Discussiones Mathematicae Graph Theory 33 (2013) 337–346 doi:10.7151/dmgt.1669

STRONG EQUALITY BETWEEN THE ROMAN DOMINATION AND INDEPENDENT ROMAN DOMINATION NUMBERS IN TREES

MUSTAPHA CHELLALI¹

LAMDA-RO, Department of Mathematics University of Blida B.P. 270, Blida, Algeria e-mail: mchellali@hotmail.com

AND

NADER JAFARI RAD^2

Department of Mathematics, Shahrood University of Technology Shahrood, Iran

and

School of Mathematics Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

e-mail: n.jafarirad@gmail

Abstract

A Roman dominating function (RDF) on a graph G = (V, E) is a function $f: V \longrightarrow \{0, 1, 2\}$ satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. An RDF f in a graph G is independent if no two vertices assigned positive values are adjacent. The Roman domination number $\gamma_R(G)$ (respectively, the independent Roman domination number $i_R(G)$) is the minimum weight of an RDF (respectively, independent RDF) on G. We say that $\gamma_R(G)$ strongly equals $i_R(G)$, denoted by $\gamma_R(G) \equiv i_R(G)$, if every RDF on G of minimum weight is independent. In this paper we provide a constructive characterization of trees T with $\gamma_R(T) \equiv i_R(T)$.

Keywords: Roman domination, independent Roman domination, strong equality, trees.

2010 Mathematics Subject Classification: 05C69.

 $^{^1\}mathrm{This}$ research was supported by "Programmes Nationaux de Recherche: Code $8/\mathrm{u09}/510$ ".

²This research was in part supported by a grant from IPM (No. 90050042).

1. INTRODUCTION

We consider finite, undirected, and simple graphs G with vertex set V = V(G)and edge set E = E(G). The open neighborhood of a vertex $v \in V$ is $N(v) = N_G(v) = \{u \in V \mid uv \in E\}$ and the closed neighborhood of v is $N[v] = N_G[v] = N_G(v) \cup \{v\}$. If D is a subset of V(G), then the subgraph induced by D in G is denoted by G[D]. The degree of v, denoted by $d_G(v)$, is the cardinality of its open neighborhood. A vertex of degree one is called a leaf, and its neighbor is called a support vertex. If v is a support vertex, then L_v will denote the set of the leaves attached at v. A support vertex v is called strong if $|L_v| > 1$. A tree T is a double star if it contains exactly two vertices that are not leaves. A double star with respectively p and q leaves attached at each support vertex is denoted by $S_{p,q}$. For a vertex v in a rooted tree T, we denote by D(v) the set of all descendants of v. The maximal subtree at v is the subtree of T induced by $D(v) \cup \{v\}$, and is denoted by T_v .

For a graph G, let $f: V(G) \to \{0, 1, 2\}$ be a function, and let $(V_0; V_1; V_2)$ be the ordered partition of V = V(G) induced by f, where $V_i = \{v \in V(G) :$ $f(v) = i\}$ for i = 0, 1, 2. There is a 1 - 1 correspondence between the functions $f: V(G) \to \{0, 1, 2\}$ and the ordered partitions $(V_0; V_1; V_2)$ of V(G). So we will write $f = (V_0; V_1; V_2)$.

A function $f: V(G) \to \{0, 1, 2\}$ is a Roman dominating function (RDF) on G if every vertex u of G for which f(u) = 0 is adjacent to at least one vertex v of G for which f(v) = 2. The weight of a Roman dominating function f on G is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. The Roman domination number of a graph G, denoted by $\gamma_R(G)$, is the minimum weight of a Roman dominating function on G. A function $f = (V_0; V_1; V_2)$ is called a $\gamma_R(G)$ -function or γ_R -function for G if it is a Roman dominating function on G and $f(V(G)) = \gamma_R(G)$. Roman domination has been introduced by Cockayne *et al.* [1] and has been further studied for example in [5, 6, 7].

