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Abstract

A Roman dominating function (RDF) on a graphG = (V,E) is a function
f : V −→ {0, 1, 2} satisfying the condition that every vertex u for which
f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight
of an RDF is the value f(V (G)) =

∑
u∈V (G) f(u). An RDF f in a graph G

is independent if no two vertices assigned positive values are adjacent. The
Roman domination number γR(G) (respectively, the independent Roman
domination number iR(G)) is the minimum weight of an RDF (respectively,
independent RDF) on G. We say that γR(G) strongly equals iR(G), denoted
by γR(G) ≡ iR(G), if every RDF on G of minimum weight is independent.
In this paper we provide a constructive characterization of trees T with
γR(T ) ≡ iR(T ).
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1. Introduction

We consider finite, undirected, and simple graphs G with vertex set V = V (G)
and edge set E = E(G). The open neighborhood of a vertex v ∈ V is N(v) =
NG(v) = {u ∈ V | uv ∈ E} and the closed neighborhood of v is N [v] = NG[v] =
NG(v) ∪ {v}. If D is a subset of V (G), then the subgraph induced by D in G is
denoted by G[D]. The degree of v, denoted by dG(v), is the cardinality of its open
neighborhood. A vertex of degree one is called a leaf, and its neighbor is called a
support vertex. If v is a support vertex, then Lv will denote the set of the leaves
attached at v. A support vertex v is called strong if |Lv| > 1. A tree T is a double
star if it contains exactly two vertices that are not leaves. A double star with
respectively p and q leaves attached at each support vertex is denoted by Sp,q.
For a vertex v in a rooted tree T , we denote by D(v) the set of all descendants
of v. The maximal subtree at v is the subtree of T induced by D(v)∪ {v}, and is
denoted by Tv.

For a graph G, let f : V (G) → {0, 1, 2} be a function, and let (V0;V1;V2)
be the ordered partition of V = V (G) induced by f , where Vi = {v ∈ V (G) :
f(v) = i} for i = 0, 1, 2. There is a 1 − 1 correspondence between the functions
f : V (G) → {0, 1, 2} and the ordered partitions (V0;V1;V2) of V (G). So we will
write f = (V0;V1;V2).

A function f : V (G) → {0, 1, 2} is a Roman dominating function (RDF) on
G if every vertex u of G for which f(u) = 0 is adjacent to at least one vertex v
of G for which f(v) = 2. The weight of a Roman dominating function f on G is
the value f(V (G)) =

∑
u∈V (G) f(u). The Roman domination number of a graph

G, denoted by γR(G), is the minimum weight of a Roman dominating function
on G. A function f = (V0;V1;V2) is called a γR(G)-function or γR-function for
G if it is a Roman dominating function on G and f(V (G)) = γR(G). Roman
domination has been introduced by Cockayne et al. [1] and has been further
studied for example in [5, 6, 7].

A function f = (V0;V1;V2) is called an independent Roman dominating func-
tion (IRDF) on G if f is an RDF and no two vertices in V1∪V2 are adjacent. The
independent Roman domination number iR(G) is the minimum weight of an inde-
pendent Roman dominating function of G. A function f = (V0;V1;V2) is called an
iR(G)-function or iR-function for G if it is an IRDF on G and f(V (G)) = iR(G).

Observe that for every graph G, γR(G) ≤ iR(G). Clearly if G is a graph with
γR(G) = iR(G), then every iR(G)-function is also a γR(G)-function. However
not every γR(G)-function is an iR(G)-function even when γR(G) = iR(G). For
example the double star S2,3 has two γR(S2,3)-functions but only one γR(S2,3)-
function is an iR(S2,3)-function. We say that γR(G) and iR(G) are strongly equal,
denoted by γR(G) ≡ iR(G), if every γR(G)-function is an iR(G)-function. Note
that Haynes and Slater in [4] were the first to introduce strong equality between
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two parameters. Also in [2] and [3], Haynes, Henning and Slater gave constructive
characterizations of trees with strong equality between some domination param-
eters.

