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Abstract

The Path Partition Conjecture (PPC) states that if G is any graph and
(λ1, λ2) any pair of positive integers such that G has no path with more
than λ1 + λ2 vertices, then there exists a partition (V1, V2) of the vertex set
of G such that Vi has no path with more than λi vertices, i = 1, 2. We
present a brief history of the PPC, discuss its relation to other conjectures
and survey results on the PPC that have appeared in the literature since its
first formulation in 1981.
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1. Introduction

The Path Partition Conjecture (PPC) is an intriguing conjecture that is easy to
state but difficult to settle. It is more than thirty years old and has generated a
host of other interesting problems and conjectures. The PPC has been attacked
by several authors and in this process two stronger conjectures have been created,
explored and proved false. However, the PPC has survived and a variety of results
supporting the conjecture have been proved. In addition, variations of the PPC
have brought to light new questions for investigation.

1This material is based upon work supported by the National Research Foundation of South

Africa under Grant number 81004.
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The vertex set and edge set of a graph G are denoted by V (G) and E(G), respec-
tively. If U ⊆ V (G), the subgraph of G induced by U is denoted by G[U ]. The
number of vertices in a longest path of a graph G is denoted by λ(G). A simple
way of stating the Path Partition Conjecture is as follows.

Conjecture 1.1 (PPC). If G is any graph and (λ1, λ2) any pair of positive
integers such that λ1 + λ2 = λ(G), then there exists a partition (V1, V2) of V (G)
such that λ(G[Vi]) ≤ λi, i = 1, 2.

As indicated in [27], the author’s interest in the PPC was sparked in 1993 by
a problem concerning certain generalized colourings introduced by Chartrand,
Geller and Hedetniemi [23]. During a visit to Peter Mihók in 1995, the author
was surprised to learn that the PPC was already an existing conjecture. In fact, it
was orally formulated during a discussion between Mihók and Lovász in Szeged in
1981 and thereafter addressed in theses of Vronka and Hajnal [51, 36], supervised
by Mihók and Lovász, respectively.

Laborde, Payan and Xuong were the fist authors to publish a paper on the
PPC. Their paper [42], which appeared in 1983, dealt mostly with digraphs, but
in the paper they formulated the PPC for undirected graphs and stated only the
case λ1 = 1 of the analogous conjecture for digraphs.

In 1995 Bondy [13] stated a conjecture that is close to the digraph analogue of
the PPC, but the PPC for undirected graphs was not mentioned in the literature
again until 1997, when it was addressed in Problem 1 of [15] and also in [20].
Since then, several authors have contributed results towards proving the PPC
(see [17, 18, 21, 22, 25, 26, 29, 30, 33, 34, 45, 46, 47]) and its digraph analogue,
the DPPC (see [1, 2, 3, 4, 5, 6, 8, 9, 28, 31, 32, 37]). The PPC and DPPC are
also discussed in the text books [35] and [10], respectively.

The lattice of additive hereditary properties of graphs, treated in the paper
[15] by Borowiecki et al., provides a convenient framework for investigating par-
tition problems that involve additive hereditary properties. The purpose of this
survey is to bring together the results on the PPC that have appeared to date and
discuss them within this framework. Section 2 provides the necessary notation
and terminology for this purpose.

In Section 3 we discuss two refuted conjectures, either of which would have
implied the truth of the PPC. In the place of each fallen conjecture we formulate
a weaker conjecture that still implies the PPC but is as yet unrefuted. Moreover,
each new conjecture has led to further progress towards settling the PPC in the
affirmative.

In Section 4 we provide some useful results relating the cycle structure of a
graph to the partitions required by the PPC. In Section 5 it is briefly explained
how these results on cycle structure, together with the Ryjáček closure operation,
led to a proof that the PPC holds for claw-free graphs. Results on the PPC
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for other special classes of graphs, such as the class of planar graphs, are also
presented.

A graph G of order n is t-deficient if t = n − λ(G). The main result in
Section 6 implies that the PPC holds asymptotically for t-deficient graphs, for
each t ≥ 0.

The generalized colouring problem that had originally motivated the author
to investigate the PPC is discussed in Section 7.

