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Abstract

The well-known Rado graph R is universal in the set of all countable
graphs I, since every countable graph is an induced subgraph of R. We
study universality in I and, using R, show the existence of 2ℵ0 pairwise
non-isomorphic graphs which are universal in I and denumerably many
other universal graphs in I with prescribed attributes. Then we contrast
universality for and universality in induced-hereditary properties of graphs
and show that the overwhelming majority of induced-hereditary properties
contain no universal graphs. This is made precise by showing that there are

2(2
ℵ0 ) properties in the lattice K≤ of induced-hereditary properties of which

only at most 2ℵ0 contain universal graphs.

In a final section we discuss the outlook on future work; in particular
the question of characterizing those induced-hereditary properties for which
there is a universal graph in the property.
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1. Introduction and Motivation

In this article a graph shall (with one illustrative exception) be simple, undirected,
unlabelled, with a countable (i.e., finite or denumerably infinite) vertex set. For
graph theoretical notions undefined here, we generally follow [14].

A property (of graphs) is a class of countable graphs, closed under isomor-
phisms. If two graphs are isomorphic, we refer to any one of them as a clone of the
other. The symbol I denotes the class of all countable graphs. To avoid poten-
tial conceptual problems with proper classes or large numbers of clones, we may
select a particular subset Skel(I) of the class I, with elements one specific graph
chosen from each isomorphism class in I. (Since clones share all their graph
properties, and since we have for many purposes, in a property, no reason to
distinguish between clones, this move is unproblematic.) Similarly, an arbitrary
property P may for most purposes be thought of “concretely” or “extensionally”
as its skeleton, the set Skel(P) := {G ∈ Skel(I) | G ∈ P}. Corresponding to any
graph G we have the property ≤G := {H | H ≤ G} of all induced subgraphs of
G.

A property P is an induced-hereditary property of graphs, or an induced-

hereditary (i-h) property for short, if, whenever G ∈ P and H ≤ G, then H ∈ P
too. As an easy example, note that every ≤G is an i-h property, since ≤ is
transitive. For i-h properties, we generally follow the notation of [1]. In particular,
we use the notation K≤ to denote the lattice of all i-h properties (although the
graphs we consider are generally countable, whereas in [1] they are assumed to
be finite).

Let P be a set of countable graphs. Following [14], we define a graph U to
be a universal graph for P if every graph in P is an induced subgraph of U ; it is
a universal graph in P if U ∈ P too. Since a universal graph U for P is allowed
to be outside P and hence, presumably, to be uncountable, the existence of at
least one such U becomes trivial: take U to be the disjoint union of one clone
from each isomorphism class in P. The fact that this U is in general uncountable
follows from Lemma 1 of [6]; a countable universal graph for any i-h property is
constructed in that paper too—see Theorem 3 of [6]. Another such construction,
again depending on the specific property, occurs in Theorem 3 and Corollary 3.1
of [5].

For given natural numbers n and k ≥ 2, consider the sequence (n0, n1, n2, . . .)
with 0 ≤ ni < k for each i such that n =

∑∞
i=0 nik

i. We shall refer to ni−1 as
the entry in the i’th position of the k-sequence associated with n. When k = 2,
this is of course the binary expansion of n. Rado [21] constructed a (simple)
denumerable graph R with the positive integers as vertex set with the following
edges: For given m and n with m < n, m is adjacent to n if n has a 1 in the m’th
position of its binary expansion. It is well known that R is a universal graph in



Universality for and in Induced-hereditary Graph Properties 35

the set I of all countable graphs and that R is a connected, self-complementary
graph.

The following notation is used for cardinalities: for any graph G, |G| :=
card(V (G)); for any i-h property P: |P| := card(Skel(P)); and for the set K≤ of
all (skeletons of) i-h properties, |K≤| := card{Skel(P) | P ∈ K≤}.

Note that our choice to restrict ourselves to countable graphs means that
|G| ≤ ℵ0 for every graph G. Upper bounds for the other cardinalities mentioned
above are contained in our first result.