A function $f = (V_0; V_1; V_2)$ is called an *independent Roman dominating func*tion (IRDF) on G if f is an RDF and no two vertices in $V_1 \cup V_2$ are adjacent. The *independent Roman domination number* $i_R(G)$ is the minimum weight of an independent Roman dominating function of G. A function $f = (V_0; V_1; V_2)$ is called an $i_R(G)$ -function or i_R -function for G if it is an IRDF on G and $f(V(G)) = i_R(G)$.

Observe that for every graph G, $\gamma_R(G) \leq i_R(G)$. Clearly if G is a graph with $\gamma_R(G) = i_R(G)$, then every $i_R(G)$ -function is also a $\gamma_R(G)$ -function. However not every $\gamma_R(G)$ -function is an $i_R(G)$ -function even when $\gamma_R(G) = i_R(G)$. For example the double star $S_{2,3}$ has two $\gamma_R(S_{2,3})$ -functions but only one $\gamma_R(S_{2,3})$ -function is an $i_R(S_{2,3})$ -function. We say that $\gamma_R(G)$ and $i_R(G)$ are strongly equal, denoted by $\gamma_R(G) \equiv i_R(G)$, if every $\gamma_R(G)$ -function is an $i_R(G)$ -function. Note that Haynes and Slater in [4] were the first to introduce strong equality between

two parameters. Also in [2] and [3], Haynes, Henning and Slater gave constructive characterizations of trees with strong equality between some domination parameters.

In this paper we present a constructive characterization of trees T with $\gamma_R(T) \equiv i_R(T)$. If f is an RDF on a graph G and H is a subgraph of G, then we denote the restriction of f on H by $f|_{V(H)}$.

2. TREES T WITH $\gamma_R(T) \equiv i_R(T)$

We begin by the following results that will be useful for the next.

Proposition 1 (Cockayne *et al.* [1]). Let $f = (V_0; V_1; V_2)$ be any $\gamma_R(G)$ -function. Then

- (i) The subgraph induced by the vertices of V_1 has maximum degree one.
- (ii) No edge of G joins V_1 to V_2 .

Figure 1. A tree in \mathcal{T} .

Proposition 2 (Jafari Rad and Volkmann [7]). If v is a vertex in a graph G such that $\gamma_R(G-v) > \gamma_R(G)$, then f(v) = 2 for every $\gamma_R(G)$ -function f.

Let \mathcal{T} be the family of trees that can be obtained from $k \ (k \ge 1)$ disjoint stars of centers x_1, x_2, \ldots, x_k , where each star has order at least three, attached by edges from their center vertices either to a single vertex or to a same leaf of a path P_2 . If T is a tree of \mathcal{T} , then let us call the vertex adjacent to the centers of stars, the special vertex of T. Note that if T belongs to \mathcal{T} , then $\gamma_R(T) \equiv i_R(T)$.

Now we present a constructive characterization of trees T with $\gamma_R(T) \equiv i_R(T)$. For this purpose, we define a family of trees as follows: Let \mathcal{F} be the collection of trees T that can be obtained from a sequence T_1, T_2, \ldots, T_k $(k \geq 1)$ of trees, where T_1 is a star $K_{1,t}$ with $t \geq 2$, $T = T_k$, and, if $k \geq 2$, then T_{i+1} can

be obtained recursively from T_i by one of the following operations. Also for any tree T_i of \mathcal{F} we let f_i be a $\gamma_R(T_i)$ -function.

Figure 2. The \mathcal{O}_i Operations.

- Operation \mathcal{O}_1 : Assume y is a leaf of T_i with $f_i(y) = 0$ and whose support vertex z is either strong or satisfies $\gamma_R(T_i - z) > \gamma_R(T_i)$. Then T_{i+1} is obtained from T_i by adding a new vertex x and adding the edge xy.
- Operation \mathcal{O}_2 : Assume y is a vertex of T_i . Then T_{i+1} is obtained from T_i by adding a tree $T \in \mathcal{T}$ of special vertex x and adding the edge xy with the condition that if x is a support vertex, then y satisfies $\gamma_R(T_i y) \geq \gamma_R(T_i)$.
- Operation \mathcal{O}_3 : Assume y is a vertex of T_i assigned 0 or 1 for every $\gamma_R(T_i)$ -function. Then T_{i+1} is obtained from T_i by adding a path $P_3 = u \cdot v \cdot w$ and adding the edge wy.

