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Abstract

The technique of counting cliques in networks is a natural problem. In
this paper, we develop certain results on counting of triangles for the total
graph of the Mycielski graph or central graph of star as well as complete-
graph families. Moreover, we discuss the upper bounds for the number of
triangles in the Mycielski and other well known transformations of graphs.
Finally, it is shown that the achromatic number and edge-covering number
of the transformations mentioned above are equated.

Keywords: total graph, central graph, middle graph, Mycielski graph, in-
dependence number, covering number, edge independence number, edge cov-
ering number, chromatic number, achromatic number.

2010 Mathematics Subject Classification: 05C76, 05C69.

1. Introduction

We consider only finite undirected, connected graphs, without loops or multiple
edges. We follow the terminology of Harary [1] or Bondy et al. [4]. For any graph
G, let V (G), E(G) and T (G) denote the vertex set, the edge set, and the total
graph of G, respectively. We observe that every edge of G produces at least one
triangle in T (G).

In many real-world situations, the problem of determining the number of
cliques in networks is a popular problem. In fact, this relates to the technique of
counting which has attracted much attention now a days [4]. This is due to the
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fact that when the number of cliques increases in networks, there will be more
optimal routes for applications.

In a search for triangle-free graphs with arbitrarily large chromatic numbers,
Mycielski [2] introduced the graph-transformation as follows. Let G be a graph
with the vertex set V = {vi : 1 ≤ i ≤ n}. The Mycielski graph of G, denoted by
µ(G), is the graph obtained from G by adding n+ 1 new vertices V ′ = {v′i : 1 ≤
i ≤ n} and u, then for 1 ≤ i ≤ n, joining v′i to the neighbours of vi and to u. vi
and v′i are known as twin-vertices, and V and V ′ are known as twin-sets in µ(G).
The vertex u is called the root of µ(G). Clearly, V [µ(G)] = V ∪ V ′ ∪ {u}. The
beauty of Mycielski graph µ(G) is that it transforms the triangle-free graph G into
a triangle-free graph µ(G), and it produces three new triangles for every triangle
of G. The iterated Mycielski graph is defined as follows: µn(G) = µ[µn−1(G)]
for n ≥ 1 and µ0(G) = G, [3]. For any graph G, t(G) denotes the number of
triangles in G and dG(v) denotes the degree of a vertex v in G.

2. Results

The following result determines the number of triangles in a total graph.

Theorem 1. For any (p, q) graph G,

t[T (G)] = t(G) +
1

2

p
∑

i=1

[

d2G(vi) + 2mi

(

dG(vi)

3

)]

,

where mi = 1 if dG(vi) ≥ 3; otherwise mi = 0.

Proof. We observe that for any edge e = uv of G, there is a triangle 〈{u, v, e}〉
in T (G). Since G is of size q, T (G) contains q distinct such triangles. For any
vertex v of degree n in G, let e1, e2, . . . , en be its incident edges. We distinguish
two cases.

Case 1. For every two distinct edges ei and ej , there appears a triangle
〈{v, ei, ej}〉 in T (G). Consequently for n ≥ 2, T (G) contains

(

n
2

)

distinct such
triangles.

Case 2. For every three distinct edges ei, ej and ek there appears a triangle
〈{ei, ej , ek}〉 in T (G). Consequently for n ≥ 3, T (G) contains

(

n
3

)

distinct such
triangles.

The above cases show that

t[T (G)] ≥ t(G) + q +

p
∑

i=1

(

dG(vi)

2

)

+

p
∑

i=1

mi

(

dG(vi)

3

)

= t(G) +
1

2

p
∑

i=1

[

d2G(vi) + 2mi

(

dG(vi)

3

)]

(1)
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where mi = 1 if dG(vi) ≥ 3; otherwise mi = 0.
On the other hand, suppose 〈{vi, vj , vk}〉 is a triangle in T (G). Then the

equality in (1) holds provided 〈{vi, vj , vk}〉 is either in G or it can be obtained
from the above cases. Next, we discuss four possibilities depending on vi, vj and
vk.

1. If {vi, vj , vk} ⊆ V (G), then 〈{vi, vj , vk}〉 is in G.

2. If exactly one of vi, vj and vk; say vi, is an edge e of G, then the triangle
〈{e, vj , vk}〉 is of type discussed in our initial observation.