In this paper we present a constructive characterization of trees T with
γR(T ) ≡ iR(T ). If f is an RDF on a graph G and H is a subgraph of G, then we
denote the restriction of f on H by f |V (H).

2. Trees T with γR(T ) ≡ iR(T )

We begin by the following results that will be useful for the next.

Proposition 1 (Cockayne et al. [1]). Let f = (V0;V1;V2) be any γR(G)-function.
Then

(i) The subgraph induced by the vertices of V1 has maximum degree one.

(ii) No edge of G joins V1 to V2.
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Figure 1. A tree in T .

Proposition 2 (Jafari Rad and Volkmann [7]). If v is a vertex in a graph G
such that γR(G− v) > γR(G), then f(v) = 2 for every γR(G)-function f .

Let T be the family of trees that can be obtained from k (k ≥ 1) disjoint stars of
centers x1, x2, . . . , xk, where each star has order at least three, attached by edges
from their center vertices either to a single vertex or to a same leaf of a path P2.
If T is a tree of T , then let us call the vertex adjacent to the centers of stars, the
special vertex of T . Note that if T belongs to T , then γR(T ) ≡ iR(T ).

Now we present a constructive characterization of trees T with γR(T ) ≡
iR(T ). For this purpose, we define a family of trees as follows: Let F be the
collection of trees T that can be obtained from a sequence T1, T2, . . . , Tk (k ≥ 1)
of trees, where T1 is a star K1,t with t ≥ 2, T = Tk, and, if k ≥ 2, then Ti+1 can
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be obtained recursively from Ti by one of the following operations. Also for any
tree Ti of F we let fi be a γR(Ti)-function.�
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Figure 2. The Oi Operations.

• Operation O1: Assume y is a leaf of Ti with fi(y) = 0 and whose support
vertex z is either strong or satisfies γR(Ti − z) > γR(Ti). Then Ti+1 is
obtained from Ti by adding a new vertex x and adding the edge xy.

• Operation O2: Assume y is a vertex of Ti. Then Ti+1 is obtained from Ti by
adding a tree T ∈ T of special vertex x and adding the edge xy with the
condition that if x is a support vertex, then y satisfies γR(Ti− y) ≥ γR(Ti).

• Operation O3: Assume y is a vertex of Ti assigned 0 or 1 for every γR(Ti)-
function. Then Ti+1 is obtained from Ti by adding a path P3 = u-v-w and
adding the edge wy.

Lemma 3. If Ti is a tree with γR(Ti) ≡ iR(Ti) and Ti+1 is a tree obtained from
Ti by Operation O1, then γR(Ti+1) ≡ iR(Ti+1).

Proof. Since γR(Ti) ≡ iR(Ti), it is clear that every iR(Ti)-function with y
assigned 0 can be extended to an IRDF for Ti+1 by assigning 1 to x. Hence
γR(Ti+1) ≤ iR(Ti+1) ≤ iR(Ti)+1 = γR(Ti)+1. Now let f be a γR(Ti+1)-function.
If f(y) = 1, then f(x) = 1 and f |V (Ti) is an RDF for Ti. If f(y) = 0, then
f(x) = 1 (else f(x) = 2 and we can make a change to obtain f(x) = 1 and
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f(y) = 1) and f |V (Ti) is an RDF for Ti. In both cases, γR(Ti) ≤ γR(Ti+1) − 1
and equality throughout the above chain is obtained. Now assume that f(y) = 2.
Then f(x) = 0 and by Proposition 1 we may assume that f(z) = 0. If z has a
leaf neighbor, say z′, then f(z′) = 1 and we can change f(z′) = 1 to f(z′) = 0,
f(z) = 0 to f(z) = 2, f(y) = 2 to f(y) = 0 and f(x) = 0 to f(x) = 1. Clearly
we are in the previous situation. Hence we may assume that z is not a support
vertex. Then consider the function f ′ on V (Ti − z) defined by f ′(a) = f(a)
if a ∈ V (Ti) − {y, z}, and f ′(y) = 1. Then f ′ is an RDF for Ti − z and so
γR(Ti − z) ≤ f ′(V (Ti − z)) − 1 = γR(Ti+1) − 1. Now since z is a support
vertex in Ti but not strong, it satisfies γR(Ti − z) > γR(Ti). Then we obtain
γR(Ti) < γR(Ti − z) ≤ γR(Ti+1)− 1, implying that γR(Ti+1) > γR(Ti) + 1, which
is impossible. Thus for the next we may assume that for any γR(Ti+1)-function
y is not assigned 2.