Lemma 3. If T_i is a tree with $\gamma_R(T_i) \equiv i_R(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_1 , then $\gamma_R(T_{i+1}) \equiv i_R(T_{i+1})$.

Proof. Since $\gamma_R(T_i) \equiv i_R(T_i)$, it is clear that every $i_R(T_i)$ -function with y assigned 0 can be extended to an IRDF for T_{i+1} by assigning 1 to x. Hence $\gamma_R(T_{i+1}) \leq i_R(T_{i+1}) \leq i_R(T_i) + 1 = \gamma_R(T_i) + 1$. Now let f be a $\gamma_R(T_{i+1})$ -function. If f(y) = 1, then f(x) = 1 and $f|_{V(T_i)}$ is an RDF for T_i . If f(y) = 0, then f(x) = 1 (else f(x) = 2 and we can make a change to obtain f(x) = 1 and

f(y) = 1) and $f|_{V(T_i)}$ is an RDF for T_i . In both cases, $\gamma_R(T_i) \leq \gamma_R(T_{i+1}) - 1$ and equality throughout the above chain is obtained. Now assume that f(y) = 2. Then f(x) = 0 and by Proposition 1 we may assume that f(z) = 0. If z has a leaf neighbor, say z', then f(z') = 1 and we can change f(z') = 1 to f(z') = 0, f(z) = 0 to f(z) = 2, f(y) = 2 to f(y) = 0 and f(x) = 0 to f(x) = 1. Clearly we are in the previous situation. Hence we may assume that z is not a support vertex. Then consider the function f' on $V(T_i - z)$ defined by f'(a) = f(a)if $a \in V(T_i) - \{y, z\}$, and f'(y) = 1. Then f' is an RDF for $T_i - z$ and so $\gamma_R(T_i - z) \leq f'(V(T_i - z)) - 1 = \gamma_R(T_{i+1}) - 1$. Now since z is a support vertex in T_i but not strong, it satisfies $\gamma_R(T_i - z) > \gamma_R(T_i)$. Then we obtain $\gamma_R(T_i) < \gamma_R(T_i - z) \leq \gamma_R(T_{i+1}) - 1$, implying that $\gamma_R(T_{i+1}) > \gamma_R(T_i) + 1$, which is impossible. Thus for the next we may assume that for any $\gamma_R(T_{i+1})$ -function y is not assigned 2.

Next we shall show that $\gamma_R(T_{i+1}) \equiv i_R(T_{i+1})$. Assume to the contrary that $h = (V_0; V_1; V_2)$ is a $\gamma_R(T_{i+1})$ -function such that $V_1 \cup V_2$ is not independent. Thus there are two adjacent vertices $u, v \in V_1 \cup V_2$. Recall that $h(y) \in \{0, 1\}$. If h(y) = 0, then h(x) = 1, and so $h|_{V(T_i)} = (V_0; V_1 - \{x\}; V_2)$ is a $\gamma_R(T_i)$ -function. But $h|_{V(T_i)}$ is not independent since u, v belong to $(V_1 - \{x\}) \cup V_2$, contradicting $\gamma_R(T_i) \equiv i_R(T_i)$. If h(y) = 1, then h(x) = 1. By Proposition 1, $h(z) \neq 2$, and so $h|_{V(T_i-z)}$ is an RDF for $V(T_i - z)$. Observe that z cannot be a support vertex in T_{i+1} . Now by using the fact that z verifies $\gamma_R(T_i - z) > \gamma_R(T_i)$, we obtain $\gamma_R(T_i) \leq i_R(T_i - z) \leq h(V(T_i - z)) \leq \gamma_R(T_{i+1}) - 1$, which is impossible. Therefore $\gamma_R(T_{i+1}) \equiv i_R(T_{i+1})$.

Lemma 4. If T_i is a tree with $\gamma_R(T_i) \equiv i_R(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_2 , then $\gamma_R(T_{i+1}) \equiv i_R(T_{i+1})$.

