
Discussiones Mathematicae
Graph Theory 33 (2013) 373–385
doi:10.7151/dmgt.1672

STAR COLORING OF SUBCUBIC GRAPHS

T. Karthick1and C.R. Subramanian

Indian Statistical Institute, Chennai Centre

Chennai- 600 113, India

e-mail: tlkrkiitm@gmail.com
crs@imsc.res.in

Abstract

A star coloring of an undirected graph G is a coloring of the vertices of
G such that (i) no two adjacent vertices receive the same color, and (ii) no
path on 4 vertices is bi-colored. The star chromatic number of G, χs(G),
is the minimum number of colors needed to star color G. In this paper, we
show that if a graph G is either non-regular subcubic or cubic with girth at
least 6, then χs(G) ≤ 6, and the bound can be realized in linear time.
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1. Introduction

All our graphs are simple, finite and undirected, and we follow West [14] for
standard notations and terminology. A vertex coloring (or simply coloring) of a
graph G is an assignment of colors to the vertices of G such that no two adjacent
vertices receive the same color. Vertex coloring of graphs has a vast literature,
and several variations of vertex coloring have been introduced and studied by
many researchers. We refer to a book by Jensen and Toft [10] for an excellent
survey on various graph colorings.

In a vertex coloring of G, the set of colors with the same color is called a
color class. Obviously, the subgraph induced by the union of two color classes
is a bipartite graph. In 1973, Grünbaum [9] proposed several variants of vertex
coloring with restrictions on the union of two color classes. Among them, acyclic
coloring and star coloring of graphs have received much attention (see [1, 3, 6,
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11, 12, 13]). The interest began when it came to be known that these coloring
problems have applications in combinatorial scientific computing. In particular,
the star (acyclic) coloring problems correspond to direct (indirect) schemes for
recovery of the Hessian matrices. See [7] for a survey of coloring problems as they
relate to sparse derivative matrices.

An acyclic coloring of a graph G is a coloring of G such that the union of any
two color classes induces a forest, and a star coloring of a graph G is a coloring
of G such that the union of any two color classes induces a star forest (that
is, a coloring of G such that no path on four vertices is bi-colored). The star

chromatic number (acyclic chromatic number) of G, denoted by χs(G) (χa(G)),
is the minimum number of colors required to star (acyclically) color G.

The computation of both χa(G) and χs(G) are NP -hard in general. In
particular, both problems are NP -hard even when restricted to bipartite graphs
[4, 5]. Albertson et al. [1] proved that even if the graph G is planar and bipartite,
the problem of deciding whether G has a star coloring with 3 colors is NP -
complete. Inapproximability results for both problems are given in [8].

The degree of a vertex v in G, dG(v), is the number of vertices adjacent to
v. The maximum degree over all vertices in G is denoted by ∆(G). In 1973,
Grünbaum [9] conjectured that if ∆(G) = r, then χa(G) ≤ r + 1, and he proved
that if ∆(G) = 3, then χa(G) ≤ 4. Skulrattanakulchai [13] gave a linear time
algorithm for realizing this bound. In 1979, Burstein [3] proved that if ∆(G) = 4,
then χa(G) ≤ 5. Recently, Kostochka and Stocker [11] showed that if ∆(G) = 5,
then χa(G) ≤ 7. See [11, 12] for more results on acyclic coloring, and [2] for more
general notion of such restricted colorings and their bounds.

In this paper, we are interested in bounds for the star chromatic number of
graphs with bounded maximum degree. Using the notion of in-coloring, Albertson
et al. [1] proved that if a graph G has an acyclic orientation with maximum in-
degree k, then χs(G) ≤ k∆(G)+1. As a corollary of this result, they proved that
for any graph G, χs(G) ≤ ∆(G)(∆(G)−1)+2, and the equality holds if some com-

ponent of G is ∆-regular. Furthermore, it is known [6] that χs(G) ≤ c(∆(G))
3

2 ,
for any arbitrary graph G, where c is a suitably chosen positive constant. This
bound is also known to be tight within an O((log∆)

1

2 ) multiplicative factor. This
leads to the natural question of whether we can tightly bound the star chromatic
number for graphs with bounded maximum degree. In particular, we focus on
graphs G with ∆(G) ≤ 3. Fertin et al. [6] showed that if G is a cubic graph,
then χs(G) ≤ 9. Later, Albertson et al. [1] improved this result by proving that
if ∆(G) ≤ 3, then χs(G) ≤ 7.

We show that if a graph G is either non-regular subcubic or cubic with girth
at least 6, then χs(G) ≤ 6. Also, we give a linear time algorithm to realize this
bound. We show this by using a technique of Burstein [3]: We iteratively star
color the vertices of the given graph G one by one. At any point, we extend the
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current partial star coloring of G by one more vertex after recoloring (if necessary)
some previously colored vertices. The recoloring is done only for some subset of
vertices each of which is at a distance at most 3 from the current vertex to be
colored.

