction.
Let u ∈ NG(ul). Using (5) we have wG(ulu) ≥ wimid

+ 1 and

(6) degG(u) ≥ ⌈√m ⌉+
⌈

m

⌈√m ⌉

⌉

− p⌈√m ⌉ + 1− ⌊√m⌋+ jl.

Suppose first that
√
m /∈ Z (which implies α > 0 and ⌈√m ⌉ = ⌊√m⌋ + 1). By

(1) there are two cases to be considered.
If ⌈m/⌈√m ⌉⌉ = ⌈√m ⌉, then (6) is transformed into

degG(u) ≥ (⌈√m ⌉ − ⌊√m⌋+ 1− p⌈√m ⌉) + ⌈√m ⌉+ jl ≥ ⌈√m ⌉+ jl,

so that
∑

u∈NG(ul)
degG(u) ≥ (⌊√m⌋ − jl)(⌈

√
m ⌉+ jl) = (⌊√m⌋ − jl)(⌊

√
m⌋+ jl + 1)

= ⌊√m⌋2 − j2l + ⌊√m⌋ − jl(7)

and NG(ul) $ U3−l. Therefore, (7) yields

⌊√m⌋ − j3−l = d3−l ≤
∑

u∈U3−l−NG(ul)
degG(u)

|U3−l −NG(ul)|
=

m−∑u∈NG(ul)
degG(u)

i3−l − (⌊√m⌋ − jl)

≤ m− ⌊√m⌋2 + j2l + jl − ⌊√m⌋
jl + (i3−l − ⌊√m⌋) .(8)

Since i3−l−⌊√m⌋ ≥ ⌈√m ⌉+1−⌊√m⌋ = 2 and
j2
l
+jl

jl+2 ≤ jl− 1
3 (as a consequence

of jl ≥ 1), from (8) it follows

⌊√m⌋ − j3−l ≤
m− ⌊√m⌋2 − ⌊√m⌋

3
+

j2l + jl
jl + 2

≤ m− ⌊√m⌋2 − ⌊√m⌋ − 1

3
+ jl,

and

jl + j3−l ≥
4⌊√m⌋+ ⌊√m⌋2 −m+ 1

3

=
4(
√
m+ α− 1) + (

√
m+ α− 1)2 −m+ 1

3

=

√
m(2 + 2α) + α2 + 2α− 2

3
>

2
√
m− 2

3
≥

√
m

2

(where the last inequality comes from m ≥ 16).
If ⌈m/⌈√m ⌉⌉ = ⌈√m ⌉ − 1, then m/(

√
m + α) = m/⌈√m ⌉ ≤ ⌈√m ⌉ − 1 =√

m + α − 1 and m ≤ m +
√
m(2α − 1) + α(α − 1), so that necessarily α > 1

2 .
From (6) we have

degG(u) ≥ (⌈√m ⌉ − ⌊√m⌋+ 1− p⌈√m ⌉) + ⌈√m ⌉ − 1 + jl

≥ ⌈√m ⌉ − 1 + jl = ⌊√m⌋+ jl,
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so that
∑

u∈NG(ul)
degG(u) ≥ (⌊√m⌋ − jl)(⌊

√
m⌋+ jl) = ⌊√m⌋2 − j2l

and NG(ul) $ U3−l. Since
j2
l

jl+2 ≤ jl − 2
3 , similarly as above we obtain

⌊√m⌋ − j3−l = d3−l ≤
m− ⌊√m⌋2 + j2l

jl + 2
≤ m− ⌊√m⌋2 − 2

3
+ jl,

jl+j3−l ≥
3⌊√m⌋+ ⌊√m⌋2 −m+ 2

3
=

√
m(2α+ 1) + α(α+ 1)

3
>

2
√
m

3
>

√
m

2
.