Proof. Let $T \in \mathcal{T}$ be the added tree of special vertex x. Recall that T is obtained from $k \ (k \ge 1)$ disjoint stars of centers x_1, x_2, \ldots, x_k , each of order at least three, attached by edges xx_j at x, where x may be a single vertex or belongs to a path $P_2 = x \cdot x'$.

Clearly every $i_R(T_i)$ -function can be extended to an IRDF for T_{i+1} by assigning 2 to every x_j , 1 to x' (if x' exists), and 0 to x and every leaf of T different to x'. Hence $\gamma_R(T_{i+1}) \leq i_R(T_{i+1}) \leq i_R(T_i) + 2k + t = \gamma_R(T_i) + 2k + t$, where t = 1 if x' exists and t = 0 otherwise. Now let f be a $\gamma_R(T_{i+1})$ -function. Without loss of generality we can assume that $f(x_j) = 2$ for every j. Hence every leaf adjacent to some x_i is assigned 0. If f(x) = 0 and f(x') = 1 (if x' exists), then $f|_{V(T_i)}$ is an RDF for T_i implying that $i_R(T_i) \leq \gamma_R(T_{i+1}) - 2k - t$. Equality throughout the above inequality chain is obtained. Now if either f(x) = 2 and f(x') = 0 or f(x) = 0 and f(x') = 2, then we can change by assigning 1 to x' and y, and 0 to x. Clearly we are in the previous situation.

Assume now that $\gamma_R(T_{i+1})$ and $i_R(T_{i+1})$ are not strongly equal and let h =

 $(V_0; V_1; V_2)$ be a $\gamma_R(T_{i+1})$ -function such that $V_1 \cup V_2$ is not independent. Let uand v be any two adjacent vertices in $V_1 \cup V_2$. If h(x) = 0, then clearly u, v belong to $V(T_i)$ and $h|_{V(T_i)}$ is a $\gamma_R(T_i)$ -function that is not independent, a contradiction with $\gamma_R(T_i) \equiv i_R(T_i)$. If h(x) = 1, then h(x') = 1 (if x' exists) and so $h|_{V(T_i)}$ is an RDF for T_i with weight $\gamma_R(T_{i+1}) - 2k - t - 1 < \gamma_R(T_i)$, which is impossible. Finally assume that h(x) = 2. We may assume that x' exists for otherwise we can decrease the weight of h by assigning 0 to x and 1 to y. Hence h(x') = 0 and h(y) = 0. Then $h|_{V(T_i-y)}$ is an RDF for $T_i - y$ and so $h(V(T_i - y)) = \gamma_R(T_{i+1}) - 2k - 2$. Now since x is a support vertex in T, y must satisfy $\gamma_R(T_i - y) \ge \gamma_R(T_i)$, implying that $\gamma_R(T_{i+1}) - 2k - 2 = h(V(T_i - y)) \ge \gamma_R(T_i - y) \ge \gamma_R(T_i)$. Therefore we have $\gamma_R(T_{i+1}) \ge \gamma_R(T_i) + 2k + 2$, a contradiction. Consequently $\gamma_R(T_{i+1}) \equiv i_R(T_{i+1})$.

Lemma 5. If T_i is a tree with $\gamma_R(T_i) \equiv i_R(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_3 , then $\gamma_R(T_{i+1}) \equiv i_R(T_{i+1})$.

Proof. Clearly every $i_R(T_i)$ -function can be extended to an IRDF for T_{i+1} by assigning 0 to u, w and 2 to v. Hence $\gamma_R(T_{i+1}) \leq i_R(T_{i+1}) \leq i_R(T_i) + 2 = \gamma_R(T_i) + 2$. Now let f be a $\gamma_R(T_{i+1})$ -function. If f(v) = 2, then f(w) = f(u) = 0 and $f|_{V(T_i)}$ is an RDF for T_i . Hence $\gamma_R(T_i) \leq \gamma_R(T_{i+1}) - 2$. If f(v) = 1, then f(u) = 1 and w must be assigned 0. It follows that $f|_{V(T_i)}$ is an RDF for T_i and so $\gamma_R(T_i) \leq \gamma_R(T_{i+1}) - 2$. Now assume that f(v) = 0. Then f(u) = 2 and $f(w) \notin \{1, 2\}$. It follows that $f|_{V(T_i)}$ is an RDF for T_i and so $\gamma_R(T_i) \leq \gamma_R(T_{i+1}) - 2$. For all cases, we obtain $\gamma_R(T_{i+1}) = \gamma_R(T_i) + 2$, implying that $i_R(T_{i+1}) = i_R(T_i) + 2$.