3. If exactly two of vi, vj and vk; say vi and vj are edges of G, then the trian-
gle 〈{vi, vj , vk}〉 is of type discussed in Case 1.

4. If all vi, vj and vk are edges of G, then the triangle 〈{vi, vj , vk}〉 is of
type discussed in Case 2.

Corollary 2. (a) t[T (Pn)] = 2n− 3 for n ≥ 2.

(b) t[T (C3)] = 7 and t[T (Cn)] = 2n if n > 3.

(c) t[T (Km,n)] =
mn
6 (m2 + n2 + 4).

(d) t[T (Kn)] =
1
6(n

2 − n)(n2 − n+ 1).

The Cartesian product G1�G2� · · ·�Gn of n graphs G1, G2, . . . , Gn is the graph
with vertex set V (G1)×V (G2)×· · ·×V (Gn), in which the vertex (a1, a2, . . . , an)
is adjacent to the vertex (b1, b2, . . . , bn) if ai is adjacent to bi in Gi and aj = bj
for all j 6= i; 1 ≤ i, j ≤ n. Let �n

i=1Cmi
= Cm1�Cm2� · · ·�Cmn .

Corollary 3. t[T (�n
i=1Cmi

)] = 2Mn
3 (2n + 1) where M = m1m2 · · ·mn, mi > 3

for 1 ≤ i ≤ n and n ≥ 2.

Proof. �
n
i=1Cmi

is a 2n-regular, triangle-free graph of order M = m1m2 · · ·mn.
By Theorem 1, t[T (�n

i=1Cmi
)] = 1

2M(4n2)+M
(

2n
3

)

and is the required result.

The next result determines the number of triangles in the total graph of Mycielski
graphs.

Theorem 4. Let G be any (p, q)-graph having t(G) triangles and δ(G) ≥ 2. Then

t[T (µ(G))] = 4t(G) +
1

2

p
∑

i=1

[

3d3G(vi) + d2G(vi)
]

+

(

18q + 5p+ p3

6

)

.

Proof. Let V = {v1, v2, . . . , vp} be the vertex set of G. Then V [µ(G)] = V ∪V ′∪
{w}, where V ′ = {v′ : v ∈ V } and E[µ(G)] = E(G) ∪ {uv′ : uv ∈ E(G)} ∪ {v′w :
v′ ∈ V ′}. For any vertex v of degree n in G, let v1, v2, . . . , vn be its adjacent
vertices. Consequently, the vertices v1, v

′

1, v2, v
′

2, . . . , vn, v
′

n are all adjacent to v
in µ(G). Therefore, dµ(G)(v) = 2n. Corresponding to the vertex v in G, there
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exits a vertex v′ in µ(G), which is adjacent to all the vertices v1, v2, . . . , vn and
w. Therefore, dµ(G)(v

′) = n + 1. Further, w is adjacent to all p vertices of V ′.
Hence, dµ(G)(w) = p. Since δ(G) ≥ 2, we have p ≥ 3 and dµ(G)(v) ≥ 3 for each
vertex v in µ(G). Since G contains t(G) triangles, µ(G) contains 4t(G) triangles.
In view of Theorem 1,

t(T [µ(G)]) = 4t(G) + 1
2

[

∑p
i=1 (2dG(vi))

2 +
∑p

i=1 (dG(vi) + 1)2 + p2
]

+
∑p

i=1

(

2dG(vi)
3

)

+
∑p

i=1

(

2dG(vi)+1
3

)

+
(

p
3

)

= 4t(G) + 1
2

[
∑p

i=1[3d
3
G(vi) + d2G(vi)]

]

+
(

18q+5p+p3

6

)

.

Corollary 5. t(T [µ(Cn)]) =
(

n3+90n
6

)

for n > 3.

Corollary 6. t(T [µ(Km,n)])=
1
6

[

9mn(m2+n2+2)+m3+n3+(m+n)(6mn+5)
]

.

Proof. Both K1,n and µ(K1,n) are triangle-free graphs. We consider three cases
depending on m and n:

Case 1. m = n = 1. Then t[T [µ(K1,1)]] = 10.