Finally, suppose that
√
m ∈ Z, which yields wimid

= 2
√
m. Then (6) reads

as degG(u) ≥ ⌈√m ⌉+ jl + 1 ≥ ⌈√m ⌉+ 2, hence

∑

u∈NG(ul)
degG(u) ≥ (

√
m− jl)(

√
m+ jl + 1) = m+

√
m− j2l − jl

and NG(ul) $ U3−l. As |U3−l −NG(ul)| = jl + (i3−l −
√
m) ≥ jl + 1, proceeding

analogously as above we obtain
√
m − j3−l = d3−l ≤ j2

l
+jl−

√
m

jl+1 ≤ jl −
√
m
2 and

jl + j3−l ≥
√
m
2 .

Since v3−l ∈ NG(ul), l = 1, 2, using (5) and Claim (iii) we get

n ≥
∑2

l=1
il ≥

∑2

l=1
|NG(v3−l)| ≥

∑2

l=1
(w∗ + 1− dl)(9)

=
∑2

l=1
(a∗ + b∗ − p∗ + 1− ⌊√m⌋+ jl)

= 2
(

k +
⌈m

k

⌉

− p∗ + 1− ⌊√m⌋
)

+ (j1 + j2)

≥ 2
(

k +
m

k
− 1−√

m
)

+

√
m

2
= 2

(

k +
m

k
− 1− 3

√
m

4

)

.

From (9) it is clear that to obtain a contradiction it suffices to show that k +
m
k
− 1− 3

√
m

4 > n
2 . The function f1(x) = k+ x

k
− 1− 3

√
x

4 is nondecreasing in the

interval 〈9k264 ,∞). If a∗ = k, then, by Lemma 13, m ≥ (k− 1)(n− k+1)+ 1. We

have [(k− 1)(n− k+ 1) + 1,∞) ⊆ 〈9k264 ,∞); indeed, from k = imin ≤ n
2 it follows

that (k− 1)(n− k+1) ≥ (k− 1)(2k− k+ 1)+ 1 = k2 > 9k2

64 . Therefore, in order
to obtain a contradiction mentioned above, it is sufficient to check that

n

2
< f1((k − 1)(n− k + 1) + 1) = n+ 1− n

k
− 3

√

(k − 1)(n− k + 1) + 1

4
,

or, equivalently,

(10) n(2k − 4) + 4k > 3k
√

(k − 1)(n− k + 1) + 1,
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or either (after squaring both sides of (10))

(11) n2(2k − 4)2 + n(−9k3 + 25k2 − 32k) + 7k2 + 9k2(k − 1)2 > 0.

The discriminant of the quadratic equation

x2(2k − 4)2 + x(−9k3 + 25k2 − 32k) + 7k2 + 9k2(k − 1)2 = 0

is D2(k) = k3D3(k) with D3(k) := −63k3 + 414k2 − 783k + 576. The function
D3(x) is nonincreasing in the interval 〈3,∞). Since D3(5) = −864, it is clear
that D2(k) < 0 for every k ∈ [5, ⌊n2 ⌋], which confirms the validity of (11) yielding
a contradiction.

If k = 4, then (11) is equivalent to n2 − 19n + 88 > 0. The last inequality
is true whenever n ≥ 12. On the other hand, the assumption n ∈ [8, 11] (recall
that we have n ≥ 8) together with the inequality m ≥ 2n − 8 (Lemma 13) lead
to n ≥ i1 + i2 ≥ 2(⌈√m ⌉ + 1) ≥ 2(

√
m + 1) ≥ 2(

√
3n− 8 + 1) > n, a final

contradiction.

Lemma 16. If i ∈ [imin, imid − 1], then the following hold:

1. wi+1 ≤ wi + 1.