Assume now that $\gamma_R(T_{i+1})$ is not strongly equal to $i_R(T_{i+1})$ and let h be a $\gamma_R(T_{i+1})$ -function that is not independent. Thus there are two adjacent vertices a and b assigned positive values. If h(v) = 2, then h(w) = h(u) = 0 and $h|_{V(T_i)}$ is a $\gamma_R(T_i)$ -function, where $a, b \in V(T_i)$, contradicting $\gamma_R(T_i) \equiv i_R(T_i)$. If h(v) = 1, then h(u) = 1 and h(w) = 0. It follows that h(y) = 2 and $h|_{V(T_i)}$ is a $\gamma_R(T_i)$ -function for which y is assigned 2, a contradiction with the construction. Thus we assume that h(v) = 0. Hence h(u) = 2. If h(w) = 1, then $h|_{V(T_i)}$ is an RDF for T_i of weight $\gamma_R(T_i) - 1$, which is impossible. If h(w) = 2, then we change h(w) = 2 to h(w) = 1 and h(y) = 0 to h(y) = 1 and we obtain the previous situation. Thus h(w) = 0 implying that h(y) = 2. But then $h|_{V(T_i)}$ is a $\gamma_R(T_i)$ -function for which y is assigned 2, a contradiction with the construction.

We now are ready to establish our main result.

Theorem 6. Let T be a tree. Then $\gamma_R(T) \equiv i_R(T)$ if and only if $T = K_1$ or $T \in \mathcal{F}$.

Proof. Obviously, if $T = K_1$, then $\gamma_R(T) \equiv i_R(T)$. Now suppose that $T \in \mathcal{F}$. Then there is a sequence of trees T_1, T_2, \ldots, T_k $(k \ge 1)$ such that T_1 is a star $K_{1,t}$ with $t \geq 2$, $T = T_k$, and, if $k \geq 2$, then T_{i+1} can be obtained recursively from T_i by an operation \mathcal{O}_1 , \mathcal{O}_2 or \mathcal{O}_3 for $i = 1, \ldots, (k-1)$. We use an induction on the number of operations performed to construct T. Clearly the property is true if k = 1. This establishes the basis case. Assume now that $k \geq 2$ and that the result holds for all trees $T \in \mathcal{F}$ that can be constructed from a sequence of length at most k-1, and let $T' = T_{k-1}$. By the induction hypothesis, $\gamma_R(T') \equiv i_R(T')$. By construction T is obtained from T' by using Operation \mathcal{O}_1 , \mathcal{O}_2 or \mathcal{O}_3 . Hence by Lemmas 3, 4 and 5 it follows that $\gamma_R(T) \equiv i_R(T)$.

Conversely, let T be a tree of order n with $\gamma_R(T) \equiv i_R(T)$. Clearly if n = 1, then $T = K_1$. Hence we assume that T has order $n \geq 2$. We use an induction on the order n. Since a path P_2 has a $\gamma_R(P_2)$ -function that is not independent, we assume that $n \geq 3$. If n = 3, then $T = P_3$ which belongs to \mathcal{F} , establishing the base case. Assume that every tree T' of order $2 \leq n' < n$ with $\gamma_R(T') \equiv i_R(T')$ is in \mathcal{F} . Let T be a tree of order n with $\gamma_R(T) \equiv i_R(T)$ and let f be a $\gamma_R(T)$ function. Since stars of order at least three belong to \mathcal{F} , we may assume that T has diameter at least three. If diam(T)=3, then T is a double star $S_{1,p}$ with $p \geq 1$ and $T \in \mathcal{F}$ because it is obtained from a star $K_{1,p+1}$ by using Operation \mathcal{O}_1 . Therefore assume that diam $(T) \geq 4$.