Case 2. m = 1; n ≥ 2, V (K1,n) = {x1, x2, . . . , xn+1}, E(K1,n) = {x1xi : 2 ≤
i ≤ n+ 1}. Then V [µ(K1,n)] = {xi : 1 ≤ i ≤ n+ 1} ∪ {x′i : 1 ≤ i ≤ n+ 1} ∪ {u}
and E[µ(K1,n)] = {x1xi : 2 ≤ i ≤ n + 1} ∪ {x1x

′

i : 2 ≤ i ≤ n + 1} ∪ {x′1xi : 2 ≤
i ≤ n+ 1} ∪ {ux′i : 1 ≤ i ≤ n+ 1}. In µ(K1,n), dµ(K1,n)(x1) = 2n, dµ(K1,n)(xi) =
dµ(K1,n)(x

′

i) = 2 for 2 ≤ i ≤ (n + 1), and dµ(K1,n)(x
′

1) = dµ(K1,n)(u) = n + 1. By

Theorem 1, t (T [µ(K1,n)]) = (5n3 + 3n2 + 19n+ 3)/3.

Case 3. m,n ≥ 2. Then δ(µ(Km,n)) ≥ 2. In µ(Km,n), there arem+n vertices,
mn edges, m vertices of degree of n and n vertices of degree m. By Theorem 4,
t[T [µ(Km,n)]]=

1
6 [9nm

3+ 9mn3+ 3mn2+ 3nm2+ 18mn+ (m+ n)3 + 5(m+ n)]
= 1

6

[

9mn(m2 + n2 + 2) +m3 + n3 + (m+ n)(6mn+ 5)
]

.
In either case, we obtained the desired result.

Corollary 7. t(T [µ(Kn)]) =
1
6

(

9n4 − 19n3 + 18n2 − 2n
)

for n ≥ 3.

Proof. V (Kn) = {v1, v2, . . . , vn}. By the definition of µ(Kn), t[µ(Kn)] = 4
(

n
3

)

.

By Theorem 4, t(T [µ(Kn)]) = 4
(

n
3

)

+ 1
2 [4n(n− 1)2 + n3 + n2] + 2

(

2n−2
3

)

+ (n +
1)
(

n
3

)

= 1
6

(

9n4 − 19n3 + 18n2 − 2n
)

.

Definition. The middle graph M(G) of a graph G is the graph whose vertex set
is V (G)∪E(G), and two vertices of M(G) are adjacent if either they are adjacent
edges of G or one is a vertex and the other is an edge of G, incident with it (see
[6]).
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Theorem 8. For any (p, q)-graph G,

t[M(G)] =
1

2

p
∑

i=1

[

d2G(vi) + 2mi

(

dG(vi)

3

)]

− q,

where mi = 1 if dG(vi) ≥ 3; otherwise mi = 0.

Proof. Follows similarly to that of Theorem 1.

The following results give the number of triangles in the middle graph of a cycle
or Mycielski graph.

Corollary 9. t(M [Cn]) = n if n > 3.

Corollary 10. For any (p, q)-graph G,

t[M(µ(G))] =
1

2

p
∑

i=1

[

3d3G(vi) + d2G(vi)
]

+
p(p2 − 1)

6
.

Proof. Suppose G is a (p, q)-graph having t(G) triangles. From Theorems 1 and
8, we have t(M [G]) = t(T [G]) − q − t(G). Then µ(G) contains 4t(G) triangles,
and (3q + p) edges. Hence,

t(M [µ(G)]) = t(T [µ(G)])− (3q + p)− 4t(G).(2)

In view of Theorem 4, we have

t[T (µ(G))] = 4t(G) +
1

2

p
∑

i=1

[

3d3G(vi) + d2G(vi)
]

+

(

18q + 5p+ p3

6

)

.(3)

Using (3) in (2), we get the required result.

Definition. The central graph C(G) of a graph G is the graph obtained by
subdividing each edge of G exactly once and joining all the non-adjacent vertices
of G [5]. In the following theorem, we determine the number of triangles in the
total graph of a central graph.

Theorem 11. For any (p, q)-graph G with p ≥ 4,

t[T (C(G))] = m
6 (p

4 − 3p3 + 5p2 − 3p+ 12q),

where m = t(G).
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Proof. By the definition of C(G), V [C(G)] = V (G) ∪E(G) and deg(vi) = p− 1
in C(G) if vi ∈ V (G), deg(vi) = 2 in C(G) if vi ∈ E(G). Suppose t[C(G)] = m,
and let V (G) = {v1, v2, . . . , vp}.