Lemma 1. (i) For any i-h property P, |P| ≤ 2ℵ0, and |I| = 2ℵ0.

(ii) |K≤| ≤ 2(2
ℵ0 ).

Proof. (i) Skel(P) ⊆ Skel(I) and |I| = 2ℵ0 , since |I| ≥ 2ℵ0 by Lemma 1 of [6]
and |I| ≤ 2ℵ0 , since each graph in I is an induced subgraph of the Rado graph
R and hence is determined by a subset of the denumerable vertex set of R.

(ii) |K≤| ≤ 2(2
ℵ0 ) since each i-h property is a subset of I, which has cardinality

2ℵ0 by (i).

We note that we shall later (in Theorem 8) show that also |K≤| ≥ 2(2
ℵ0 ), so that

|K≤| = 2(2
ℵ0 ) (Corollary 3).

In Section 2 we study universality in I and, using R, show the existence of
2ℵ0 pairwise non-isomorphic graphs which are universal in I and denumerably
many other universal graphs in I with prescribed attributes. Then we contrast
in Sections 3 and 4 universality for and universality in induced-hereditary prop-
erties of graphs and show that the overwhelming majority of induced-hereditary
properties contain no universal graphs. This is made precise in Section 5 by
showing that there are 2(2

ℵ0 ) properties in the lattice K≤ of induced-hereditary
properties of which only at most 2ℵ0 contain universal graphs. In Section 6 we
conclude by highlighting the problem of characterizing those i-h properties with
universal members.

2. Universality in I

We note that I is the only property P for which universality for P is equivalent
to universality in P. The Rado graph R is of course the archetypal universal
graph in I. Many different constructions for clones of R are known, some of
which can be found in [2] and [4]. We do not here engage with the view of R as
“the random graph” [8]. But is there universality in I beyond R and its clones?
Yes, as we demonstrate in this section.

In our first result it is convenient to let F denote the set of 2ℵ0 pairwise
non-isomorphic linear forests which are shown to exists in Lemma 1 of [6].
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Lemma 2. There exist exactly 2ℵ0 pairwise non-isomorphic (denumerable) graphs

which are universal in I.

Proof. Since (by Lemma 1(i)) |I| = 2ℵ0 , there cannot be more that 2ℵ0 such
graphs. The set {R ⊔ F | F ∈ F} (where ⊔ denotes disjoint union) of graphs
universal in I has 2ℵ0 pairwise non-isomorphic graphs. This follows from the
observation that every vertex of R is of denumerable degree while every vertex
of every linear forest F ∈ F is of degree one or two. Hence if the isomorphism
α : R ⊔ F1

∼= R ⊔ F2, then α has to map every vertex of R to a vertex of R and
correspondingly for vertices outside R, so that F1

∼= F2.

If we write U(P) for the class of graphs which are universal in P, and |U(P)|
for the cardinality of a skeleton of U(P), then what this lemma says is (more
concisely) that |U(I)| = 2ℵ0 .

Given such an abundance of graphs universal in I, one may be interested in
sets S of graphs such that every G ∈ S is universal in I, but moreover has certain
specified attributes (like being connected and self-complementary—which R ⊔ F
above is not) or relations like being induced subgraphs of some special type of
other graphs in S. As an example of such a denumerable set S we present the
next theorem. In order to formulate it, we define a sequence of graphs based on
the following (new) graph operation: For a graph G and any countable non-zero
cardinal κ, we define the graph G(κ) by taking κ pairwise disjoint copies of G on
pairwise disjoint vertex sets and additionally joining each vertex of each copy to
the neighbours of the corresponding vertex in each other copy too.

The required sequence S of graphs, indexed by I = {1, 2, . . . ,ℵ0}, is now
defined by specifying that for each non-zero countable cardinal i ∈ I the graph
Gi is R

(i) (where G1 is of course the Rado graph R itself). Note that R is an
induced subgraph of each Gi, which is a denumerable graph, so that each Gi is
indeed a universal graph in the property I of all countable graphs.