We now root T at a leaf r of a longest path. Let u be a vertex at distance $\operatorname{diam}(T) - 1$ from r on a longest path starting at r such that $|L_u|$ is as small as possible. Let v, w be the parents of u and v on this path, respectively. Clearly $f(u) \neq 1$, else u and its leaves belong to V_1 , contradicting $\gamma_R(T) \equiv i_R(T)$. We consider the following cases.

Case 1. f(u) = 2. Then f(v) = 0 and f(u') = 0 for every $u' \in L_u$.

Subcase 1.1. v is a support vertex. Then f(v') = 1 for every $v' \in L_v$. If v is adjacent to two leaves v' and v'', then we can change f(v) = 0 to f(v) = 2 and f(v') = f(v'') = 1 to f(v') = f(v'') = 0. Clearly we obtain a $\gamma_R(T)$ -function for which $V_1 \cup V_2$ is not independent. Hence v is adjacent to a unique leaf v'. So $|L_v| = 1$.

Suppose that $|L_u| = 1$ and let u' be the unique leaf neighbor of u. Consider the function h on V(T) defined by h(x) = f(x) if $x \in V(T) - \{u, u', v, v'\}$, h(u') = 1, h(u) = 0, h(v) = 2 and h(v') = 0. Then h is a $\gamma_R(T)$ -function and h(w) = 0. Furthermore $d_T(v) = 3$, for otherwise every child y of v different from u is assigned 2, a contradiction. Let T' be the tree obtained from T by removing u'. Note that v is a strong support vertex in T'. Clearly $h|_{V(T')}$ is both an RDF and an IRDF for T' implying that $\gamma_R(T') \leq \gamma_R(T) - 1$ and $i_R(T') \leq i_R(T) - 1$. Since every $\gamma_R(T')$ -function can be extended to an RDF for T by assigning 1 to u'we obtain $\gamma_R(T) = \gamma_R(T') + 1$. Also $i_R(T') \leq i_R(T) - 1 = \gamma_R(T) - 1 = \gamma_R(T')$ and so $i_R(T') = \gamma_R(T')$. It follows that $i_R(T) = i_R(T') + 1$ and so $i_R(T') = \gamma_R(T')$. On the other hand, if $\gamma_R(T')$ and $i_R(T')$ are not strongly equal, then every $\gamma_R(T')$ function for which $V_1 \cup V_2$ is not independent can be extended to a $\gamma_R(T)$ -function by assigning 1 to u', a contradiction with $\gamma_R(T) \equiv i_R(T)$. Therefore $\gamma_R(T') \equiv i_R(T')$ and by induction on T', we have $T' \in \mathcal{F}$. We conclude that $T \in \mathcal{F}$ because it is obtained from T' by using Operation \mathcal{O}_1 .

Assume now that $|L_u| \geq 2$. By our choice of u, every child of v which is a support vertex is adjacent to at least two leaves. Hence T_v is a tree of \mathcal{T} . Let $u = u_1, u_2, \ldots, u_k$ with $k \ge 1$, denote the support vertices adjacent to v in T_v , and let $T' = T - T_v$. Since diam $(T) \ge 4$, T' is nontrivial. We observe that $f|_{V(T')}$ is both an RDF and IRDF for T' implying that $\gamma_R(T') \leq \gamma_R(T) - 2k - 1$ and $i_R(T') \leq i_R(T) - 2k - 1$. Equality is obtained by the fact that every $\gamma_R(T')$ function (resp. $i_R(T')$ -function) can be extended to an RDF (resp. an IRDF) for T by assigning 2 to every u_i , 0 to v and every leaf in T_v except v', and 1 to v'. On the other hand, observe that if w satisfies $\gamma_R(T'-w) \leq \gamma_R(T') - 1$, then every $\gamma_R(T'-w)$ -function can be extended to a $\gamma_R(T)$ -function that is not independent by assigning 2 to v and every u_i and 0 to the remaining vertices, a contradiction with $\gamma_R(T) \equiv i_R(T)$. Thus w satisfies $\gamma_R(T'-w) \geq \gamma_R(T')$. If $\gamma_R(T')$ and $i_R(T')$ are not strongly equal, then every $\gamma_R(T')$ -function which is not independent can be extended to a $\gamma_R(T)$ -function, contradicting $\gamma_R(T) \equiv i_R(T)$. It follows that $\gamma_R(T') \equiv i_R(T')$ and by induction on T' we have $T' \in \mathcal{F}$. Therefore $T \in \mathcal{F}$ because it is obtained from T' by using Operation \mathcal{O}_2 .