In Section 8 the directed and oriented analogues of the PPC are briefly dis-
cussed.

2. The PPC and the Lattice of Additive Hereditary Properties

The notation provided in this section is taken from the survey [15] by Borowiecki,
Broere, Frick, Mihók and Semanǐsin.

The class of all finite simple graphs is denoted by I. A graph property is a
nonempty isomorphism-closed subclass of I. A property P is hereditary if it is
closed under taking subgraphs and additive if it is closed under taking disjoint
unions.

Some well-known additive hereditary properties are given in the list below.
O = {G ∈ I : G is edgeless, i.e., E(G) = ∅}.
Ok = {G ∈ I : each component of G has at most k + 1 vertices}
Sk = {G ∈ I : ∆(G) ≤ k}
Dk = {G ∈ I : G is k-degenerate}
Wk = {G ∈ I : G has no path with more than k edges, i.e., λ(G) ≤k + 1}.

Note that O = Oo = So = D0 = W0.
For given hereditary properties P1, . . . ,Pm, a (P1, . . . ,Pm)-partition of G is

a partition V1, . . . , Vm of V (G) such that G[Vi] ∈ Pi for i = 1, . . . ,m. The product
P1◦· · ·◦Pm is defined as the class of all graphs that have a (P1, . . . ,Pm)-partition.
If P i = P for i = 1, . . . ,m, we write Pn = P1 ◦ · · · ◦ Pm. Thus, for example, Om

is the class of all m-colourable graphs. Throughout the paper p and q will denote
non-negative integers.

In [15] the Path Partition Conjecture is formulated as follows.

Conjecture 2.1 (PPC). Wp+q+1 ⊆ Wp ◦Wq for all p, q.

The above formulation underlines the similarity with the well-known Lovász Par-
tition Theorem, which may be stated as follows

Theorem 2.2 [44]. Sp+q+1 ⊆ Sp ◦ Sq for all p, q.

Borodin [14] showed that an analogous result holds for the property Dp+q+1.

Theorem 2.3 [14]. Dp+q+1 ⊆ Dp ◦ Dq for all p, q.



120 M. Frick

An analogous result also holds for the property Op+q+1, as shown by Jensen and
Toft [38].

Theorem 2.4 [38]. Op+q+1 ⊆ Op ◦ Oq for all p, q.

A tree partition problem which provides a natural generalization of Theorem 2.2
and the PPC was studied by Katrenič and Semanǐsin [39]. The cycle analogue of
the PPC, called the Cycle Partition Conjecture, was introduced by Nielsen [49]
and also studied by Yang and Vumar [52].

Broere, Dunbar, Dorfling and Frick [17] showed that the PPC holds for graphs
with maximum degree at most 3. This may be stated as follows.

Proposition 2.5 [17]. S3 ∩Wp+q+1 ⊆ Wp ◦Wq for all p, q.

Bullock and Frick [22] showed that the PPC holds for the class of 2-degenerate
graphs. This result may be stated as follows.

Proposition 2.6 [22]. D2 ∩Wp+q+1 ⊆ Wp ◦Wq for all p, q.

Theorem 3.1 of [17] may be stated as follows.

Theorem 2.7 [17]. If p ≤ q, then W⌈ p

2
⌉+q+1 ⊆ Wp ◦Wq.

For p ≥ 15, Broere, Dorfling and Jonck [18] presented the following improvement
of Theorem 2.7.

Theorem 2.8 [18]. W⌈ 2p

3
⌉+q+1 ⊆ Wp ◦Wq for all p ≥ 15 and q ≥ 1.

A hereditary property P is uniquely determined by the set M(P) of P-maximal
graphs, defined by

M(P) = {G ∈ P : G+ e 6∈ P for each e ∈ E(G)}.

Since Wk-maximal graphs generally have more structure than graphs in Wk, it
is convenient to note that the PPC is equivalent to the following conjecture.

Conjecture 2.9 (PPC). M(Wp+q+1) ⊆ Wp ◦Wq for all p, q.

Wk-maximal graphs are studied in [11, 12, 19, 24, 41].