Define vi = (bi1, bi2, bi3, . . . , bip) for 1 ≤ i ≤ p. Then (bi,j)p×p
is the adjacency

matrix of G, where bij =

{

0 if i = j or vivj ∈ E(G),
1 if i 6= j and vivj /∈ E(G).

If 〈{vi, vj , vk}〉 = K3 in G, then the adjacency matrix of 〈{vi, vj , vk}〉 is




0 1 1
1 0 1
1 1 0





and its determinant is 2. Otherwise, its determinant is 0. It is easy to see that

t[C(G)] =
1

2

p
∑

i=j=k=1

∣

∣

∣

∣

∣

∣

bii bij bik
bji bjj bjk
bki bkj bkk

∣

∣

∣

∣

∣

∣

= m where i < j < k.

By Theorem 1, we have t[T (C(G))]=m+ 1
2

(

∑p
i=1 (p− 1)2+

∑q
j=1 4

)

+
∑p

i=1

(

p−1
3

)

= m
6 (p

4 − 3p3 + 5p2 − 3p+ 12q).

Corollary 12. t[T (C(Kn))] =
1
6

(

n4 − 3n3 + 11n2 − 9n
)

for n ≥ 4.

Proof. Since C(G) is triangle-free, by substituting p = n ≥ 4, q = n(n − 1)/2
and m = 0 we get t[T [C(Kn)]] =

1
6(n

4 − 3n3 + 11n2 − 9n).

Corollary 13. t[T [C(Km,n)]] = t[T (Km+n)] +
mn
2 (m+ n− 6) for m,n ≥ 3.

Proof. For m,n ≥ 3, in C(Km,n), there are (mn + m + n) vertices in which
mn vertices are of degree two, and (m + n) vertices are of degree (m + n − 1).
Moreover C(Km,n) contains

(

m
3

)

+
(

n
3

)

triangles. Therefore from Theorem 1,

t[T (C(Km,n))] =
(

m
3

)

+
(

n
3

)

+ 1
2

(

(m+ n)(m+ n− 1)2 + 4mn
)

+(m+n)
(

m+n−1
3

)

=
1
6

(

([m+ n]2 − [m+ n])2 +
(

[m+ n]2 − [m+ n]
)

− 3mn(m+ n− 6)
)

.

By Corollary 5, t[T (C(Km,n))] = t[T (Km+n)] +
mn
2 (m+ n− 6) .

3. Coverings and Achromatic Numbers on Certain Families of

Graphs

We now study certain coverings, and achromatic numbers, connected with total
graph of Mycielski graphs on star-graph or complete graph families. It is well-
known that for any graph G of order n, α(G) + β(G) = n, where α(G) and
β(G) denote the independence number and covering number of G, respectively.
In addition, if δ(G) > 0, then α

′

(G) + β
′

(G) = n, where α
′

(G) and β
′

(G) denote
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the edge-independence number and edge-covering number of G, respectively [4].
The chromatic number χ(G), of a graph G is the minimum k for which G is k-
colourable. The achromatic number χc(G) of a graph G is the largest number of
colours needed to legally colour the vertices of G so that the adjacent vertices get
different colours, and for every pair of distinct colours c1, c2, there exists at least
one edge whose end vertices are coloured by c1, c2 [7, 3]. In the following theorem,
we determine the above mentioned parameters for the star-graph families.

Theorem 14. For a star-graph K1,n with n ≥ 2, we have

(a) α
′

[T (µ(K1,n))] = α [µ(K1,n)] + α(K1,n) + α
′

[µ(K1,n)]− α
′

(K1,n),

(b) β
′

[T (µ(K1,n))] = β
′

[µ(K1,n)] + β
′

(K1,n) + β [µ(K1,n)]− β(K1,n).
Furthermore, (a) = (b).

Proof. Let V (K1,n) = {xi : 1 ≤ i ≤ n + 1} for n ≥ 2 and E(K1,n) = {ej =
x1xj+1 : 1 ≤ j ≤ n}. It is easy to see that for K1,n, we have α = n and β = 1.
By König’s theorem when applied to K1,n, we have α

′

= β = 1 and β
′

= α = n,
(see Figure 1(a)).