2. Notations and Terminology

A graph G is said to be subcubic if ∆(G) ≤ 3, and is cubic if dG(v) = 3, for all
v ∈ V (G). The girth of G is the length of a shortest cycle in G. For v ∈ V (G)
and i ≥ 0, let Ni({v}) = {u ∈ V (G) : d(v, u) = i} (here d(x, y) is the length of a
shortest path between two vertices x and y), and we simply denote it by Ni(v).
N1(v) is denoted by N(v), and N [v] = N(v) ∪ {v}. For x, y ∈ V (G), we write
N(x)− y instead of N(x) \ {y}.

Let S = {1, 2, 3, 4, 5, 6}. A partial star coloring is an assignment of colors to a
subset of V (G) such that the colored vertices induce a graph with a star coloring.
Suppose G has a partial star coloring and let v be an uncolored vertex. We say
that a color α ∈ S is available for v if no neighbor of v is colored α. A color
α ∈ S is feasible for v if assigning the color α to v still results in a partial star
coloring. Let α, β ∈ S. An (α, β)-path is a path in G with each vertex colored
α or β. A vertex v is in an (α, β)- dangerous path ((α, β)-DP, for short) P if v
is uncolored and P − v is an (α, β)-path on three vertices. A vertex v is in an
(α, β)-partial dangerous path ((α, β)-PDP, for short) P if v is colored and P − v
is an (α, β)-path on three vertices.

We use the following simple observation often.
Recoloring tool (RCT): Let G be a subcubic graph, and let π be a partial star
coloring of G using colors from S. Let v be a vertex in G which is colored (or
uncolored). Let x be a neighbor of v such that π(x) = c, and let x1 and x2 be
the neighbors of x such that π(x1) = c1 and π(x2) = c2. If v is in both (c, c1)-
and (c, c2)-PDP’s (or DP’s), then c1 6= c2 (since π is a partial star coloring), and
|π((N [x]− v) ∪N(N(x)− v))| ≤ 5. Hence, there exists a color α ∈ S \ {c, c1, c2}
such that α /∈ π((N [x]− v) ∪N(N(x)− v)).

In the following (unless otherwise stated), we assume that G is connected.

3. Star Coloring of Non-regular Subcubic Graphs

In this section, we prove that if G is a non-regular subcubic graph, then χs(G) ≤
6. We first observe the following simple facts:

(i) A graph G is subcubic if and only if G is a subgraph of some cubic graph
H.
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(ii) If G is a connected non-regular subcubic graph, then every subgraph of G
has a vertex of degree at most 2 (that is, G is a 2-degenerate graph).

Making use of the above facts, we obtain the star coloring as follows: First, we
linearly order the vertices of the given connected non-regular subcubic graph G
as v1, v2, v3, . . . , vn such that each vi has at most two neighbors in the subgraph
Gi induced by the vertices {vi, vi+1, . . . , vn}. Next, we star color the vertices of
G in the reverse order starting from vn. As a result, it suffices to show that a
star coloring of Gi+1 can be extended to a star coloring of Gi, for every i < n. It
follows as a consequence of the lemma we prove below.

Lemma 1. Let π be a partial star coloring of a subcubic graph G using colors in

S, and let v be any uncolored vertex.

(i) If v has at most one colored neighbor, then there exists a color α ∈ S feasible

for v.

(ii) If v has exactly two colored neighbors, then there exists a partial star coloring

π′ of G using colors in S and a color α ∈ S satisfying the following:

• π′ has the same domain as π.

• π′(t) 6= π(t) implies t ∈ N(v).

• α is feasible for v under π′.

Moreover, both π′ and α can be found in O(1) time.

Proof. (i) If at most one neighbor of v is colored, then v has five available colors,
and at least three of them are obviously feasible for v.

(ii) Suppose that v has two colored neighbors, say x and y. If π(x) = π(y),
then since |N(x)− v| ≤ 2 and |N(y)− v| ≤ 2, v has five available colors, and at
most four of them are not feasible, at least one of them is feasible for v. Suppose
π(x) 6= π(y). Assume (w.l.o.g.) that π(x) = 1 and π(y) = 2. If there exists
k ∈ {3, 4, 5, 6} and k /∈ π(N(x)−v)∪π(N(y)−v), then k is obviously feasible for
v. So, assume that π(N(x) − v) ∪ π(N(y) − v) = {3, 4, 5, 6}. Again, w.l.o.g., let
π(N(x)− v) = {3, 4}, and π(N(y)− v) = {5, 6}. Then, assume that v appears in
all (1, 3)-, (1, 4)-, (2, 5)-, and (2, 6)-DP’s (else, if v is not in one of these dangerous
paths, say v is not in any of the (1, 3)-DP’s, then 3 is feasible for v). Thus, by
RCT, there exists α ∈ {2, 5, 6} such that α /∈ π(N [x] − v) ∪ π(N(N(x) − v)). If
we define π′ as π′(x) = α, and π′(t) = π(t), for every other colored vertex t, then
color 1 is feasible for v.