3. Wp-maximal Sets and Pp+2-kernels

Let Pn denote the path with n vertices (and n−1 edges). Then a graph G belongs
to Wp if and only if G does not contain a Pp+2.

A set M of vertices in a graph G is called a maximal Wp-set of G if G[M ] ∈
Wp and G[M ∪ {x}] 6∈ Wp for every vertex x ∈ V (G − M). Our next lemma
follows directly from this definition.



A Survey of the PPC 121

Lemma 3.1. M is a maximal Wp-set of a graph G if and only if each of the
following two conditions is satisfied.
1. G[M ] ∈ Wp, i.e., G[M ] does not contain a Pp+2.

2. For every x ∈ V (G−M) at least one of the following hold.
(a) x is adjacent to an end-vertex of a Pp+1 in G[M ].

(b) There exist two vertex disjoint paths Pq and Pr in G[M ] such that q+r =
p+ 1 and x is adjacent to an end-vertex of each of these two paths.

A P-maximal set of maximum cardinality in a graph G is called a P-maximum
set.

LetG ∈ Wk and let p, q be any two non-negative integers such that k = p+q+
1. Now, if we can find a setM ⊆ V (G) such thatM ∈ Wp andG−M ∈ Wk−(p+1),
then we can conclude that G ∈ Wp ◦Wq. It was conjectured in [21] that any Wp-
maximum set M has the desired property, but Aldred and Thomassen [7] pointed
out that any hypotraceable graph of order k + 2 provides a counterexample to
the case p = k− 1 of that conjecture. Indeed, if xy is an edge in a hypotraceable
graph G of order k + 2 and M = G − {x, y}, then G ∈ Wk and M is a Wk−1-
maximal set in G, but G−M 6∈ W0. However, as pointed out in [7], in order to
prove the PPC it would suffice to prove the following conjecture, for which there
is as yet no known counterexample.

Conjecture 3.2 (Revised Maximal Wp-set Conjecture). If p and k are any
integers such that 0 ≤ p ≤ k−1

2 and G is any graph in Wk and M any Wp-
maximum set in G, then G−M ∈ Wk−(p+1).

In 1968 Chartrand, Geller and Hedetniemi showed (in the proof of [23], Theorem
2) that if M is a Wp-maximum set in a graph G ∈ Wk (p < k), then G −
M ∈ Wk−1. In 2004, Bullock, Dunbar and Frick [21] presented the following
improvement of this result.

Theorem 3.3 [21]. If M is any Wp-maximal set in a graph G ∈ Wk, (p < k),
then G−M ∈ W

k−(⌊ 2p+1

3
⌋+1).

If M is a Wp-maximal set in a graph G ∈ Wk such that every x ∈ V (G − M)
satisfies 2(a) of Lemma 3.1, then it is easily seen that G−M ∈ Wk−(p+1). This
motivated the following definition.

Definition. A subsetK of a graph G is a Pp+2-kernel of G if each of the following
conditions is satisfied.
1. G[K] does not contain a Pp+2.

2. Every vertex in G−K is adjacent to an end-vertex of a Pp+1 in G[K].

The connection between path kernels and path partitions is as follows.
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Proposition 3.4. If G ∈ Wp+q+1 and G has a Pp+2-kernel, then G ∈ Wp ◦Wq.

Mihók introduced the concept of a Pn-kernel in 1985 in [48], where he mentioned
that every graph has a Pn-kernel for every n ≤ 6. In 1999, Dunbar and Frick [25]
proved, by means of an algorithmic approach, that every graph has a P7-kernel.
By expanding this algorithm, Mel’nikov and Petrenko [45, 47] proved (in 2002
and 2005, respectively) that every graph has a P8-kernel and a P9-kernel. These
results are summarized in the following theorem.

Theorem 3.5 [25, 45, 47]. Every graph G has a Pn-kernel for every n ≤ 9.

Corollary 3.6. If p ≤ 7, then Wp+q+1 ⊆ Wp ◦Wq for every q ≥ 1.

Corollary 3.7. The PPC holds for the class W16.