Figure 1. (a) Star graph K1,n. (b) Mycielski graph of K1,n.

By the definition of Mycielski graph, |V [µ(K1,n)]| = 2n + 3 and |E[µ(K1,n)]| =
4n+ 1, (see Figure 1(b)). Clearly, {x1, x

′

1, u} is a covering of µ(K1,n) and hence
β [µ(K1,n)] ≤ 3. For any covering S of µ(K1,n), we have

∑

vi∈S
degµ(K1,n)

(vi) ≥

|E[µ(K1,n)]| = 4n + 1. Since ∆(µ(K1,n)) = 2n, it follows that |S| ≥ 3. Conse-
quently, β [µ(K1,n)] = 3 and α [µ(K1,n)] = 2n.

Next, we see that {x1xi : 2 ≤ i ≤ n} ∪ {x1x
′

i : 2 ≤ i ≤ n} ∪ {xn+1x
′

1, x′n+1u}

covers all the vertices of µ(K1,n), and has 2n edges. So, β
′

[µ(K1,n)] ≤ 2n. But
α [µ(K1,n)] = 2n. So, we need at least 2n edges to cover all the vertices of µ(K1,n).
Therefore, β

′

[µ(K1,n)] = 2n and α
′

[µ(K1,n)] = 3.
By the definition of T [µ(K1,n)], |V (T [µ(K1,n)]) | = 6n + 4 (see Figure 2).

It requires at least 3n + 2 edges to cover the vertices of T [µ(K1,n)]. Therefore,
β

′

[T [µ(K1,n)]] ≥ 3n + 2. However, L = {eie
′

i : 1 ≤ i ≤ n} ∪ {xi+1di : 2 ≤ i ≤
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n} ∪ {x′i+1d
′

i : 1 ≤ i ≤ n} ∪ {x1x2, d1x
′

1, uu
′}, where ei = x1xi+1, e

′

i = x1x
′

i+1

for 1 ≤ i ≤ n, and di = x′1xi+1, and d′i = ux′i+1 for 1 ≤ i ≤ n, in µ(K1,n). Clearly,
L covers all the vertices of T [µ(K1,n)] and contains 3n+2 edges only. Therefore,
β

′

[T [µ(K1,n)]] = 3n + 2 and α
′

[T [µ(K1,n)]] = 3n + 2. This gives the required
results.

Figure 2. Total graph of Mycielski graph of K1,n.

Theorem 15. (a) β[T (K1,n)] = β
′

[T (K1,n)] = β
′

[M(K1,n)] = α[M(K1,n)] =
n+ 1.

(b) β[C(K1,n)] = β
′

[C(K1,n)] = β[µ(Kn)] = β
′

[µ(Kn)] = n+ 1, for all n ≥ 2.

(c) χc(C(K1,n)) = χc(M(K1,n)) = χ(M(K1,n)) = χ(T (K1,n)) = n+ 1.

Proof. By referring Figure 3(a), {x2, x3, . . . , xn+1} is an independent set in
T (K1,n). So, α[T (K1,n)] ≥ n. Since x1 is adjacent with all the vertices in
T (K1,n), any independent set in T (K1,n) with at least two vertices can not con-
tain x1. Figure 3(a) shows that any independent set can have at most one ver-
tex ei from {e1, e2, . . . , en}. Suppose {v1, v2, . . . , vn+1} is an independent set in
T (K1,n). Then some vi must be in {e1, e2, . . . , en}; say vi = ej for some j. This
is a contradiction to the fact that ej is adjacent with xj+1 in T (K1,n). This
shows that α[T (K1,n)] = n and β[T (K1,n)] = n+ 1. Similarly, we can show that
β

′

[T (K1,n)] = β
′

[M(K1,n)] = α[M(K1,n)] = β[C(K1,n)] = β
′

[C(K1,n)] = n + 1
for n ≥ 2.

Next, we prove that β[µ(Kn)] = β
′

[µ(Kn)] = n + 1. Let {v1, v2, . . . , vn} be
the vertices of Kn. By the definition of Mycielski graph, |V [µ(Kn)]| = 2n + 1.