The above lemma implies the following.

Theorem 2. If G is a non-regular subcubic graph, then χs(G) ≤ 6. Moreover,

such a coloring can be found in O(n) time, where n is the number of vertices in

G.
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4. Star Coloring of Cubic Graphs

In this section, we show that if G is a cubic graph with girth at least 6, then
χs(G) ≤ 6. Note that if G is a graph with girth at least 6, then for any v ∈ V (G),
(i) the subgraphs induced by N(v) and N2(v) are both empty graphs, (ii) if
x, y ∈ N(v), then N(x) ∩N(y) = {v}, and (iii) if x ∈ N(v) and y ∈ N3(v), then
xy /∈ E(G). In the following, we use this fact implicitly often.

For the rest of the paper, if G is a given cubic graph with girth at least 6,
then we obtain a partial star coloring π′ of G from a partial star coloring π of
G by changing the colors of only few vertices (using the girth assumption) which
we mention them explicitly, and for every other vertex π′ agrees with π. Also, if
x ∈ V (G), and if x is uncolored under π, then for convenience, we write π(x) = 0.

Before proving our main result, we derive a recoloring lemma which recolors
a vertex and its local neighborhood in a partial star coloring of a given graph G.

Lemma 3. Let G be a cubic graph with girth at least 6. Let π be a partial star

coloring of G using colors in S, and let v be a vertex in G with π(v) = c. If v has

two colored neighbors x and y, and an uncolored neighbor w, then there exists a

partial star coloring π′of G satisfying the following:

(i) π′ has the same domain as π.

(ii) π′(t) 6= π(t) implies t ∈ N [v] \ w or t ∈ N(N(v)− w).
Furthermore, π′(v) 6=π(v), and if we set π′(w)=c, then any P4-path: (w, v, v1, v2),
where v1 ∈ N(v)−w and v2 ∈ N(N(v)−w), contains at least three colors under

π′.

Moreover, π′ can be found in O(1) time.

Proof. We assume that c = 1.

Case 1. x and y have the same color. Assume (w.l.o.g.) that π(x) = π(y) = 2.
Then {3, 4, 5, 6} ⊆ π(N(x) − v) ∪ π(N(y) − v) (else, π′(v) = α, where α ∈
{3, 4, 5, 6}, and α /∈ π(N(x)−v)∪π(N(y)−v)). Assume (w.l.o.g.) that π(N(x)−
v) = {3, 4} and π(N(y)− v) = {5, 6}. Let x1, x2 be the neighbors of x, and y1, y2
be the neighbors of y. Assume (w.l.o.g.) that π(x1) = 3, π(x2) = 4, π(y1) = 5,
and π(y2) = 6.

If 1 /∈ π(N(N(x)− v)∪N(N(y)− v)), then π′(x) = 1 = π′(y) and π′(v) = 2.
So, assume that 1 ∈ π(N(N(x) − v) ∪ N(N(y) − v)). Let 1 ∈ π(N(N(x) − v)).
W.l.o.g, let 1 ∈ π(N(x1) − x). Then 5, 6 ∈ π(N(N(x) − v)) (else, π′(x) = α,
where α ∈ {5, 6} and α /∈ π(N(N(x)− v)) and π′(v) = 3 or 4). We assume that
5 ∈ π(N(x1) − x) and 6 ∈ π(N(x2) − x) (since the case 5, 6 ∈ π(N(x2) − x)
can be easily verified using similar arguments). Let x′1, x

′′

1 be the neighbors of x1
such that π(x′1) = 1 and π(x′′1) = 5, and let x′2, x

′′

2 be the neighbors of x2 such
that π(x′2) = 6 and π(x′′2) = k, where k ∈ {0, 1, 2, 3, 5, 6}. We split the remaining
proof into the following cases depending on k.
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Case 1.1. k = 0. If x is not in any of the (4, 6)-PDP’s, then π′(x) = 6 and
π′(v) = 3.

If x is in a (4, 6)-PDP, then by RCT, there exists β ∈ {1, 2, 3, 5} such that
β /∈ π((N [x2] − x) ∪ N(N(x2) − x)). Now, define π′(x2) = β, π′(x) = 4, and
π′(v) = 3.

Case 1.2. k = 6. Define π′(x) = 6 and π′(v) = 3.