Theorem 1. The denumerable set {Gi | i ∈ I} of these denumerable graphs Gi,

indexed by I = {1, 2, . . . ,ℵ0}, has the following properties:

(i) for every i ∈ I, ≤Gi = I, so every Gi is universal in the property of all

countable graphs;

(ii) for every i ∈ I, Gi is connected;

(iii) for every i ∈ I, Gi is self-complementary;

(iv) for every vertex v ∈ V (Gi) there are exactly i − 1 vertices of Gi different

from v with the same neighbourhood as v (where ℵ0 − 1 = ℵ0);

(v) the distance beween any two vertices of Gi is either 1 or 2, so Gi has diameter

2;

(vi) the Gi’s are pairwise non-isomorphic: if i, j ∈ I, i 6= j, then Gi 6∼= Gj;
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(vii) for all i, j ∈ I, i 6= j, both Gi < Gj and Gj < Gi; and

(viii) for any permutation p : I → I,Gp(1) < Gp(2) < · · · < Gp(ℵ0).

Proof. (i) is the remark before the theorem and (ii) is trivial.

To prove (iii) we remark that, for any index i, any isomorphism from R onto
its complement R can be applied to each copy of R inGi to obtain an isomorphism
from Gi to Gi.

(iv) follows immediately from the construction of the Gi’s, (v) follows from
the corresponding property of R, while (vi) is a consequence of (iv).

To see that (vii) is true: if i < j, then Gi < Gj by the construction of the
Gi’s, while Gj < Gi since Gj is a denumerable graph while Gi is universal in the
property of all countable graphs.

Finally, (viii) is a consequence of (vii).

3. Universality for i-h Properties

For any property P ⊆ I we use, in this and in the next section, the notations
Pf = {G ∈ P | |G| is finite} and Pd = {G ∈ P | |G| is denumerable}. Let P
be any i-h property. Since P ⊆ I, any graph universal in I is universal for P.
Hence, by Lemma 2, we know that there are exactly 2ℵ0 pairwise non-isomorphic
graphs which are universal for P. If P ⊂ I, then many of these, for some P even
all of them, may be outside P.

Examples of P ⊂ I and G universal for P where G /∈ P, or it is not known
whether G ∈ P or not—excluding the usual suspects like G ∼= R or the Gi of
Theorem 1—are known. The universal graphs U B-constructed for any P in [6]
Theorem 3 sometimes may contingently happen to be in P, but at least employed
P explicitly in their construction. The same holds for the universal graphs X(P)
(with P-extensibility—see Section 4) for any P in [5], Theorem 3 and Corollary
3.1.

Examples elsewhere in the literature, especially those P for which it is claimed
that U(P) = ∅ (so that the many graphs universal for P are all outside P), are
summarised in the table below. In this table, S denotes a finite set of cycles and
Sk, for k a positive integer, denotes the set of odd cycles {C3, C5, . . . , C2k+1}.
Furthermore, for a given countable set of connected finite graphs T , the (additive
and) i-h graph property −T is defined by

−T = {G ∈ If | for each T ∈ T , T is not an induced subgraph of G}.
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Property Description U ∈ Pd? Reference

Pfin Graphs with Does not [21] (accredited
all vertices of exist in Pfin to N.G. de Bruijn)
finite degree

−{Km,n} Km,n-free Exists if and only [18]
graphs if m = 1 and n ≤ 3

−{C4} C4-free Does not exist [16]
graphs in −{C4}

−{Cn}, Cn-free Does not exist [9]
n ≥ 5 graphs in −{Cn}
−S Limited cycle- Exists in −S if [11]

free graphs and only if S = Sk

4. Universality in Some i-h Properties: When U(P) 6= ∅

In this section we are interested in i-h properties P ⊂ I, with U(P) 6= ∅, i.e., with
at least one graph universal in P—of which we have already seen two examples
in the table above. (The property I has been treated extensively in Section 2.)

We start by listing some results in the next theorem of which the proofs are
easy.

Theorem 2. Let G be any graph.

(i) ≤G is an i-h graph property;

(ii) G is universal in ≤G (so any graph is universal in at least one i-h property);
and

(iii) If G is finite, then G is (up to isomorphism) the unique universal graph in

≤G.