Next we shall show that γR(Ti+1) ≡ iR(Ti+1). Assume to the contrary that
h = (V0;V1;V2) is a γR(Ti+1)-function such that V1 ∪ V2 is not independent.
Thus there are two adjacent vertices u, v ∈ V1 ∪ V2. Recall that h(y) ∈ {0, 1}.
If h(y) = 0, then h(x) = 1, and so h|V (Ti) = (V0;V1 − {x};V2) is a γR(Ti)-
function. But h|V (Ti) is not independent since u, v belong to (V1 − {x}) ∪ V2,
contradicting γR(Ti) ≡ iR(Ti). If h(y) = 1, then h(x) = 1. By Proposition 1,
h(z) 6= 2, and so h|V (Ti−z) is an RDF for V (Ti − z). Observe that z cannot be a
support vertex in Ti+1. Now by using the fact that z verifies γR(Ti− z) > γR(Ti),
we obtain γR(Ti) < γR(Ti−z) ≤ h(V (Ti−z)) ≤ γR(Ti+1)−1, which is impossible.
Therefore γR(Ti+1) ≡ iR(Ti+1).

Lemma 4. If Ti is a tree with γR(Ti) ≡ iR(Ti) and Ti+1 is a tree obtained from
Ti by Operation O2, then γR(Ti+1) ≡ iR(Ti+1).

Proof. Let T ∈ T be the added tree of special vertex x. Recall that T is obtained
from k (k ≥ 1) disjoint stars of centers x1, x2, . . . , xk, each of order at least three,
attached by edges xxj at x, where x may be a single vertex or belongs to a path
P2 = x-x′.

Clearly every iR(Ti)-function can be extended to an IRDF for Ti+1 by as-
signing 2 to every xj , 1 to x′ (if x′ exists), and 0 to x and every leaf of T different
to x′. Hence γR(Ti+1) ≤ iR(Ti+1) ≤ iR(Ti)+2k+ t = γR(Ti)+2k+ t, where t = 1
if x′ exists and t = 0 otherwise. Now let f be a γR(Ti+1)-function. Without loss
of generality we can assume that f(xj) = 2 for every j. Hence every leaf adjacent
to some xi is assigned 0. If f(x) = 0 and f(x′) = 1 (if x′ exists), then f |V (Ti) is
an RDF for Ti implying that iR(Ti) ≤ γR(Ti+1) − 2k − t. Equality throughout
the above inequality chain is obtained. Now if either f(x) = 2 and f(x′) = 0 or
f(x) = 0 and f(x′) = 2, then we can change by assigning 1 to x′ and y, and 0 to
x. Clearly we are in the previous situation.