Case 1.3. k ∈ {2, 3}. Note that x is in a (3, 5)-PDP (else, π′(x) = 5 and
π′(v) = 4). First, assume that x is not in any of the (3, 1)-PDP. If v is not in
any of the (2, α)-PDP’s, where α ∈ {5, 6}, then define π′(x) = 1 and π′(v) = α.
So, assume that v is in both (2, 5)- and (2, 6)-PDP’s. Then by RCT, there exists
β ∈ {1, 3, 4} such that β /∈ π((N [y]− v) ∪N(N(y)− v)). Now, define π′(x) = 1,
π′(y) = β, and π′(v) = 2.

So, x is in a (3, 1)-PDP. Then by RCT, there exists β ∈ {2, 4, 6} such that
β /∈ π((N [x1]− x) ∪N(N(x1)− x)). Now, define π′ as follows:

If k = 2, then π′(x1) = β, π′(x) = 3, and π′(v) = 4.
If k = 3 and β = 2, then π′(x1) = β = 2, π′(x) = 5, and π′(v) = 3.
If k = 3 and β ∈ {4, 6}, then π′(x1) = β, and π′(v) = 3.

Case 1.4. k = 1. Note that x is in both (3, 5)- and (4, 6)-PDP’s. For, if x
is not in any of the (3, 5)-PDP’s, then define π′(x) = 5 and π′(v) = 4. Similar
proof holds if x is not in any of the (4, 6)-PDP’s.

First, assume that x is not in any of the (3, 1)- and (4, 1)-PDP’s. If v is not
in any of the (2, α)-PDP’s, where α ∈ {5, 6}, then define π′(x) = 1 and π′(v) = α.
So, assume that v is in both (2, 5)- and (2, 6)-PDP’s. Then by RCT, there exists
β ∈ {1, 3, 4} such that β /∈ π((N [y]− v) ∪N(N(y)− v)). Now, define π′(x) = 1,
π′(y) = β and π′(v) = 2.

So, x is in at least one of (3, 1)-, (4, 1)-PDP’s. W.l.o.g., assume that x is in
a (3, 1)-PDP. Then by RCT, there exists β ∈ {2, 4, 6} such that β /∈ π((N [x1]−
x) ∪N(N(x1)− x)). Now, define π′(x1) = β, π′(x) = 3, and π′(v) = 4.

Case 1.5. k = 5. Note that x is in both (3, 1)- and (4, 6)-PDP’s. For, if x
is not in any of the (3, 1)-PDP’s, then define π′(x) = 1 and π′(v) = 4. Similar
proof holds if x is not in any of the (4, 6)-PDP’s.

Now, assume that x is not in any of the (3, 5)- and (4, 5)-PDP’s. If v is not
in any of the (2, 6)-PDP’s, then define π′(x) = 5 and π′(v) = 6. So, assume
that v is in a (2, 6)-PDP. Then {1, 3, 4} ⊆ π(N(N(y) − v)) (else, if α ∈ {1, 3, 4}
and α /∈ π(N(N(y) − v)), then define π′(x) = 5, π′(y) = α, and π′(v) = 2).
So, there exist c1, c2 ∈ {1, 3, 4} (c1 6= c2) such that π(N(y1) − y) = {c1, c2},
and c1, c2 /∈ π(N(y2) − y). We assume that c1 = 3 and c2 = 4 since the other
cases can be handled using similar arguments. Assume that y is in both (5, 3)-
and (5, 4)-PDP’s (else, if y is not in any of the (5, α)-PDP’s, where α ∈ {3, 4},
then define π′(y) = α, π′(x) = 5, and π′(v) = 2). Thus by RCT, there exists
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β ∈ S \ {3, 4, 5} such that β /∈ π((N [y1] − y) ∪ N(N(y1) − y)). Now, if β = 2,
then define π′(x) = 5, π′(y1) = 2, π′(y) = 3 and π′(v) = 6, and if β ∈ {1, 6}, then
define π′(x) = 5, π′(y1) = β, π′(y) = 5 and π′(v) = 2.

So, x is in at least one of (3, 5)-, (4, 5)-PDP’s. W.l.o.g., assume that x is in
a (3, 5)-PDP. Then by RCT, there exists β ∈ {2, 4, 6} such that β /∈ π((N [x1]−
x) ∪N(N(x1)− x)). Now, define π′(x1) = β, π′(x) = 3, and π′(v) = 4.

Case 2. x and y have different colors. Assume that π(x) = 2 and π(y) = 3.
Then we have {4, 5, 6} ⊆ π(N(x) − v) ∪ π(N(y) − v) (else, π′(v) = α, where
α ∈ {4, 5, 6}, and α /∈ π(N(x) − v) ∪ π(N(y) − v)). Assume (w.l.o.g.) that
π(N(x)− v) = {4, 5} and 6 ∈ π(N(y)− v). Let x1, x2 be the neighbors of x, and
y1, y2 be the neighbors of y. Assume (w.l.o.g.) that π(x1) = 4, π(x2) = 5, π(y1) =
6, and π(y2) = k, where k ∈ {0, 1, 2, 4, 5, 6}.