It was originally conjectured that every graph has a Pk kernel for every k ≥ 2
(see [20]) but in 2004 Aldred and Thomassen [7] presented a graph in W363 that
has no P364-kernel. In 2008, Katrenič and Semanisin [40] presented a graph in
W154 that has no P155-kernel. They showed, moreover, that for every r ≥ 0 there
exists a graph G such that G has no Pλ(G)−r-kernel. However, they pointed out
that in each of their examples λ(G) − r is still greater than λ(G)/2. In order
to prove the PPC it will suffice to prove the following conjecture, for which no
counterexample has yet been found.

Conjecture 3.8 (Revised Path Kernel Conjecture). For every positive integer k,
every graph in Wk has a Pp+2-kernel for every non-negative integer p ≤ (k−1)/2.

Thus, results on the existence of path kernels in graphs could still lead to further
progress towards proving the PPC.

The girth of a graph G, denote by g(G) is the length of a shortest cycle in G.
The length of a longest cycle in G is called the circumference of G and denoted
by c(G). In 1999 Dunbar and Frick [25] proved the following.

Proposition 3.9 [25]. If G is a graph with g(G) ≥ p, then G has a Pp+2-kernel.

In 2010 He and Wang [34] presented a substantial improvement of Proposition
3.9.

Theorem 3.10 [34]. If G is a graph with g(G) > 2
3(p+ 2), then G has a Pp+2-

kernel.

Theorem 3.10 immediately implies the following.

Corollary 3.11 [34]. If G ∈ Wp+q+1, p ≤ q, and g(G) > 2
3(p + 1), then G ∈

Wp ◦Wq.



A Survey of the PPC 123

Mel’nikov and Petrenko [47] presented results on the existence of path kernels in
graphs with small circumference.

In the next section we provide further results that show how knowledge of
the cycle structure of a graph can help us find the partitions required by the
PPC.

4. The PPC and Cycle Structure

The following result of Broere, Dorfling, Dunbar and Frick [17] has turned out to
be surprisingly useful.

Theorem 4.1 [17]. If G is a connected graph in Wp+q+1, p ≤ q, and G contains
a cycle of length q + 1, then G ∈ Wp ◦Wq.

We call a vertex v an attachment vertex of a set S in a graph G if v is adjacent
to a vertex in G− S. In the proof of Theorem 4.1 in [17] the necessary partition
is constructed by considering the distance sets of a (q + 1)-cycle. Dunbar and
Frick [26] observed that this technique also yields the following result.

Theorem 4.2 [26]. If G is a connected graph in Wp+q+1, p ≤ q, and G contains
a cycle of length greater than q + 1 with at most q + 1 attachment vertices, then
G ∈ Wp ◦Wq.

By considering Wp-maximal sets in a graph G ∈ Wp+q+1, Bullock, Dunbar and
Frick [21] proved the following.

Theorem 4.3 [21]. If G ∈ Wp+q+1, p ≤ q, and c(G) ≤ q+3, then G ∈ Wp ◦Wq.

A graph G is called weakly pancyclic if G has a cycle of every length between
g(G) and c(G). By combining Proposition 3.9, Theorem 4.1 and Theorem 4.3,
the following result was obtained.

Corollary 4.4 [21, 26]. The PPC holds for connected weakly pancyclic graphs.

If G has a cycle of every length from max{3, ⌈λ(G)/2⌉} up to c(G) or c(G) <
⌈λ(G))/2⌉, we say G is semi-pancyclic. Dunbar and Frick [26] observed that
Theorems 4.1 and 4.3 imply the following.

Corollary 4.5 [26]. The PPC holds for connected semi-pancyclic graphs.

Another result which followed from Theorem 4.3 is the following.

Theorem 4.6 [26]. If the PPC holds for 2-connected graphs, then it holds for all
graphs.
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A longest cycle in a graph G is called a circumference cycle of G. Theorems 4.2
and 4.6 together with Corollaries 4.4 and 4.5 imply that in order to prove the
PPC it will suffice to prove the following conjecture.

Conjecture 4.7. For each k ≥ 2, every 2-connected Wk-maximal graph G in
which every circumference cycle has at least (k + 1)/2 attachment vertices is
weakly pancyclic or semi-pancyclic.