Assume now that γR(Ti+1) and iR(Ti+1) are not strongly equal and let h =
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(V0;V1;V2) be a γR(Ti+1)-function such that V1 ∪ V2 is not independent. Let u
and v be any two adjacent vertices in V1∪V2. If h(x) = 0, then clearly u, v belong
to V (Ti) and h|V (Ti) is a γR(Ti)-function that is not independent, a contradiction
with γR(Ti) ≡ iR(Ti). If h(x) = 1, then h(x′) = 1 (if x′ exists) and so h|V (Ti) is an
RDF for Ti with weight γR(Ti+1)−2k−t−1 < γR(Ti), which is impossible. Finally
assume that h(x) = 2.We may assume that x′ exists for otherwise we can decrease
the weight of h by assigning 0 to x and 1 to y. Hence h(x′) = 0 and h(y) = 0.
Then h|V (Ti−y) is an RDF for Ti−y and so h(V (Ti−y)) = γR(Ti+1)−2k−2. Now
since x is a support vertex in T, y must satisfy γR(Ti − y) ≥ γR(Ti), implying
that γR(Ti+1)− 2k− 2 = h(V (Ti − y)) ≥ γR(Ti − y) ≥ γR(Ti). Therefore we have
γR(Ti+1) ≥ γR(Ti) + 2k + 2, a contradiction. Consequently γR(Ti+1) ≡ iR(Ti+1).

Lemma 5. If Ti is a tree with γR(Ti) ≡ iR(Ti) and Ti+1 is a tree obtained from
Ti by Operation O3, then γR(Ti+1) ≡ iR(Ti+1).

Proof. Clearly every iR(Ti)-function can be extended to an IRDF for Ti+1 by
assigning 0 to u,w and 2 to v. Hence γR(Ti+1) ≤ iR(Ti+1) ≤ iR(Ti) + 2 =
γR(Ti) + 2. Now let f be a γR(Ti+1)-function. If f(v) = 2, then f(w) = f(u) = 0
and f |V (Ti) is an RDF for Ti. Hence γR(Ti) ≤ γR(Ti+1) − 2. If f(v) = 1, then
f(u) = 1 and w must be assigned 0. It follows that f |V (Ti) is an RDF for Ti and
so γR(Ti) ≤ γR(Ti+1)−2. Now assume that f(v) = 0. Then f(u) = 2 and f(w) /∈
{1, 2}. It follows that f |V (Ti) is an RDF for Ti and so γR(Ti) ≤ γR(Ti+1)− 2. For
all cases, we obtain γR(Ti+1) = γR(Ti) + 2, implying that iR(Ti+1) = iR(Ti) + 2.

Assume now that γR(Ti+1) is not strongly equal to iR(Ti+1) and let h be a
γR(Ti+1)-function that is not independent. Thus there are two adjacent vertices
a and b assigned positive values. If h(v) = 2, then h(w) = h(u) = 0 and h|V (Ti) is
a γR(Ti)-function, where a, b ∈ V (Ti), contradicting γR(Ti) ≡ iR(Ti). If h(v) = 1,
then h(u) = 1 and h(w) = 0. It follows that h(y) = 2 and h|V (Ti) is a γR(Ti)-
function for which y is assigned 2, a contradiction with the construction. Thus
we assume that h(v) = 0. Hence h(u) = 2. If h(w) = 1, then h|V (Ti) is an
RDF for Ti of weight γR(Ti) − 1, which is impossible. If h(w) = 2, then we
change h(w) = 2 to h(w) = 1 and h(y) = 0 to h(y) = 1 and we obtain the
previous situation. Thus h(w) = 0 implying that h(y) = 2. But then h|V (Ti) is a
γR(Ti)-function for which y is assigned 2, a contradiction with the construction.
Therefore γR(Ti+1) ≡ iR(Ti+1).

We now are ready to establish our main result.

Theorem 6. Let T be a tree. Then γR(T ) ≡ iR(T ) if and only if T = K1 or
T ∈ F .

Proof. Obviously, if T = K1, then γR(T ) ≡ iR(T ). Now suppose that T ∈ F .
Then there is a sequence of trees T1, T2, . . . , Tk (k ≥ 1) such that T1 is a star K1,t
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with t ≥ 2, T = Tk, and, if k ≥ 2, then Ti+1 can be obtained recursively from
Ti by an operation O1, O2 or O3 for i = 1, . . . , (k − 1). We use an induction on
the number of operations performed to construct T. Clearly the property is true
if k = 1. This establishes the basis case. Assume now that k ≥ 2 and that the
result holds for all trees T ∈ F that can be constructed from a sequence of length
at most k− 1, and let T ′ = Tk−1. By the induction hypothesis, γR(T

′) ≡ iR(T
′).