2. If wi+1 = wi + 1, then bi+1 = bi − 2, si ≥ 2 and si+1 = 0.

3. If wi+1 = wi and si+1 ≥ 2, then bi+1 = bi − 1.

4. If si ≤ 1 and i ≤ imid − 2, then wi+1 ≤ wi − 1.

Proof. We have bi+1 = ⌈ m
i+1⌉ ≤ ⌈m

i
⌉ = bi. Let us prove that bi+1 < bi. If

i ≤ imid − 2, then i(i + 1) ≤ (⌈√m ⌉ − 2)(⌈√m ⌉ − 1) < (
√
m − 1)

√
m < m,

m
i
− m

i+1 = m
i(i+1) > 1 and the desired inequality follows. It remains to be shown

that b⌈√m ⌉−1 6= b⌈√m ⌉. Since m/⌈√m ⌉ ≤ m/
√
m =

√
m < m/(⌈√m ⌉ − 1), we

see that ⌈m/⌈√m ⌉⌉ can be equal to ⌈m/(⌈√m ⌉ − 1)⌉ only if each of those two
numbers is ⌈√m ⌉. In such a case, however, both m/(⌈√m ⌉ − 1) and m/⌈√m ⌉
are in the interval (⌈√m ⌉ − 1, ⌈√m ⌉〉, and then (⌈√m ⌉ − 1)⌈√m ⌉ < m ≤
(⌈√m ⌉ − 1)⌈√m ⌉, a contradiction.

If bi+1 ≤ bi−4, then wi+1 ≤ i+1+bi−4−pi+1 ≤ i+bi−3 < i+bi−pi = wi.
If bi+1 = bi−3, then wi+1 = i+1+ bi−3−pi+1 ≤ i+ bi−2 ≤ i+ bi−pi = wi

and wi+1 = wi implies pi = 2 and pi+1 = 0, hence si ≥ 2 and si+1 = 0.
If bi+1 = bi−2, then wi+1 = i+1+bi−2−pi+1 ≤ i+bi−1 ≤ i+bi−pi+1 =

wi + 1. Moreover, wi+1 = wi + 1 yields pi = 2 and pi+1 = 0 (and, consequently,
si ≥ 2 and si+1 = 0), while wi+1 = wi implies either pi = 1 and pi+1 = 0 (si = 1
and si+1 = 0) or pi = 2 and pi+1 = 1 (si ≥ 2 and si+1 = 1).

Finally, if bi+1 = bi − 1, then m = ibi − si = (i + 1)(bi − 1) − si+1. From
bi − (i + 1) ≥ ⌈m/(⌈√m ⌉ − 1)⌉ − ⌈√m ⌉ ≥ ⌈m/

√
m ⌉ − ⌈√m ⌉ = 0 and (i +

1)(bi − 1) = ibi + bi − (i + 1) ≥ ibi it follows that si+1 ≥ si, pi+1 ≥ pi and
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wi+1 = i+1+ bi− 1− pi+1 ≤ i+ bi− pi = wi. Besides that, from the assumption
i ≤ imid − 2 we obtain bi − (i+1) ≥ ⌈m/(⌈√m ⌉ − 2)⌉ − ⌈√m ⌉+1 ≥ ⌈m/(

√
m−

1)⌉ − ⌈√m ⌉+ 1 ≥ ⌈√m+ 1⌉ − ⌈√m ⌉+ 1 = 2, si+1 ≥ si + 2, and then wi+1 can
be equal to wi only if si ≥ 2 = pi = pi+1.

The statements of lemma follow by inspecting the above assertions.

Lemma 17. If i ∈ [imin, imid − 1] and j ∈ [i+ 1, imid], then wj ≤ wi + 1.

Proof. If there is l ∈ [i + 1, imid] with wl ≥ wi + 1, then, by Lemma 16.1,
J := {j ∈ [i + 1, imid] : wj = wj−1 + 1} 6= ∅. Moreover, sj−1 ≥ 2 and sj = 0 for
every j ∈ J (Lemma 16.2) and wj+1 ≤ wj − 1 for every j ∈ J − {imid − 1, imid}
(Lemma 16.4). Let r := |J | and let J = {jk : k ∈ [1, r]}, where the sequence
(j1, . . . , jr) is increasing. (Notice that jk+1 ≥ jk+2 for every k ∈ [1, r−1].) Then
wj ≤ wi for every j ∈ [i+1, j1−1] and wj1 ≤ wi+1. Further, if k ∈ [1, r−1], then
(by induction one can prove) wj ≤ wjk − 1 ≤ wi for every j ∈ [jk + 1, jk+1 − 1]
and wjk+1