Subcase 1.2. v is not a support vertex. We first assume that $d_T(v) \geq 3$. Then all children of v are support vertices and each one is assigned 2. If some child bof v is adjacent to only one leaf b', then we can change f(b) = 2 to f(b) = 1 and f(b') = 0 to f(b') = 1. We then obtain a $\gamma_R(T)$ -function that is not independent, a contradiction. Thus every child of v is adjacent to at least two leaves. Let $T' = T - T_v$. Observe that T_v belongs to \mathcal{T} . Then $\gamma_R(T) \leq \gamma_R(T') + 2(d_T(v) - 1)$ since every $\gamma_R(T')$ -function can be extended to an RDF for T by assigning 2 to every support vertex in T_v . Likewise, $i_R(T) \leq i_R(T') + 2(d_T(v) - 1)$. Both equalities are obtained from the fact that $f|_{V(T')}$ is an RDF and IRDF for T'. It follows that $\gamma_R(T') = i_R(T')$. Now if T' admits a $\gamma_R(T')$ -function that is not independent, then such a function can be extended to a $\gamma_R(T)$ -function that is not independent, that is $\gamma_R(T') \equiv i_R(T')$. By induction on T' we have $T' \in \mathcal{F}$ and so $T \in \mathcal{F}$ because it is obtained from T' by using Operation \mathcal{O}_2 .

Now assume that $d_T(v) = 2$. If $|L_u| \ge 2$, then we consider $T' = T - T_v$. Observe that $T_v \in \mathcal{T}$. It is easy to see that $\gamma_R(T) = \gamma_R(T') + 2$ and $i_R(T) = i_R(T') + 2$, and so $\gamma_R(T') = i_R(T')$. Since every $\gamma_R(T')$ -function can be extended to a $\gamma_R(T)$ -function, it follows that $\gamma_R(T') \equiv i_R(T')$. By induction on T' we have $T' \in \mathcal{F}$ and so $T \in \mathcal{F}$ because it is obtained from T' by using Operation \mathcal{O}_2 . Now assume that $|L_u| = 1$, and let u' be the unique leaf adjacent to u. If f(w) = 2, then we change f(u) = 2 to f(u) = 1 and f(u') = 0 to f(u') = 1. We obtain a $\gamma_R(T)$ -function that is not independent, a contradiction. Thus $f(w) \in \{0, 1\}$ for every $\gamma_R(T)$ -function f. Let $T' = T - T_v$. Then $\gamma_R(T') \leq \gamma_R(T) - 2$ and $i_R(T') \leq i_R(T) - 2$. Both equalities hold since every $\gamma_R(T')$ -function (respectively, $\gamma_R(T')$ -function) can be extended to an RDF (respectively, IRDF) for T by assigning 0 to u', v and 2 to u. Hence $i_R(T') = \gamma_R(T')$. Note that since $f(w) \neq 2$, w is assigned 0 or 1 for every $\gamma_R(T')$ -function. Now it is clear that $\gamma_R(T') \equiv i_R(T')$ and by induction on T' we have $T' \in \mathcal{F}$. It follows that $T \in \mathcal{F}$ because it is obtained from T' by using Operation \mathcal{O}_3 .

Case 2. f(u) = 0. Then f(u') > 0 for every $u' \in L_u$. It follows that $|L_u| \leq 2$, for otherwise we can decrease the weight of f by changing the assignment of u and its leaves. Now if $L_u = \{u', u''\}$, then f(u') = f(u'') = 1 and f(v) = 2. In this case we change f(u) = 0 to f(u) = 2 and f(u') = f(u'') = 1 to f(u') = f(u'') = 0. Clearly we obtain a $\gamma_R(T')$ -function that is not independent, a contradiction. Hence $|L_u| = 1$. Let u' be the leaf adjacent to u. If f(u') = 2, then we must have f(v) = 0 and so we can change f(u') = 2 to f(u') = 0 and f(u) = 0 to f(u) = 2. Hence we are in Case 1. Thus we assume that f(u') = 1 and so f(v) = 2. We consider the following subcases.