It is of interest to observe that for i-h properties with (even uncountably) many
universal members as in Lemma 2 (and Lemma 3 below), there may be exactly
one of those members which has the “extension property”. We say that a graph
G has the (classical) extension property when the following holds: For every two
finite disjoint sets U and V of vertices of G there is a vertex not in U ∪ V
which is adjacent to every vertex in U and to no vertex in V . Now, among the
uncountably many graphs universal in I (Lemma 2) there is, up to isomorphism,
exactly one—namely the Rado graph R—with the extension property. Not only
in U(I), but even in the whole of I, R is the unique graph with the extension
property, which hence characterises R among all countable graphs.

In [5] the extension property is generalized from I to any i-h property P as
the “P-extension property”. There Theorem 6 then proves that P has at most

one member with the P-extension property. So, by imposing an apt strict extra
attribute—like some form of extensibility, E—one may cull down |U(P) ∩ E| to
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zero or one. In [4], Theorem 2, U(→H) is culled down by the attribute E =
“H-extensibility” to a singleton: U(→H) ∩ E = {U(H)}.

In [15] and [17] the graph Gk ∈ U(−{Kk+2}) is the unique universal one
having an adapted extension property. A similar result holds for Lk ∈ U(Lk) in
[3].

The concepts of extensibility and homogeneity used in the characterisation
of the Rado graph, as relativised in [5] to P-extensibility and P-homogeneity
respectively, yield in that paper the following result:

Theorem 3. If G is universal in the i-h property P and G has P-extensibility

or P-homogeneity, then G is (up to isomorphism) the unique universal graph in

P with P-extensibility or P-homogeneity—and is in fact both P-extensible and

P-homogeneous.

The next result is also of interest although its proof is easy.

Theorem 4. Let G be any graph and P any i-h property. Then G is universal

in P if and only if P =≤G.

Corollary 1. If there exists at least one graph which is universal in both the i-h

properties P and Q, then P = Q.

In the following table we summarise a few instances from the literature where
U(P) 6= ∅, i.e., where there is at least one graph universal in the i-h property
P. In this table we also indicate, where it is known, a brief description of a
characterisation of a (the) universal graph in P. For a given finite (or countable)
graph H the induced-hereditary graph property →H is defined by →H = {G ∈
If : there is a homomorphism from G into H} (using G ∈ I if H is countable,
respectively). Throughout this table, k, m and n are positive integers.

In Theorem 2(iii) we have seen examples where |U(P)| = 1, namely P =≤G
for a finite G, with G (up to isomorphism) as the unique element of U(≤G). We
end this section by showing that many i-h properties P indeed have 2ℵ0 pairwise
non-isomorphic graphs which are universal in P, just like I (Lemma 2).

Lemma 3. Let P be an additive i-h property containing the set of all linear

forests F , and for which there is a universal graph G in P of which every vertex

is of degree at least three. Then there exist exactly 2ℵ0 pairwise non-isomorphic

graphs which are universal in P.

Proof. Almost the same as the proof of Lemma 2, with G playing the role R
plays there.
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Property Description U ∈ Pd? Characteri- Refere-
sation of U? nce(s)

I All graphs Yes, the Rado C ∼= R iff C has the [21]
= −∅ graph R ∈ I extension property

−{Kk+2} Kk+2-free Yes, the graph C ∼= Gk iff C has an [15], [17]
graphs Gk ∈ −{Kk+2} adapted extension

property
−{Km,n} Km,n-free Exists if and only [18]

graphs if m = 1 and n ≤ 3
−{C3} C3-free Yes, the graph Same as K3-

graphs G1 ∈ −{C3} free graphs above
−S Limited cycle- Exists in −S if [11]

free graphs and only if S = Sk

→H Hom-property Known to exist [20]
for finite H in →H

→H Hom-property Known to exist Two characteri- [4]
for countable H in →H sations known

Ck Colouring Known to exist [7]
number at in Ck
most k + 1

Lk Directed label- Yes, the graph C ∼= Lk iff C has [3]
led graphs Lk ∈ Lk the k-extension

property

5. For Most Properties We Have U(P) = ∅

We immediately have, by Theorem 4, that U(P) = ∅ if and only if, for all G ∈ I,
≤G 6= P. The number of properties ≤G is at most equal to the number of graphs
G ∈ I, namely |I| = 2ℵ0 . But the number of i-h properties is |K≤| = 2(2

ℵ0 ) by
Corollary 3 below. Hence, for the overwhelmimg majority of i-h properties we
have that U(P) = ∅.