As noted in [11], there exist Wk-maximal graphs that are neither weakly pan-
cyclic nor semi-pancyclic, but the known examples are not 2-connected and their
circumference cycles have few attachment vertices.

Theorem 4.1 also has the following corollary.

Corollary 4.8 [17]. Let p ≤ q and suppose G ∈ Wp+q+1. Then G ∈ Wp ◦Wq if
one of the following hold.

1. ∆(G) ≥ |V (G)| − p− 1.

2. G−N(v) ∈ Wp for some v ∈ V (G).

5. The PPC Restricted to Special Classes of Graphs

We have already seen that the PPC holds for the classes D2 and S3 as well as for
the classes of weakly pancyclic graphs and semi-pancyclic graphs.

A graph G is chordal if every cycle of length greater than 3 in G has a chord.
The author has received several queries as to whether the PPC has been proved to
hold for chordal graphs. The answer is yes, since every chordal graph is pancyclic.

A graph G is a join of two graphs G1 and G2 (written G = G1 + G2) if G
is obtained from the disjoint union of G1 and G2 by joining every vertex in G1

to every vertex in G2 with an edge. If a Wk-maximal graph G is a join of two
graphs, then ∆(G) ≥ |V (G)| − 1, as shown by Broere, Frick and Semanǐsin [19].
Thus it follows from Corollary 4.8 that Conjecture 2.9, and hence the PPC, holds
for joins of graphs.

A graph is claw-free if it has no K1,3 as induced subgraph. A vertex x in a
claw-free graph G is called eligible if the graph induced by its neighbourhood is
connected and noncomplete. The operation of joining every pair of nonadjacent
vertices in the neighbourhood of an eligible vertex x is called the local completion
of G at x. Ryjáček [50] defined the closure cl(G) of a claw-free graph G to be the
graph obtained from G by recursively performing the local completion operation
to eligible vertices of G until no eligible vertices remain. A claw-free graph G is
closed if cl(G) = G.

Brandt, Favaron and Ryjáček [16] proved that if G is a claw-free graph, then
cl(G) is well-defined and claw-free and λ(cl(G)) = λ(G). Thus, in order to prove
the PPC for claw-free graphs, it is sufficient to prove it for closed claw-free graphs.



A Survey of the PPC 125

Using results on the structure of closed claw-free graphs proved in [16], Dunbar
and Frick [26] showed that if C is any circumference cycle in a closed claw-free
graph, then C either has at most ⌈(λ(G)/2)⌉ attachment vertices or G is semi-
pancyclic. This, together with Theorem 4.2 and Corollary 4.5 imply the following.

Theorem 5.1 [26]. The PPC holds for claw-free graphs.

Glebov and Zambalaeva [33] considered the PPC for planar graphs and reported
the following.

Theorem 5.2 [33]. The PPC holds for planar graphs with girths 5, 8, 9 and 16.
Moreover, if G is a planar graph, the following hold.

1. If g(G) = 8, then G ∈ W1 ◦W2.

2. If g(G) = 9, then G ∈ W1 ◦W1.

3. If g(G) = 16, then G ∈ W0 ◦W1.

It remains an interesting open problem to prove the PPC for the class of planar
graphs.

6. The PPC for t-deficient Graphs

Recall that a graph G of order n is t-deficient if t = n−λ(G). The PPC obviously
holds for 0-deficient graphs and this fact is a best possible result, since there are
0-deficient graphs in Wp+q+2 that are not in Wp ◦ Wq, for example Kp+q+3.
However, Frick and Whitehead [30] showed that for 1-deficient as well as for
2-deficient graphs a stronger result than the PPC holds.

Theorem 6.1 [30]. If G ∈ Wp+q+2 and G is 1-deficient or 2-deficient, then
G ∈ Wp ◦Wq.

Theorem 6.1 is best possible, as shown in [30].

Frick and Schiermeyer [29] proved the following two results.

Theorem 6.2 [29]. If G ∈ Wp+q+1 and G is 3-deficient, then G ∈ Wp ◦Wq.

Theorem 6.3 [29]. Let t ≥ 4 and suppose G is a t-deficient graph of order n in
Wp+q+1 Then G ∈ Wp ◦Wq if either of the following hold.