≤ wjk ≤ wi +1. Finally, if jr = imid, then wj ≤ wjr − 1 ≤ wi for every
j ∈ [jr + 1, imid]. If jr = imid − 1, then wimid

≤ wjr ≤ wi + 1 (the first inequality
follows from the fact that imid /∈ J).

Theorem 18. w(B, n,m) is either w∗ or w∗ + 1 and in the latter case there is

a positive integer l such that a∗ + l ≤ imid, m = (a∗ + l)(b∗ − l − 1), b∗ ≤ 2a∗,
s∗ ≥ 2 and p∗ = 2.

Proof. By Theorem 15 and by Lemma 17 with i = imin = a∗ we have w∗ =
wimin

≤ w(B, n,m) ≤ w∗ + 1.

If w(B, n,m) = w∗ + 1, by Theorem 15 there is j ∈ [1, imid − imin] such that
wa∗+j = w∗ + 1. With l := min{j ∈ [1, imid − imin] : wa∗+j = w∗ + 1} Lemma 17
yields wa∗+j = w∗ for every j ∈ [1, l − 1] (wa∗+j ≤ w∗ − 1 for some j ∈ [1, l − 1]
would imply wa∗+l ≤ wa∗+j + 1 ≤ w∗, a contradiction).

Then, by Lemma 16.2, sa∗+l = 0 and sa∗+l−1 ≥ 2. If sa∗+j ≤ 1 for some
j ∈ [0, l − 2], then by taking j to be maximum, we have sa∗+j+1 ≥ 2. Since
a∗+j ≤ a∗+ l−2 ≤ imid−2, by using Lemma 16.4, we have wa∗+j+1 ≤ wa∗+j−1,
a contradiction. Thus sa∗+j ≥ 2 for every j ∈ [0, l − 1], in particular s∗ ≥ 2 and
p∗ = 2. Moreover, by Lemma 16.3, ba∗+j = ba∗ − j = b∗− j for each j ∈ [0, l− 1],
and by Lemma 16.2, ba∗+l = ba∗+l−1 − 2 = b∗ − l − 1 and sa∗+l = 0 = pa∗+l.
Consequently,

(12) m = (a∗ + l)ba∗+l − pa∗+l = (a∗ + l)(b∗ − l − 1),

where a∗ + l ≤ a∗ + imid − imin = imid.

Let us show that b∗ ≤ 2a∗. Since a∗ + 1 ≤ a∗ + l ≤ imid,

(13) m = a∗b∗ − s∗ = (a∗ + 1)ba∗+1 − sa∗+1.
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If l = 1, then ba∗+1 = b∗ − 2 and sa∗+1 = 0. Thus, by (12) and (13), 2a∗ − b∗ =
s∗ − 2 ≥ 0 as required. If l ≥ 2, then ba∗+1 = b∗ − 1. Since sa∗+1 ≤ a∗, from (12)
and (13) we obtain 2a∗ − b∗ = a∗ − sa∗+1 + s∗ − 1 > 0 and the proof follows.

Theorem 19. If w(B, n,m) = w∗ + 1, then a∗ + b∗ = n and w(B, n,m) = n− 1.

Proof. The assumption w(B, n,m) = w∗ + 1 gives us a∗ ≥ 2, because a∗ = 1
yields b∗ = m and s∗ = 0 = p∗ so that, by Theorem 18, w(B, n,m) = w∗.