By construction T is obtained from T ′ by using Operation O1, O2 or O3. Hence
by Lemmas 3, 4 and 5 it follows that γR(T ) ≡ iR(T ).

Conversely, let T be a tree of order n with γR(T ) ≡ iR(T ). Clearly if n = 1,
then T = K1. Hence we assume that T has order n ≥ 2. We use an induction on
the order n. Since a path P2 has a γR(P2)-function that is not independent, we
assume that n ≥ 3. If n = 3, then T = P3 which belongs to F , establishing the
base case. Assume that every tree T ′ of order 2 ≤ n′ < n with γR(T

′) ≡ iR(T
′)

is in F . Let T be a tree of order n with γR(T ) ≡ iR(T ) and let f be a γR(T )-
function. Since stars of order at least three belong to F , we may assume that
T has diameter at least three. If diam(T )= 3, then T is a double star S1,p with
p ≥ 1 and T ∈ F because it is obtained from a star K1,p+1 by using Operation
O1. Therefore assume that diam(T )≥ 4.

We now root T at a leaf r of a longest path. Let u be a vertex at distance
diam(T )− 1 from r on a longest path starting at r such that |Lu| is as small as
possible. Let v, w be the parents of u and v on this path, respectively. Clearly
f(u) 6= 1, else u and its leaves belong to V1, contradicting γR(T ) ≡ iR(T ). We
consider the following cases.

Case 1. f(u) = 2. Then f(v) = 0 and f(u′) = 0 for every u′ ∈ Lu.

Subcase 1.1. v is a support vertex. Then f(v′) = 1 for every v′ ∈ Lv. If v
is adjacent to two leaves v′ and v′′, then we can change f(v) = 0 to f(v) = 2
and f(v′) = f(v′′) = 1 to f(v′) = f(v′′) = 0. Clearly we obtain a γR(T )-function
for which V1 ∪ V2 is not independent. Hence v is adjacent to a unique leaf v′. So
|Lv| = 1.

Suppose that |Lu| = 1 and let u′ be the unique leaf neighbor of u. Consider
the function h on V (T ) defined by h(x) = f(x) if x ∈ V (T ) − {u, u′, v, v′},
h(u′) = 1, h(u) = 0, h(v) = 2 and h(v′) = 0. Then h is a γR(T )-function and
h(w) = 0. Furthermore dT (v) = 3, for otherwise every child y of v different from
u is assigned 2, a contradiction. Let T ′ be the tree obtained from T by removing
u′. Note that v is a strong support vertex in T ′. Clearly h|V (T ′) is both an RDF
and an IRDF for T ′ implying that γR(T

′) ≤ γR(T ) − 1 and iR(T
′) ≤ iR(T ) − 1.

Since every γR(T
′)-function can be extended to an RDF for T by assigning 1 to u′

we obtain γR(T ) = γR(T
′)+1. Also iR(T

′) ≤ iR(T )−1 = γR(T )−1 = γR(T
′) and

so iR(T
′) = γR(T

′). It follows that iR(T ) = iR(T
′)+1 and so iR(T

′) = γR(T
′). On

the other hand, if γR(T
′) and iR(T

′) are not strongly equal, then every γR(T
′)-

function for which V1∪V2 is not independent can be extended to a γR(T )-function



344 M. Chellali and N. Jafari Rad

by assigning 1 to u′, a contradiction with γR(T ) ≡ iR(T ). Therefore γR(T
′) ≡

iR(T
′) and by induction on T ′, we have T ′ ∈ F . We conclude that T ∈ F because

it is obtained from T ′ by using Operation O1.