1. p ≥ t− 1 and n ≥ 10t2 − 3t.

2. p < t− 1 and n ≥ 4t2 − 6t− 4.

We conclude that the PPC for t-deficient graphs is true for t ≤ 3 and asymptot-
ically true for t ≥ 4.
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7. Generalized Chromatic Numbers

Let P and Q be additive hereditary properties of graphs. Broere, Dorfling and
Jonck [21] defined the generalized chromatic number χQ(P) as follows:

χQ(P) = m if P ∈ Qm and P 6∈ Qm−1.

The chromatic number χWm
was introduced by Chartrand, Geller and Hedet-

niemi [23] in 1968.

From Theorems 2.2, 2.3 and 2.4, the following bounds for the corresponding
generalized chromatic numbers are easily derived. (The bound for χDm

(Dk) was
also given by Lick and White [43].)

χSm
(Sk) ≤

⌈

k + 1

m+ 1

⌉

, χDm
(Dk) ≤

⌈

k + 1

m+ 1

⌉

, χOm
(Ok) ≤

⌈

k + 1

m+ 1

⌉

.

It is therefore not unreasonable to expect the following conjecture to be true.

Conjecture 7.1. If 0 ≤ m ≤ k, then χWm
(Wk) ≤

⌈

k+1
m+1

⌉

.

If the PPC is true, then Conjecture 7.1 will also be true. This was essentially the
reason why the author became interested in the PPC.

Using Theorem 3.3, Bullock and Frick [22] derived the following bound for
χWm

(Wk).

Theorem 7.2 [22]. χWm
(Wk) ≤

⌈

3(k−m)
2m+2 + 1

⌉

for all m, k ≥ 1.

By a different method, using Theorem 2.8, Broere, Dorfling and Jonck [18] ob-
tained the following bound.

Theorem 7.3 [18]. χWm
(Wk) ≤

⌈

3k
2m+3

⌉

for all m ≥ 15, k ≥ 1.

8. The Directed Path Partition Conjecture

Let λ(D) denote the number of vertices in a longest directed path of a digraph D.
Then the digraph analogue of the Path Partition Conjecture, called the Directed
Path Partition Conjecture (or DPPC), may be stated as follows.

Conjecture 8.1 (DPPC). If D is any digraph and (λ1, λ2) any pair of positive
integers such that λ1 + λ2 = λ(D), then there exists a partition (V1, V2) of the
vertex set of D such that λ(G[Vi]) ≤ λi, i = 1, 2.
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In 1995 Bondy [13] formulated a conjecture that is seemingly stronger than the
DPPC, requiring λ(D[Vi]) = λi instead of λ(D[Vi]) ≤ λi. The first explicit
formulation of the DPPC in the literature appeared in 2005 in a paper by van
Aardt, Dlamini, Dunbar, Frick and Oellermann [2].

The oriented analogue of the PPC is called the OPPC. Both the PPC and the
OPPC may be regarded as special cases of the DPPC.

Bang-Jensen, Nielsen and Yeo [9] proved that the DPPC holds for certain
generalizations of tournaments, and recently Arroyo and Galeana-Sanchéz [8]
found further generalizations of tournaments for which the DPPC holds. How-
ever, as mentioned in [9], the DPPC seems an extremely difficult conjecture to
attack for general digraphs, since very little can be said about the structure of
longest paths in general digraphs.

While the PPC has been proved for λ1 ≤ 8, the DPPC has not even been
settled for λ1 = 1. This special case has turned out to be a difficult and intriguing
conjecture in its own right. It is treated, for example, in [2, 31, 32, 37, 42].

Furthermore, while the PPC for t-deficient graphs has been shown to hold for
all t ≤ 3 (and asymptotically for all t), it is not yet known whether the OPPC for
t-deficient oriented graphs holds for any t ≥ 1. Results in support of the special
case t = 1 are proved in [1, 3, 4, 5, 28] and it is shown in [6] that if the OPPC
does hold for 1-deficient oriented graphs, it would be a best possible result (in
contrast to Theorem 6.1).
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