From Theorem 18 we know that 2a∗ ≥ b∗, p∗ = 2 and s∗ ≥ 2, hence, by
Proposition 12.1, w(B, n,m) = a∗+b∗−p∗+1 = a∗+b∗−1 = aimin

+bimin
−1 ≤ n−1,

a∗ + b∗ ≤ n and a∗ + b∗ = n− r with r ≥ 0. Suppose that r ≥ 1. The complete
bipartite graph Ka∗−1,b∗+1+r is of order a∗ + b∗ + r = n and (as m = a∗b∗ − s∗)
of size (a∗ − 1)(b∗ + 1 + r) = m + (s∗ − 2) + (r − 1)(a∗ − 1) + (2a∗ − b∗) ≥ m.
Consider an arbitrary subgraph G of Ka∗−1,b∗+1+r belonging to B(n,m). Then
the standard pair (i1, i2) for G satisfies i1 ≤ a∗ − 1 = imin − 1 in contradiction to
Proposition 11. Therefore, r = 0, a∗ + b∗ = n and w(B, n,m) = n− 1.

Theorem 20. Suppose that r0 =
√
n2 − 4m, r1 =

√

(n− 1)2 − 4m and r′1 =√
n2 − 4m− 4.

1. If r0 is an integer, then w(B, n,m) = n.

2. If r0 is not an integer and (exactly) one of r1, r
′
1 is, then w(B, n,m) = n−1.

3. If r0, r1, r
′
1 are not integers, then w(B, n,m) = w∗.

Proof. The theorem is a direct consequence of Propositions 9 and 10, and of
Theorems 18 and 19.

The rest of the paper is devoted to showing that there are parameters n,m such
that w(B, n,m) = w∗ + 1.

Lemma 21. Suppose that w(B, n,m) = w∗ + 1.

1. If n ≡ 0(mod 2), then a∗ ≤ n−4
2 .

2. If n ≡ 1(mod 2), then a∗ ≤ n−3
2 .

Proof. The lemma will be proved by the way of contradiction with the help of
Theorem 18. Namely, we shall show that if the inequalities for a∗ are invalid,
then w(B, n,m) = w∗. This will be done mostly by exhibiting that s∗ ∈ [0, 1].

1. Assume that n is even and a∗ ≥ n−2
2 . Then n−

√
n2−4m
2 > n−4

2 , n2−4m < 16

and m ∈ {n2−4i
2 : i ∈ [0, 3]}. If m = n2

4 , then a∗ = n
2 = b∗ and s∗ = a∗b∗−m = 0.

Letm = n2−4i
4 , i ∈ [1, 3], so that n ≥ 4 and a∗ =

⌈

n−
√
4i

2

⌉

= n−2
2 . By Theorem 19,

b∗ = n − a∗ = n+2
2 and s∗ = n2−4

4 − n2−4i
4 = i − 1 so that with i ∈ [1, 2] the

mentioned contradiction follows. If i = 3, then s∗ = 2, w∗ = n − 2, imid =
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⌈

√

(n2 − 12)/4
⌉

≤ n
2 ,

n−2
2 < n2−12

4 ≤ n2

4 , hence bn
2
= n

2 , sn
2
= n2

4 − n2−12
4 = 3,

pn
2
= 2 and wn

2
= n− 2 = w∗ so that, by Theorem 15, w(B, n,m) = w∗.

2. Provided that n is odd and a∗ ≥ n−1
2 , we have n−

√
n2−4m
2 > n−3

2 , n2−4m <

9 and m = n2−1−4i
4 with i ∈ [0, 1] and a∗ =

⌈

n−
√
4i+1
2

⌉

= n−1
2 . By Theorem 19,

b∗ = n− a∗ = n+1
2 and s∗ = n2−1

4 − n2−1−4i
4 = i ∈ [0, 1].