Theorem 5. For any i-h property P, P =
⋃
{≤G | G ∈ P}.

Proof. Immediate.

We remark that Theorem 5 demonstrates that any i-h property (even one in
the large majority of those without a universal member) is the union of (maybe
uncountably many) properties with a universal member, those having the special
attributes mentioned in Theorem 2. This theorem also illustrates that a graph
(say universal for P) may be universal for even an uncountable number of different
properties (like the ≤G for G in P). Lastly, this theorem demonstrates that in
the lattice K≤, even though this lattice is not closed under taking unions of the
i-h properties in it [1], each of its elements is the union of those i-h properties
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below it which are “generated” by single elements; a result reminding one of the
distinguishing feature of an algebraic lattice in which the compact elements play
this role [13].

By Corollary 1 we have the following pleasing situation: If P1 and P2 are i-h
properties and G1 and G2 are countable graphs with Gi universal in Pi, i = 1, 2,
then

P1 6= P2 implies G1 6∼= G2.

Hence the cardinality of the set of i-h properties of countable graphs with uni-
versal graphs in them is at most that of the set of countable graphs. This latter
set has cardinality at most 2ℵ0 since each such graph is an induced subgraph of
the Rado graph R, a graph on ℵ0 vertices, Lemma 1(i).

Next we consider i-h properties of graphs determined by forbidding sets: If
X is any set of graphs we denote the set of graphs defined by forbidding members
of X (similar to the definition of −T in Section 3, but now not restricted to finite
graphs) as induced subgraphs by −X , i.e.,

−X = {G ∈ I | X 6≤ G for all X ∈ X}.

Note that if every element of X is a finite graph, then −X is a property of finite
character. Also, if S1 and S2 are sets of cycles, then it is easy to see that they
satisfy the implication

S1 6= S2 implies −S1 6= −S2.

One way of proving this implication is as follows: Show that the set S of all cycles
satisfies the implication

X,Y ∈ S and X ≤ Y imply X ∼= Y.

This then shows that there are at least as many i-h properties of the form −S1

with S1 ⊆ S as there are subsets of the set S of cycles, i.e., at least 2ℵ0 .

Using the same type of argumentation as above, we now work towards show-
ing that there are indeed at least 2(2

ℵ0 ) distinct i-h properties. This is accom-
plished by constructing a set G of graphs satisfying the same implications as
above satisfied by the set of all cycles; this set, however, will be of cardinality at
least 2ℵ0 , with hence at least 2(2

ℵ0 ) subsets.

Consider any sequence k = k1, k2, . . . of positive integers with each ki ≥ 3 and
construct, for each such sequence, a graph Gk as follows: Gk has denumerably
many components, one for each positive integer i, consisting of a cycle Ci+3 with
ki additional vertices which induce a path Pki . Furthermore, there is a designated
vertex vi for each cycle Ci+3 and all the vertices of degree two of the path Pki

are adjacent to the vertex vi on the cycle Ci+3—see the diagram of a typical
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component of Gk below.
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A typical component of Gk

Now let k = k1, k2, . . . and m = m1,m2, . . . be any two permissible such se-
quences. Note that each Gk has exactly one induced subgraph Cn for each n ≥ 4;
hence any possible isomorphism from Gk to a Gm should take the vertices of such
a Cn in Gk to the vertices of the corresponding Cn in Gm. This fact is now used
in

Lemma 4. If k 6= m, then Gk 6∼= Gm.