Subcase 2.1. v is a support vertex. Then f(v') = 0 for every $v' \in L_v$. Let T' be the tree obtained from T by removing u'. As seen in Subcase 1.1 we obtain $\gamma_R(T') \equiv i_R(T')$ and by induction on $T', T' \in \mathcal{F}$. Since T is obtained from T' by using Operation \mathcal{O}_1 , we have $T \in \mathcal{F}$.

Subcase 2.2. v is not a support vertex but has degree at least three. Thus every child of v is a support vertex with degree two. Also every support vertex in T_v is assigned 0 and every leaf is assigned 1. Now let T' be the tree obtained from T by removing u'. It is easy to see that $\gamma_R(T) = \gamma_R(T') + 1$ and $i_R(T) = i_R(T') + 1$. Hence $\gamma_R(T') = i_R(T')$. On the other hand suppose that $\gamma_R(T' - v) \leq \gamma_R(T')$ and let f' be any $\gamma_R(T' - v)$ -function. Then u is an isolated vertex in T' - v and is assigned 1. Also we may assume, without loss of generality, that every child of v different from u is assigned 2 in T' - v. Hence f' can be extended to a $\gamma_R(T)$ function for T by assigning 1 to u'. But then the resulting $\gamma_R(T)$ -function is not independent, a contradiction. It follows that v satisfies $\gamma_R(T' - v) > \gamma_R(T')$ and so by Proposition 2, v is assigned 2 for every $\gamma_R(T')$ -function. Using this fact and the fact that every $\gamma_R(T')$ -function can be extended to a $\gamma_R(T)$ -function by assigning 1 to u', we obtain $\gamma_R(T') \equiv i_R(T')$. By induction on T' we have $T' \in \mathcal{F}$ and so $T \in \mathcal{F}$ since it is obtained from T' by using Operation \mathcal{O}_1 .

Subcase 2.3. $d_T(v) = 2$. Recall that since f(v) = 2, we have f(w) = 0. Then we can make a change to obtain f(u') = 0, f(u) = 2, f(v) = 0 and f(w) = 1. Since $\gamma_R(T) \equiv i_R(T)$, no vertex of $N(w) - \{v\}$ is assigned a positive value. Now let $T' = T - T_v$. As seen in Subcase 1.2 (when $d_T(v) = 2$) w is not assigned 2 for every $\gamma_R(T')$ -function, $\gamma_R(T) = \gamma_R(T') + 2$, $i_R(T) = i_R(T') + 2$ and $\gamma_R(T') \equiv i_R(T')$. By induction on T' we have $T' \in \mathcal{F}$ and so $T \in \mathcal{F}$ because it is obtained from T' by using Operation \mathcal{O}_3 .

We close with the following problem.

Problem. Characterize other classes of graphs (or regular graphs) with strong equality between the Roman domination and the independent Roman domination numbers.

References

- E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, On Roman domination in graphs, Discrete Math. 278 (2004) 11–22. doi:10.1016/j.disc.2003.06.004
- T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of domination parameters in trees, Discrete Math. 260 (2003) 77–87. doi:10.1016/S0012-365X(02)00451-X
- [3] T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of upper domination and independence in trees, Util. Math. 59 (2001) 111–124.
- [4] T.W. Haynes and P.J. Slater, *Paired-domination in graphs*, Networks **32** (1998) 199–206.
 doi:10.1002/(SICI)1097-0037(199810)32:3(199::AID-NET4)3.0.CO:2-F
- [5] M.A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002) 325–334. doi:10.7151/dmgt.1178
- [6] M.A. Henning, Defending the Roman Empire from multiple attacks, Discrete Math. 271 (2003) 101–115. doi:10.1016/S0012-365X(03)00040-2
- [7] N. Jafari Rad and L. Volkmann, Changing and unchanging the Roman domination number of a graph, Util. Math. 89 (2012) 79–95.

Received 8 December 2010 Revised 24 November 2011 Accepted 5 April 2012