Case 2.1. k = 0. If v is not in any of the (3, 6)-PDP’s, then π′(v) = 6.
If v is in a (3, 6)-PDP, then by RCT, there exists β ∈ {1, 2, 4, 5} such that

β /∈ π((N [y]− v) ∪N(N(y)− v)). Now, define π′(y) = β, and π′(v) = 3.

Case 2.2. k = 6. Define π′(v) = 6.

Case 2.3. k ∈ {1, 2}. Note that v is in (2, 4)-, (2, 5)-, and (3, 6)-PDP’s. So
by RCT, there exists β ∈ {1, 3, 6} such that β /∈ π((N [x] − v) ∪ N(N(x) − v)).
Now, define π′ as follows:

If k = 1, then π′(x) = β, and π′(v) = 2.
If k = 2 and β ∈ {1, 6}, then if v is not in any of the (2, 3)-PDP’s, then

π′(x) = β, and π′(v) = 2. Otherwise if v is in a (2, 3)-PDP, then by RCT, there
exists γ ∈ {1, 4, 5} such that γ /∈ π((N [y] − v) ∪ N(N(y) − v)). Now, define
π′(x) = β, π′(y) = γ, and π′(v) = 3.

If k = 2 and β = 3, then define a partial star coloring π1 as π1(x) = β = 3,
and π1(t) = π(t), for every other colored vertex t. Now, proceed as in Case 1 by
assuming π1 for G to obtain π′ with the required conditions.

Case 2.4. k ∈ {4, 5}. Let k = 4. Note that v is in both (2, 5)- and (3, 6)-
PDP’s. Also, v is in at least one of (2, 4)-, (3, 4)-PDP’s. W.l.o.g., assume that
v is in a (2, 4)-PDP. Then by RCT, there exists β ∈ {1, 3, 6} such that β /∈
π((N [x]− v) ∪N(N(x)− v)). Now, define π′(x) = β, and π′(v) = 2.

The case k = 5 can be handled using similar arguments.

Next by using Lemma 3, we prove the following lemma which together with
Lemma 1 imply our result (Theorem 5).

Lemma 4. Let G be a cubic graph with girth at least 6. Let π be a partial

star coloring of G using colors in S, and let v be any uncolored vertex. If v has

exactly three colored neighbors, then there exists a partial star coloring π′ of G
using colors in S and a color α ∈ S satisfying the following:
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(i) π′ has the same domain as π.

(ii) π′(t) 6= π(t) implies t ∈ N(v) or t ∈ N2(v) or t ∈ N3(v).

(iii) α is feasible for v under π′.

Moreover, both π′ and α can be found in O(1) time.

Proof. Suppose v has three colored neighbors, say x, y, z.

Case 1. All three neighbors of v have the same color. Assume (w.l.o.g.) that
π(x) = π(y) = π(z) = 1. Also, assume that {2, 3, 4, 5, 6} ⊆ π(N2(v)) (else, if
α ∈ {2, 3, 4, 5, 6} and α /∈ π(N2(v)), then α is obviously feasible for v). Then
there exist colors c1, c2 ∈ {2, 3, 4, 5, 6} such that c1 6= c2 and c1, c2 belong to (say)
π(N(x) − v) and c1, c2 /∈ π((N(y) − v) ∪ (N(z) − v)). Assume (w.l.o.g.) that
c1 = 2 and c2 = 3. Let x1 and x2 be the neighbors of x such that π(x1) = 2 and
π(x2) = 3. We show that either 2 or 3 is feasible for v.

Now, assume that {4, 5, 6} ⊆ π(N(N(x) − v)) (else, if β ∈ {4, 5, 6} and
β /∈ π(N(N(x) − v)), then define π′(x) = β, hence both 2 and 3 are obviously
feasible for v). W.l.o.g., let x′1, x

′′

1 be the neighbors of x1 such that π(x′1) = 4
and π(x′′1) = 5, and let x′2, x

′′

2 be the neighbors of x2 such that π(x′2) = 6 and
π(x′′2) = k, where k ∈ {0, 1, 2, 4, 5, 6}. We split the remaining proof into the
following cases depending on k.

Case1.1. k = 0. If x is not in any of the (3, 6)-PDP’s, then π′(x) = 6, and
π′(v) = 2.

If x is in a (3, 6)-PDP, then by RCT, there exists β ∈ {1, 2, 4, 5} such that
β /∈ π((N [x2] − x) ∪ N(N(x2) − x)). Now, if we define π′(x2) = β, π′(x) = 3,
then 2 is feasible for v.