Assume now that |Lu| ≥ 2. By our choice of u, every child of v which is a
support vertex is adjacent to at least two leaves. Hence Tv is a tree of T . Let
u = u1, u2, . . . , uk with k ≥ 1, denote the support vertices adjacent to v in Tv,
and let T ′ = T −Tv. Since diam(T ) ≥ 4, T ′ is nontrivial. We observe that f |V (T ′)

is both an RDF and IRDF for T ′ implying that γR(T
′) ≤ γR(T ) − 2k − 1 and

iR(T
′) ≤ iR(T ) − 2k − 1. Equality is obtained by the fact that every γR(T

′)-
function (resp. iR(T

′)-function) can be extended to an RDF (resp. an IRDF) for
T by assigning 2 to every ui, 0 to v and every leaf in Tv except v′, and 1 to v′. On
the other hand, observe that if w satisfies γR(T

′ − w) ≤ γR(T
′) − 1, then every

γR(T
′−w)-function can be extended to a γR(T )-function that is not independent

by assigning 2 to v and every ui and 0 to the remaining vertices, a contradiction
with γR(T ) ≡ iR(T ). Thus w satisfies γR(T

′ −w) ≥ γR(T
′). If γR(T

′) and iR(T
′)

are not strongly equal, then every γR(T
′)-function which is not independent can

be extended to a γR(T )-function, contradicting γR(T ) ≡ iR(T ). It follows that
γR(T

′) ≡ iR(T
′) and by induction on T ′ we have T ′ ∈ F . Therefore T ∈ F

because it is obtained from T ′ by using Operation O2.

Subcase 1.2. v is not a support vertex. We first assume that dT (v) ≥ 3. Then
all children of v are support vertices and each one is assigned 2. If some child b
of v is adjacent to only one leaf b′, then we can change f(b) = 2 to f(b) = 1 and
f(b′) = 0 to f(b′) = 1. We then obtain a γR(T )-function that is not independent,
a contradiction. Thus every child of v is adjacent to at least two leaves. Let
T ′ = T −Tv. Observe that Tv belongs to T . Then γR(T ) ≤ γR(T

′)+2(dT (v)− 1)
since every γR(T

′)-function can be extended to an RDF for T by assigning 2
to every support vertex in Tv. Likewise, iR(T ) ≤ iR(T

′) + 2(dT (v) − 1). Both
equalities are obtained from the fact that f |V (T ′) is an RDF and IRDF for T ′.
It follows that γR(T

′) = iR(T
′). Now if T ′ admits a γR(T

′)-function that is not
independent, then such a function can be extended to a γR(T )-function that is not
independent, a contradiction with γR(T ) ≡ iR(T ). Thus every γR(T

′)-function is
independent, that is γR(T

′) ≡ iR(T
′). By induction on T ′ we have T ′ ∈ F and so

T ∈ F because it is obtained from T ′ by using Operation O2.

Now assume that dT (v) = 2. If |Lu| ≥ 2, then we consider T ′ = T − Tv.
Observe that Tv ∈ T . It is easy to see that γR(T ) = γR(T

′) + 2 and iR(T ) =
iR(T

′) + 2, and so γR(T
′) = iR(T

′). Since every γR(T
′)-function can be extended

to a γR(T )-function, it follows that γR(T
′) ≡ iR(T

′). By induction on T ′ we have
T ′ ∈ F and so T ∈ F because it is obtained from T ′ by using Operation O2. Now
assume that |Lu| = 1, and let u′ be the unique leaf adjacent to u. If f(w) = 2,
then we change f(u) = 2 to f(u) = 1 and f(u′) = 0 to f(u′) = 1. We obtain a
γR(T )-function that is not independent, a contradiction. Thus f(w) ∈ {0, 1} for
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every γR(T )-function f. Let T ′ = T −Tv. Then γR(T
′) ≤ γR(T )−2 and iR(T

′) ≤
iR(T )− 2. Both equalities hold since every γR(T

′)-function (respectively, γR(T
′)-

function) can be extended to an RDF (respectively, IRDF) for T by assigning
0 to u′, v and 2 to u. Hence iR(T

′) = γR(T
′). Note that since f(w) 6= 2, w is

assigned 0 or 1 for every γR(T
′)-function. Now it is clear that γR(T

′) ≡ iR(T
′)

and by induction on T ′ we have T ′ ∈ F . It follows that T ∈ F because it is
obtained from T ′ by using Operation O3.