Theorem 22. If w(B, n,m) = w∗+1, then m ≤
⌊

n2−2n+1
4

⌋

and there is i ∈ [0,∞)

such that one of the following three series of conditions is satisfied:

n ≡ 0(mod 3), n ≥ 9 and m =
(

n+3
3 + i

) (

2n−6
3 − i

)

≥ n+3
3 · 2n−6

3 = 2n2−18
9 ;

n ≡ 2(mod 3), n ≥ 11 and m =
(

n+4
3 + i

) (

2n−7
3 − i

)

≥ n+4
3 · 2n−7

3 = 2n2+n−28
9 ;

n ≡ 1(mod 3), n ≥ 16 and m =
(

n+5
3 + i

) (

2n−8
3 − i

)

≥ n+5
3 · 2n−8

3 = 2n2+2n−40
9 .

Proof. Let us first show that with w(B, n,m) = w∗+1 we cannot have n ≤ 8 or
n ∈ {10, 13}.

If n ≤ 8, then, by Lemma 21, a∗ ≤ n−3
2 < 3, a∗ ≤ 2, s∗ ≤ 1 and so, by

Theorem 18, w(B, n,m) = w∗.
Suppose n = 10 and w(B, n,m) = w∗ + 1. By Theorem 18 and Lemma 21

then 2 ≤ s∗ ≤ a∗ − 1 ≤ 2, s∗ = 2 and a∗ = 3 so that Theorem 19 yields
b∗ = 10− a∗ = 7, which contradicts the inequality b∗ ≤ 2a∗ of Theorem 18.

Suppose n = 13 and w(B, n,m) = w∗+1. By Lemma 21, a∗ ≤ n−3
2 = 5, while

Theorems 18 and 19 imply b∗ = 13− a∗ ≤ 2a∗, which yields a∗ > 4. Thus a∗ = 5
and b∗ = 8. By Theorem 18, s∗ ≥ 2, and then m = a∗b∗−s∗ = 40−s∗ ≤ 38. Since
⌈

13−
√
169−4m
2

⌉

= a∗ = 5, we have m > 36, thus m ∈ [37, 38]. Then, however,

m cannot be expressed as (a∗ + l)(b∗ − l − 1), where l is a positive integer with
a∗ + l ≤ imid = ⌈√m ⌉ = 7, a contradiction to Theorem 18.

So, in the sequel we suppose that w(B, n,m) = w∗+1, n ≥ 9 and n /∈ {10, 13}.
By Theorem 19 and Theorem 18 then n−1 = w(B, n,m) = w∗+1 = a∗+b∗−1 and

n = a∗ + b∗ ≤ 3a∗ so that a∗ ≥ ⌈n3 ⌉. Therefore, a∗ ≥ n+c(n)
3 , where c(n) ∈ [0, 2]

is such that n + c(n) ≡ 0 (mod 3). As a consequence, a∗ = n+c(n)
3 + j and

b∗ = 2n−c(n)
3 − j for some nonnegative integer j. By Theorem 18 there is a

positive integer l such that

(14) a∗ + l ≤ imid = ⌈√m ⌉

and

m =

(

n+ c(n)

3
+ j + l

)(

2n− c(n)

3
− j − 1− l

)

=

(

n+ c(n) + 3

3
+ i

)(

2n− c(n)− 6

3
− i

)

=: f4(i)
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with i := j+l−1 ∈ [0,∞). Thus we know thatm = k1k2 = k1(n−1−k1) ≤
(

n−1
2

)2

and m ≤
⌊

n2−2n+1
4

⌋

. Moreover, it is easy to check that f4(x) = f4(
n−2c(n)−9

3 −x)

and that

(15) min

{

f4(x) : x ∈
〈

0,
n− 2c(n)− 9

3

〉}

= f4(0) = f4

(

n− 2c(n)− 9

3

)

.

If n is even, then imid = ⌈√m ⌉ ≤
⌈√

n2/4
⌉

= n
2 , hence, by (14), n+c(n)+3

3 + i =

a∗ + l ≤ n
2 , and

0 ≤ i ≤ n− 2c(n)− 6

6
≤ n− 2c(n)− 9

3

(where the last inequality immediately follows from our assumptions on n).

If n is odd, then imid ≤ n−1
2 , n+c(n)+3

3 + i ≤ n−1
2 , and

0 ≤ i ≤ n− 2c(n)− 9

6
≤ n− 2c(n)− 9

3
.