Case 1.2. k ∈ {1, 2}. We assume that x is in both (2, 4)- and (2, 5)-PDP’s
(else, if x is not in any of the (2, α)-PDP’s, where α ∈ {4, 5}, then define π′(x) =
α, hence 3 is obviously feasible for v). So by RCT, there exists β ∈ {1, 3, 6} such
that β /∈ π((N [x1]− x) ∪N((N(x1)− x))).

If β ∈ {1, 6}, then define π′(x1) = β, and π′(x) = 4 or 5. Hence both 2 and
3 are feasible for v.

If k = 1 and β = 3, then define π′(x1) = β, and π′(x) = 2. Hence 3 is feasible
for v.

If k = 2 and β = 3, then define π′(x1) = β. Hence 2 is feasible for v.

Case 1.3. k ∈ {4, 5}. Let k = 4. Assume that x is in a 2, 5−PDP (else,
define π′(x) = 5, and hence 3 is feasible for v). Note that 2 ∈ π(N(x′′1) − x1).
Also, assume that {1, 3, 6} ⊆ π(N(N(x1) − x)) (else, define π′(x1) = α, where
α ∈ {1, 3, 6} and α /∈ π(N(N(x1)−x)), and π′(x) = 2, so, 3 is feasible for v). We
assume that π(N(x′1)− x1) = {1, 3} and π(N(x′′1)− x1) = {2, 6} (since the other
possibilities can be easily verified in a similar manner).
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Now assume that x1 is in both (4, 1)- and (4, 3)-PDP’s (else, if x1 is not in any
of the (4, α)-PDP’s, where α ∈ {1, 3}, then define π′(x1) = α, and π′(x) = 2,
hence 3 is feasible for v). So by RCT, there exists β ∈ {2, 5, 6} such that β /∈
π((N [x′1]− x1) ∪N(N(x′1)− x1)). Now, if we define π′(x′1) = β, π′(x1) = 4, and
π′(x) = 2, then 3 is feasible for v.

Case 1.4. The case k = 5 can be handled using similar arguments.

Case 1.5. k = 6. If we define π′(x) = 6, then 2 is obviously feasible for v.

Case 2. Two neighbors of v have the same color, the third has a different color
from these two. Assume (w.l.o.g.) that π(x) = π(y) = 1 and π(z) = 2. Also,
assume that {3, 4, 5, 6} ⊆ π(N2(v)) (else, if β ∈ {3, 4, 5, 6} and β /∈ π(N2(v)),
then β is feasible for v).

If 2 /∈ π(N(x)− v)∪π(N(y)− v), then if z has at most one colored neighbor,
then it is easy to see that there exists a partial star coloring π1 of G such that
π1(z) 6= 2, since |π(N [z]− v)∪ π(N(N(z)− v))| ≤ 4. Else, by applying Lemma 3
to z, there exists a partial star coloring π1 of G such that π1(z) 6= 2. If π1(z) 6= 1,
then define π′ as π1, and the color 2 is feasible for v (since if π1(v) = 2, then
the path (v, z, z1, z2), where z1 ∈ N(z) − v and z2 ∈ N(N(z) − v), contains at
least three colors in G under π1). If π1(z) = 1, then proceed as in Case 1 by
assuming the partial star coloring π1 for G to get a partial star coloring π′ of G
and a feasible color for v.

So, assume that 2 ∈ π(N(x)−v)∪π(N(y)−v). W.l.o.g., let x1 be a neighbor
of x such that π(x1) = 2. Let z1, z2 be the neighbors of z. By assumptions, there
exists a color k ∈ {3, 4, 5, 6} such that k ∈ π(N(z) − v) and k /∈ π(N(x) − v) ∪
π(N(y)− v), say k = 6. Let π(z1) = 6, and let π(z2) = r, r ∈ {0, 1, 3, 4, 5, 6}. We
split the remaining proof into the following cases depending on r.

Case 2.1. r = 0. If v is not in any of the (2, 6)-DP’s, then 6 is feasible for v.

If v is in a (2, 6)-DP, then there exists β ∈ {3, 4, 5} such that β /∈ π((N [z]−
{v, z2}) ∪ (N(z1)− z)). Now, if we define π′(z) = β, then 6 is feasible for v.

Case 2.2 r = 6. It is easy to see that 6 is feasible for v. So, assume r 6= 6.
Also, assume that v is in a (2, 6)-DP (else, 6 is obviously feasible for v). Note
that 2 ∈ π(N(N(z)− v)). W.l.o.g., let 2 ∈ π(N(z1)− z).