Case 2. f(u) = 0. Then f(u′) > 0 for every u′ ∈ Lu. It follows that |Lu| ≤ 2,
for otherwise we can decrease the weight of f by changing the assignment of u and
its leaves. Now if Lu = {u′, u′′}, then f(u′) = f(u′′) = 1 and f(v) = 2. In this case
we change f(u) = 0 to f(u) = 2 and f(u′) = f(u′′) = 1 to f(u′) = f(u′′) = 0.
Clearly we obtain a γR(T

′)-function that is not independent, a contradiction.
Hence |Lu| = 1. Let u′ be the leaf adjacent to u. If f(u′) = 2, then we must have
f(v) = 0 and so we can change f(u′) = 2 to f(u′) = 0 and f(u) = 0 to f(u) = 2.
Hence we are in Case 1. Thus we assume that f(u′) = 1 and so f(v) = 2. We
consider the following subcases.

Subcase 2.1. v is a support vertex. Then f(v′) = 0 for every v′ ∈ Lv. Let T
′

be the tree obtained from T by removing u′. As seen in Subcase 1.1 we obtain
γR(T

′) ≡ iR(T
′) and by induction on T ′, T ′ ∈ F . Since T is obtained from T ′

by using Operation O1, we have T ∈ F .

Subcase 2.2. v is not a support vertex but has degree at least three. Thus
every child of v is a support vertex with degree two. Also every support vertex in
Tv is assigned 0 and every leaf is assigned 1. Now let T ′ be the tree obtained from
T by removing u′. It is easy to see that γR(T ) = γR(T

′)+1 and iR(T ) = iR(T
′)+1.

Hence γR(T
′) = iR(T

′). On the other hand suppose that γR(T
′ − v) ≤ γR(T

′)
and let f ′ be any γR(T

′ − v)-function. Then u is an isolated vertex in T ′ − v and
is assigned 1. Also we may assume, without loss of generality, that every child of
v different from u is assigned 2 in T ′ − v. Hence f ′ can be extended to a γR(T )-
function for T by assigning 1 to u′. But then the resulting γR(T )-function is not
independent, a contradiction. It follows that v satisfies γR(T

′ − v) > γR(T
′) and

so by Proposition 2, v is assigned 2 for every γR(T
′)-function. Using this fact

and the fact that every γR(T
′)-function can be extended to a γR(T )-function by

assigning 1 to u′, we obtain γR(T
′) ≡ iR(T

′). By induction on T ′ we have T ′ ∈ F
and so T ∈ F since it is obtained from T ′ by using Operation O1.

Subcase 2.3. dT (v) = 2. Recall that since f(v) = 2, we have f(w) = 0. Then
we can make a change to obtain f(u′) = 0, f(u) = 2, f(v) = 0 and f(w) = 1. Since
γR(T ) ≡ iR(T ), no vertex of N(w) − {v} is assigned a positive value. Now let
T ′ = T−Tv. As seen in Subcase 1.2 (when dT (v) = 2) w is not assigned 2 for every
γR(T

′)-function, γR(T ) = γR(T
′) + 2, iR(T ) = iR(T

′) + 2 and γR(T
′) ≡ iR(T

′).
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By induction on T ′ we have T ′ ∈ F and so T ∈ F because it is obtained from T ′

by using Operation O3.

We close with the following problem.

Problem. Characterize other classes of graphs (or regular graphs) with strong
equality between the Roman domination and the independent Roman domination
numbers.
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