Thus, independently from the parity of n, because of (15) we have m = f4(i) ≥
f4(0). So, the statement of our theorem follows from the fact that f4(0) =
n+c(n)+3

3 · 2n−c(n)−6
3 is exactly the claimed lower bound for m depending on the

congruence class modulo 3 containing n.

Let us prove now the tightness of the bounds for m in Theorem 22. Recall that
c(n) ∈ [0, 2] is such that n+ c(n) ≡ 0 (mod 3).

Proposition 23. 1. If n ≥ 9, n /∈ {10, 13} and m = n+c(n)+3
3 · 2n−c(n)−6

3 , then

w(B, n,m) = w∗ + 1.

2. If n = 22q+1+1 with q ∈ Z+ and m =
⌊

n2−2n+1
4

⌋

, then w(B, n,m) = w∗+1.

Proof. 1. If m = n+c(n)+3
3 · 2n−c(n)−6

3 , then n2 − 4m = 1
9 [n

2 − 4nc(n) + 4(c(n) +

3)(c(n) + 6)] and a∗ =
⌈

1
2(n−

√
n2 − 4m)

⌉

= n+c(n)
3 , because a necessary and

sufficient pair of inequalities is

n+ c(n)− 3

3
<

1

2

[

n− 1

3

√

n2 − 4nc(n) + 4(c(n) + 3)(c(n) + 6)

]

≤ n+ c(n)

3
;

the first inequality is equivalent to 5c(n) + 3 < n and the second one is obvious.
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Therefore, we have

b∗ =
⌈m

a∗

⌉

=

⌈

n+ c(n) + 3

3
· 2n− c(n)− 6

3
· 3

n+ c(n)

⌉

=
2n− c(n)

3
,

s∗ =
n+ c(n)

3
· 2n− c(n)

3
− n+ c(n) + 3

3
· 2n− c(n)− 6

3
= c(n) + 2

≥ 2 = p∗,

w∗ =
n+ c(n)

3
+

2n− c(n)

3
− 2 = n− 2.

On the other hand, a∗ + 1 = n+c(n)+3
3 ≤ 2n−c(n)−6

3 , hence (a∗ + 1)2 ≤ n+c(n)+3
3 ·

2n−c(n)−6
3 = m and imin ≤ a∗ + 1 ≤ √

m ≤ imid. By Theorems 15 and 18 then

w∗ + 1 ≥ w(B, n,m) ≥ wa∗+1 = n+c(n)+3
3 + 2n−c(n)−6

3 − 0 = n − 1 = w∗ + 1 and
w(B, n,m) = w∗ + 1.

2. If n = 22q+1 + 1 and m =
⌊

n2−2n+1
4

⌋

= 24q, then

a∗ =
⌈

(22q+1 + 1−
√

22q+2 + 1)/2
⌉

= 22q − 2q + 1,

b∗ = ⌈24q/(22q − 2q + 1)⌉ = 22q + 2q,

s∗ = (22q − 2q + 1)(22q + 2q)− 24q = 2q ≥ 2 = p∗,

w∗ = (22q − 2q + 1) + (22q + 2q)− 2 = 22q+1 − 1 = n− 2.

Besides that, imin = a∗ ≤ 22q =
√
m = imid, and, since w22q = 22q + 22q − 0 =

22q+1 = w∗ + 1, as above we obtain w(B, n,m) = w∗ + 1.

Note that there are n’s such that the maximumm satisfying w(B, n,m) = w∗+1 is

smaller than
⌊

n2−2n+1
4

⌋

. Indeed, if n = 2q2, q ∈ Z+, then with m =
⌊

n2−2n+1
4

⌋

=

q2(q2 − 1) we have a∗ = q(q − 1), b∗ = q(q + 1), s∗ = 0 = p∗ and w∗ = q(q − 1) +
q(q + 1) = n so that w(B, n,m) = w∗.
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