Proof. If k 6= m, then ki 6= mi for some i. But then the lengths of the paths
attached to the cycle Ci+3 are different and it is impossible to find an isomorphism
between Gk and Gm since such a function should take the copy of Ci+3 in Gk

with the path attached to it to the copy of Ci+3 in Gm with the path attached
to it.

The idea of the proof of this lemma is taken further in Theorem 6 below; the
proof of this theorem is a refinement of the above proof.

Let G be the set G = {Gk | there exist integers ki ≥ 3 such that k =
k1, k2, . . .}. First we note

Corollary 2. There are 2ℵ0 graphs in the set G.

Proof. There are 2ℵ0 such sequences of positive integers.

Theorem 6. If Gk, Gm ∈ G and Gk ≤ Gm, then Gk
∼= Gm.

Proof. Suppose Gk, Gm ∈ G and Gk ≤ Gm with ψ an embedding from Gk into
Gm. Then each cycle Ci+3 of Gk gets mapped by ψ onto the corresponding cycle
Ci+3 of Gm. Consequently, for each i the vertex vi of the cycle Ci+3 of Gk, being
the only one of degree greater than two in this Ci+3, gets mapped onto the cor-
responding vertex of the corresponding cycle Ci+3 of Gm. But then the induced
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path attached to this vertex in Gk has to be mapped onto the corresponding path
attached to the cycle Ci+3 of Gm; if this part of the mapping is not onto, then
the i’th component of Gk is not an induced subgraph of Gm as assumed, given
the restriction on the adjacencies of vi to the vertices of its associated paths Pki

and Pmi
. Hence ki = mi for each i, i.e., k = m and it follows that Gk

∼= Gm.

We are now ready to work towards finding the cardinality of K≤.

Theorem 7. If S and T are subsets of G and S 6= T , then −S 6= −T .

Proof. If S 6= T , then there is a graph Gm which is in exactly one of them.
Suppose without loss of generality that Gm is in S but Gm is not in T . Then
Gm is not in −S since it is a forbidden graph for it. It is in −T since if not, then
some graph Gk ∈ T is an induced subgraph of it. But then Gk

∼= Gm by the
above theorem and hence Gm ∈ T , contrary to our assumption.

The next result can now be proven as an easy consequence; it reminds one of our
motivating example of sets of cycles.

Theorem 8. There are 2(2
ℵ0 ) distinct i-h properties of the form −S with S ⊆ G.

Proof. There are as many distinct i-h properties of the form −S with S ⊆ G as
there are subsets of the set G by Theorem 7, i.e., 2(2

ℵ0 ).

Corollary 3. |K≤| = 2(2
ℵ0 ).

Proof. This follows from Lemma 1(ii) and Theorem 8.

6. Recapitulation and Outlook

We can conclude that the 2(2
ℵ0 ) many i-h properties have considerably fewer—

yes, at most 2ℵ0—graphs available as candidates to serve as universal graphs
in some of them. Even though we introduce no probabilities into this world of
infinities, this means that if you would pick an arbitrary i-h property, it seems
highly unlikely that you would have one with a universal graph in it. An ultimate
challenge in this context would be to find an elegant characterisation of all and
only those P for which U(P) is not empty—a task beyond the horizon of our
present outlook, maybe a mission impossible. Let us elaborate somewhat on this
issue.

We define U≤ := {P ∈ K≤ | U(P) 6= ∅}. By the grace of Theorem 4 and
Corollary 1 it is clear that U≤ = {≤G | G ∈ Skel(I)}; so, seen from the perspec-
tive of I (so to speak) it is trivial to identify U≤. But from the perspective of the
big K≤ it is extremely difficult to distinguish its small subset U≤, to decide from
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some mathematical description of a P ∈ K≤ whether that P is in U≤ or not. The
challenge is aggravated when the same P has seemingly disparate mathematical
descriptions. Here comes a famous example. Let P := {G ∈ I | χ(H) = ω(H)
for all H ≤ G}, the i-h property of all graphs for which every induced subgraph
has equal chromatic and clique number. Seemingly quite incommensurable is the
Berge property Q := {G ∈ I | G contains no odd hole or antihole}. And yet,
a famous mathematical result, the Strong Perfect Graph Theorem [12], demon-
strates that P = Q = Perf, the i-h property of perfect graphs. The “positive”
P (equating graph parameters) turns out to be equivalent to the “negative” Q
(forbidding certain induced subgraphs).