Case 2.3. r = 1. Then {3, 4, 5} ⊆ π(N(N(z) − v)) (else, define π′(z) = β,
where β ∈ {3, 4, 5} and β /∈ π(N(N(z) − v)); hence, 6 is feasible for v). So,
there exist c1, c2 ∈ {3, 4, 5} (c1 6= c2) such that π(N(z2) − z) = {c1, c2}, and
c1, c2 /∈ π(N(z1) − z). Assume that z is in both (1, c1)- and (1, c2)-PDP’s (else,
if z is not in any of the (1, α)-PDP’s, where α ∈ {c1, c2} then define π′(z) = α,
and so 6 is feasible for v). Thus by RCT, there exists β ∈ S \ {1, c1, c2} such
that β /∈ π((N [z2]− z)∪N(N(z2)− z)). Now, define a partial star coloring π1 as
follows: π1(z2) = β, π1(z) = 1, and π1(t) =π(t), for every other colored vertex t.
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Then proceed as in Case 1 by assuming π1 for G to get a partial star coloring π′

of G and a feasible color for v.

Case 2.4. r ∈ {3, 4, 5}. If 1 /∈ π(N(N(z) − v)), then define a partial star
coloring π1 as π1(z) = 1, and π1(t) = π(t), for every other colored vertex t. Then
proceed as in Case 1 by assuming π1 for G to get a partial star coloring π′ of G
and a feasible color for v.

So, assume that 1 ∈ π(N(N(z)− v)). Also, recall that 2 ∈ π(N(z1)− z). Let
r = 3. Then, {4, 5} ⊆ π(N(N(z) − v)) (else, define π′(z) = β, where β ∈ {4, 5}
and β /∈ π(N(N(z)− v)), and hence 6 is feasible for v).

Assume that 1 ∈ π(N(z1) − z). Then π(N(z2) − z) = {4, 5}. Assume that
z is in both (3, 4)- and (3, 5)-PDP’s (else, if z is not in any of the (3, α)-PDP’s,
where α ∈ {4, 5} then define π′(z) = α, and 6 is feasible for v). So by RCT, there
exists β ∈ {1, 2, 6} such that β /∈ π((N [z2]− z) ∪N(N(z2)− z)). Now, define π′

as follows: π′(z2) = β, and π′(z) = 3. Hence, 6 is feasible for v.

Assume that 1 ∈ π(N(z2) − z). So, (w .l.o.g.) 4 ∈ π(N(z1) − z) and 5 ∈
π(N(z2) − z). If z is not in any of the (3, 1)-PDP’s, then define a partial star
coloring π1 as π1(z) = 1, and π1(t) = π(t), for every other colored vertex t. Then
proceed as in Case 1 by assuming π1 for G to get a partial star coloring π′ of G
and a feasible color for v. So, we conclude that z is in a (3, 1)-PDP. Also, z is in
a (3, 5)-PDP (else, define π′(z) = 5, and 6 is feasible for v). Thus by RCT, there
exists β ∈ {2, 4, 6} such that β /∈ π((N [z2]− z) ∪N(N(z2)− z)). Now, define π′

as follows: π′(z2) = β, and π′(z) = 3. Hence 6 is feasible for v.

Case 2.5. The case r ∈ {4, 5} can be handled using similar arguments.

Case 3. All three neighbors of v have the distinct colors. Assume (w.l.o.g.)
that π(x) = 1, π(y) = 2 and π(z) = 3. Also, assume that {4, 5, 6} ⊆ π(N2(v))
(else, if β ∈ {4, 5, 6} and β /∈ π(N2(v)), then β is feasible for v).

If 1 /∈ π(N(y)− v)∪π(N(z)− v), then if x has at most one colored neighbor,
then it is easy to see that there exists a partial star coloring π1 of G such that
π1(x) 6= 1, since |π(N [x]−v)∪π(N(N(x)−v))| ≤ 4. Else, by applying Lemma 3 to
x, there exists a partial star coloring π1 of G such that π1(x) 6= 1. If π1(x) 6= 2, 3,
then define π′ as π1, and the color 1 is feasible for v (since if π1(v) = 1, then
the path (v, x, x1, x2), where x1 ∈ N(x) − v and x2 ∈ N(N(x) − v), contains at
least three colors in G under π1). If π1(x) = 2 or 3, then proceed as in Case 2 by
assuming the partial star coloring π1 for G to get a partial star coloring π′ of G
and a feasible color for v. Similar arguments hold if 2 /∈ π(N(x)−v)∪π(N(z)−v)
or 3 /∈ π(N(x)−v)∪π(N(y)−v). So, suppose that 1 ∈ π(N(y)−v)∪π(N(z)−v),
2 ∈ π(N(x)− v)∪π(N(z)− v) and 3 ∈ π(N(x)− v)∪π(N(y)− v). Hence, all the
colors in (N(x)−v)∪ (N(y)−v)∪ (N(z)−v) are distinct. We split the remaining
proof into two cases.



Star Coloring of Subcubic Graphs 383

Case 3.1. The colors 1, 2, 3 appear in distinct sets in {π(N(x)−v), π(N(y)−
v), π(N(z)− v)}.