On the Total Graph of Mycielski Graphs... 369

This shows that β
′

[µ(Kn)] ≥ n + 1. We observe that (n + 1) edges of {viv
′

i+1 :
1 ≤ i ≤ n − 1} ∪ {vnv

′

1 ∪ v′1u} covers all the vertices of µ(Kn). Therefore,
β

′

[µ(Kn)] = n+ 1.

Figure 3. (a) Total graph of K1,n. (b) Middle graph of K1,n. (c) Central graph of K1,n.

Since {v′1, v
′

2, . . . , v
′

n} are the independent vertices of µ(Kn), α[µ(Kn)] ≥ n.
Suppose S = {u1, u2, . . . , un+1} is an independent set in µ(Kn). Clearly, no
two vertices of S can be in V (Kn) and u /∈ S. Therefore exactly one ui of S is
in V (Kn). But this ui is adjacent to all other u′j for i 6= j. This contradicts the
independence of S. Hence α[µ(Kn)] = n and β[µ(Kn)] = n + 1. This completes
the proof of (a) and (b). (c) directly follows from [7].

4. Upper Bounds

Definition. A sequence of real numbers (p1, p2, . . . , pn) is said to be majorised

by another such sequence (q1, q2, . . . , qn) if pi ≤ qi for 1 ≤ i ≤ n. Let G and
H be two graphs of the same order. Then G is degree-majorised by H if the
nondecreasing degree sequence of G is majorised by that of H [4].

Theorem 16. Suppose H is degree-majorised by G with t(H) ≤ t(G). Then

(a) t[T (H)] ≤ t[T (G)].

(b) t[µn(H)] ≤ t[µn(G)].

(c) t(T [µn(H)]) ≤ t(T [µn(G)]).
In particular, t(T [µn(C(K1,n))]) ≤ t[T [µn+1(Kn)]] for n ≥ 2.

Proof. Let V (H) = {vi : 1 ≤ i ≤ n} and V (G) = {ui : 1 ≤ i ≤ n}. Since
H is degree-majorised by G,

∑n
i=1 d

2
H(vi) ≤

∑n
i=1 d

2
G(ui) and

∑n
i=1mi

(

dH(vi)
3

)

≤
∑n

i=1mi

(

cdG(ui)
3

)

. By Theorem 1, t[T (H)] ≤ t[T (G)]. SinceH is degree-majorised
by G with t(H) ≤ t(G), by the definition of the Mycielski graph, µ(H) is
degree-majorised by µ(G) with t[µ(H)] ≤ t[µ(G)], µn(H) is degree-majorised
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by µn(G) and t[µn(H)] ≤ t[µn(G)]. Since µn(H) is degree-majorised by µn(G)
with t[µn(H)] ≤ t[µn(G)], we get t(T [µn(H)]) ≤ t(T [µn(G)]).

Finally, for any n ≥ 2, each of C(K1,n) and µ(Kn) is of order 2n + 1, and
µ(Kn) contains n vertices of degree 2n− 2, n vertices of degree n and a vertex of
degree n. Whereas, C(K1,n) contains n vertices of degree n, n vertices of degree
2 and a vertex of degree n. Therefore, C(K1,n) is degree-majorised by µ(Kn) and
t[T (µn[C(K1,n)])] ≤ t(T [µn+1(Kn)]).

Theorem 17. I. Let G be any graph of order n. Then

(a) t[T (G)] ≤ t[T (Kn)],

(b) t[µn(G)] ≤ t[µn(Kn)],

(c) t[T [µn(G)]] ≤ t[T [µn(Kn)]].
II. If G is a triangle-free graph of order n ≥ 2, then for some positive integers a
and b with a+ b = n, we have

(d) t[T (G)] ≤ t[T (Ka,b)],

(e) t[µn(G)] ≤ t[µn(Ka,b)],

(f) t[T [µn(G)]] ≤ t[T [µn(Ka,b)]].

Proof. Obviously, every graph G of order n is degree-majorised by Kn with
t(G) ≤ t(Kn). By Theorem 16, (a), (b) and (c) follow. Since G is a triangle-
free graph, G is degree-majorised by some complete bipartite graph Ka,b, [4].
Consequently, (d), (e) and (f) hold.

Conclusion

It would be interesting to determine the results for general graphs other than
star-graph or complete graph families.
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