When we muster the i-h properties P which are mentioned explicitly in this
paper as having some information known on the cardinality of U(P), they repre-
sent mainly two types: properties with forbidding, and properties with assignment.
This suggests two plausible strategies for investigating universality in these two
types of property. Both involve the form of how the property is formulated in
mathematical language. The i-h properties with forbidding that we mentioned are
the following, all of the form −T , prohibiting a graph in the property from having
any induced subgraph from the countable set T of connected, finite graphs:

−{Km,n}, forbidding some complete bipartite graph, with U(P) empty except
for the three cases forbidding stars with min(m,n) = 1 and max(m,n) ≤ 3;

−S, forbidding some finite set of cycles, with U(P) empty except for the
cases when forbidden S is a set Sk = {C3, C5, . . . , C2k+1} of odd cycles;

−{Cn}, with n ≥ 4, all n-cycle-free graphs, with U(P) empty;

−{Kk+2}, Kk+2-free graphs (including the case of C3-free graphs), with U(P)
non-empty.

Substantial work has already been done on universality in such properties
which forbid specific induced substructures, for graphs and also for more general
relational structures, in e.g. [10] and [19]. That work links universality to aspects
of logic, set theory, model theory, constraint satisfaction problems, and complex-
ity theory, amply demonstrating the inherent difficulty of the relevant questions.
Here a broad approach is indicated.

The notion of i-h graph properties with assignment was introduced in [7],
Section 4, by the following definition: We say that P is a property with assign-

ment when (a part of) the definition of P stipulates an instance of the following
schema: “For a graph G to be in P it is necessary that there exists a finite,
non-empty set A = {f1, f2, . . . , g1, g2, . . .}, where each fi is a function defined
on V (G) and each gj is a function defined on E(G), and these functions satisfy
...”. The definition of such a property P of graph G then involves not just the
internal graph-theoretical structure of G, but also links extraneous mathematical
structure to G globally. The general graph-theoretic notions of induced subgraph,
i-h property, and homomorphism (including isomorphism)—which co-determine
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universality in an i-h property P—evoke kindred but slightly strengthened no-
tions when P has assignment. This happens because now these notions (unlike
anything in the case of forbidding) have to respect the assignment. It is rather
striking that for all three the i-h properties with assignment at the bottom of the
table in Section 4—namely →H, Ck and Lk—explicit constructions utilizing P of
an element of U(P) are known. It is almost as if in these cases the assignment
embodied in P forces, or at least guides, the construction of a universal member
in P. Here is the nature of the assignments in these three cases:

(i) G ∈→H if and only if there exists a function f1 : V (G) → V (H) which is
a graph homomorphism f1 : G→ H (and we then say that G is H-colourable).

(ii) G ∈ Ck if and only if there exists a bijection f1 : V (G) → B, where B is
some well-ordered set, with specified properties involving k and degree restrictions
on the vertices of G as stipulated in Definition 5 of [7], (and we then say that G
has colouring number at most k + 1).

(iii) Pick a positive integer k and a set Lv of k vertex-labels and a set Le of
k edge-labels. G ∈ Lk if and only if G has an assignment A = {f1, g1, g2}, where
f1 : V (G) → Lv; g1 : E(G) → V (G) × V (G), assigning an orientation to each
edge; and g2 : E(G) → Le (and we then say that G is a directed labelled graph).

It would be interesting to identify more i-h properties P with assignment and
investigate whether the nature of the assignment perhaps directs us towards the
construction of an element in U(P).

Finally, we note that the mother of all i-h properties, I, belongs in trivial
ways to both the type of properties with forbidding and the type of properties
with assignment: I = −∅; and for any G ∈ I, its vertex set V (G) can always be
indexed or labelled by some set of positive integers.
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