Suppose (w.l.o.g.) that {2, 4} ⊆ π(N(x) − v), {3, 5} ⊆ π(N(y) − v), and
{1, 6} ⊆ π(N(z) − v). Let x1, x2 be the neighbors of x such that π(x1) = 2 and
π(x2) = 4.

We assume that v is in a (1, 4)-DP (else, 4 is obviously feasible for v). Also, if
either 5 or 6 does not belong to π(N(N(x)− v)), then define π′(x) = 5 or 6, and
hence 4 is feasible for v. So, {5, 6} ⊆ π(N(N(x) − v)). If 3 /∈ π(N(N(x) − v)),
then define a partial star coloring π1 as π1(x) = 3, and π1(t) = π(t), for every
other vertex t. Then proceed as in Case 2 by assuming the partial star coloring
π1 for G to get a partial star coloring π′ of G and a feasible color for v.

So, we conclude that {3, 5, 6} ⊆ π(N(N(x) − v)). Then there exist c1, c2 ∈
{3, 5, 6} (c1 6= c2) such that {c1, c2} ⊆ π(N(x1)− x), and c1, c2 /∈ π(N(x2)− x).
Assume that x is in both (2, c1)- and (2, c2)-PDP’s (else, if x is not in any of the
(2, α)-PDP’s, where α ∈ {c1, c2} then define π′(x) = α, hence, 4 is feasible for v,
since v is not in any of the (α, 4)-DP’s). So, by RCT, there exists β ∈ S\{2, c1, c2}
such that β /∈ π(N [x1]−x)∪π(N(N(x1)−x)). Now, define a partial star coloring
π1 as follows: π1(x1) = β, π1(x) = 2, and π1(t) = π(t), for every other colored
vertex t. Then proceed as in Case 2 by assuming the partial star coloring π1 for
G to get a partial star coloring π′ of G and a feasible color for v.

Case 3.2. Two of the colors in {1, 2, 3} appear in some π(N(t) − v), where
t ∈ {x, y, z}. Then there exist c1, c2 ∈ {4, 5, 6} and c1 6= c2 such that π(N(r) −
v) = {c1, c2}, for some r ∈ {x, y, z}. Assume (w.l.o.g.) that c1 = 4, c2 = 5, and
r = x. Note that 4, 5 /∈ π(N(y)− v) ∪ π(N(z)− v). We assume that v is in both
(1, 4)- and (1, 5)-DP’s (else, 4 or 5 is feasible for v). So, by RCT, there exists
β ∈ {2, 3, 6} such that β /∈ π(N [x]− v) ∪ π(N(N(x)− v)).

Now, if β ∈ {2, 3}, then define a partial star coloring π1 as π1(x) = β, and
π1(t) = π(t), for every other vertex t, and proceed as in Case 2 by assuming the
partial star coloring π1 for G to get a partial star coloring π′ of G and a feasible
color for v.

If β = 6, then define π′(x) = 6, and hence 4 or 5 is feasible for v.

From Lemmas 1 and 4, we have the following.

Theorem 5. If G is a cubic graph with girth at least 6, then χs(G) ≤ 6. More-

over, such a coloring can be found in O(n) time, where n is the number of vertices

in G.

5. Concluding Remarks

In this paper, we have shown that if G is a graph which is non-regular subcubic
or cubic with girth at least 6, then χs(G) ≤ 6. We do not know of any graph G
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explicitly which is non-regular subcubic or cubic with girth at least 6 such that
χs(G) = 6. However, we have the following observations:

(1) If G is a cubic graph, then G − e is a non-regular subcubic graph, for any
edge e ∈ E(G), and it is easy to verify that χs(G) ≤ χs(G− e) + 1, for any
edge e ∈ E(G). So, if for every non-regular subcubic graph G, χs(G) ≤ 5,
then for every cubic graph G, we have χs(G) ≤ 6. Hence, by Theorem 2, it
follows that at least one of the following always holds:

(i) There exists a non-regular subcubic graph G with χs(G) = 6.

(ii) For every cubic graph G, we have χs(G) ≤ 6.

(2) There exists a cubic graphG with girth 4 such that χs(G) = 6. For, consider
the Möbius ladder M8 obtained by adding edges between antipodal vertices
of an 8-cycle. It has been shown in [1] that χs(M8) = 6.

(3) There exists a cubic graphG with girth 5 such that χs(G) = 5. For example,
consider the Petersen graph P . Then, it is easy to see that χs(P ) = 5.

The girth assumption in Lemma 4 played a crucial role while recoloring a vertex
in the neighborhood of an uncolored vertex. But, we believe that the girth
assumption in Lemma 4 (and in Theorem 5) can be dropped, and hence we
propose the following.

Conjecture 6. If G is a graph with ∆(G) ≤ 3, then χs(G) ≤ 6.
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