Discussiones Mathematicae Graph Theory 33 (2013) 387–394 doi:10.7151/dmgt.1668

ON THE DOMINATION OF CARTESIAN PRODUCT OF DIRECTED CYCLES: RESULTS FOR CERTAIN EQUIVALENCE CLASSES OF LENGTHS

MICHEL MOLLARD

CNRS Université Joseph Fourier Institut Fourier 100, rue des Maths 38402 St Martin d'Hères Cedex France

 $e\mbox{-mail: michel.mollard@ujf-grenoble.fr}$

Abstract

Let $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n})$ be the domination number of the Cartesian product of directed cycles $\overrightarrow{C_m}$ and $\overrightarrow{C_n}$ for $m, n \geq 2$. Shaheen [13] and Liu *et al.* ([11], [12]) determined the value of $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n})$ when $m \leq 6$ and [12] when both m and $n \equiv 0 \pmod{3}$. In this article we give, in general, the value of $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n})$ when $m \equiv 2 \pmod{3}$ and improve the known lower bounds for most of the remaining cases. We also disprove the conjectured formula for the case $m \equiv 0 \pmod{3}$ appearing in [12].

Keywords: directed graph, Cartesian product, domination number, directed cycle.

2010 Mathematics Subject Classification: 05C69,05C38.

1. INTRODUCTION AND DEFINITIONS

Let D = (V, A) be a finite directed graph (digraph for short) without loops or multiple arcs.

A vertex u dominates a vertex v if u = v or $uv \in A$. A set $W \subseteq V$ is a dominating set of D if any vertex of V is dominated by at least one vertex of W. The domination number of D, denoted by $\gamma(D)$ is the minimum cardinality of a dominating set. The set V is a dominating set thus $\gamma(D)$ is finite. These definitions extend to digraphs the classical domination notion for undirected graphs.

The determination of the domination number of a directed or undirected graph is, in general, a difficult question in graph theory. Furthermore this problem

has connections with information theory. For example the domination number of hypercubes is linked to error-correcting codes. Among the lot of related works, Haynes *et al.* ([7], [8]) mention the special cases of the domination of Cartesian products of undirected paths, cycles or more general graphs ([1] to [6], [9], [10]).

For two digraphs $D_1 = (V_1, A_1)$ and $D_2 = (V_2, A_2)$ the Cartesian product $D_1 \Box D_2$ is the digraph with vertex set $V_1 \times V_2$ and $(x_1, x_2)(y_1, y_2) \in A(D_1 \Box D_2)$ if and only if $x_1y_1 \in A_1$ and $x_2 = y_2$ or $x_2y_2 \in A_2$ and $x_1 = y_1$. Note that $D_2 \Box D_1$ is isomorphic to $D_1 \Box D_2$. In [13] Shaheen determined the domination number of $\overrightarrow{C_m} \Box \overrightarrow{C_n}$ for $m \leq 6$ and arbitrary n. In two articles [11], [12] Liu *et al.* considered independently the domination number of the Cartesian product of two directed cycles. They gave also the value of $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n})$ when $m \leq 6$ and when both m and $n \equiv 0 \pmod{3}$ [12]. Furthermore they proposed lower and upper bounds for the general case.

In this paper we are able to give, in general, the value of $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n})$ when $m \equiv 2 \pmod{3}$ and we improve the lower bounds for most of the still unknown cases. We also disprove the conjectured formula appearing in [12] for the case $m \equiv 0 \pmod{3}$.

We denote the vertices of a directed cycle $\overrightarrow{C_n}$ by $C_n = \{0, 1, \ldots, n-1\}$, the integers considered modulo n. Thus, when used for vertex labeling, a+b and a-b will denote the vertices a+b and $(a-b) \pmod{n}$. Notice that there exists an arc xy from x to y in $\overrightarrow{C_n}$ if and only if $y \equiv x+1 \pmod{n}$, thus with our convention, if and only if $y \equiv x+1$. For any i in $\{0, 1, \ldots, n-1\}$ we will denote by $\overrightarrow{C_m}$ the subgraph of $\overrightarrow{C_m} \square \overrightarrow{C_n}$ induced by the vertices $\{(k, i) \mid k \in \{0, 1, \ldots, m-1\}\}$. Note that $\overrightarrow{C_m}$ is isomorphic to $\overrightarrow{C_m}$. We will denote by $\overrightarrow{C_m}$ the set of vertices of $\overrightarrow{C_m}$.

2. GENERAL BOUNDS AND THE CASE $m \equiv 2 \pmod{3}$

We start this section by developing a general upper bound for $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n})$. Then we will construct minimum dominating sets for $m \equiv 2 \pmod{3}$. These optimal sets will be obtained from integer solutions of a system of equations.

Proposition 1. Let W be a dominating set of $\overrightarrow{C_m} \Box \overrightarrow{C_n}$. Then for all i in $\{0, 1, \dots, n-1\}$ considered modulo n we have $|W \cap C_m^{i-1}| + 2 |W \cap C_m^i| \ge m$.

Proof. The *m* vertices of C_m^i can only be dominated by vertices of $W \cap C_m^i$ and $W \cap C_m^{i-1}$. Each of the vertices of $W \cap C_m^i$ dominates two vertices in C_m^i . Similarly, each of the vertices of $W \cap C_m^{i-1}$ dominates one vertex in C_m^i . The result follows.

Theorem 2. Let $m, n \geq 2$ and $k_1 = \lfloor \frac{m}{3} \rfloor$. Then

ON THE DOMINATION OF CARTESIAN PRODUCT OF DIRECTED CYCLES... 389

- (i) if $m \equiv 0 \pmod{3}$, then $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n}) \ge nk_1$, or
- (ii) if $m \equiv 1 \pmod{3}$, then $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n}) \ge nk_1 + \frac{n}{2}$, or
- (iii) if $m \equiv 2 \pmod{3}$, then $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n}) \ge nk_1 + n$.

Proof. Let W be a dominating set of $\overrightarrow{C_m} \Box \overrightarrow{C_n}$ and for any i in $\{0, 1, \ldots, n-1\}$ let $a_i = |W \cap C_m^i|$. Notice first, as noticed by Liu *et al.* [12], that each of the vertices of W dominates three vertices of $\overrightarrow{C_m} \Box \overrightarrow{C_n}$ and thus $|W| \ge \frac{mn}{3}$. This general bound give the announced result for $m = 3k_1$, $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n}) \ge nk_1 + \frac{n}{3}$ for $m = 3k_1 + 1$ and $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n}) \ge nk_1 + 2\frac{n}{3}$ for $m = 3k_1 + 2$. We will improve these two last results to verify parts (ii) and (iii) of the theorem.

Assume first $m = 3k_1 + 1$. Let J be the set of $j \in \{0, 1, \ldots, n-1\}$ such that $a_j \leq k_1$. If $J = \emptyset$, then $|W| \geq n(k_1 + 1) \geq nk_1 + \frac{n}{2}$ and we are done. Otherwise let $J' = \{j \mid j+1 \pmod{n} \in J\}$. By Proposition 1, for any i in $\{0, 1, \ldots, n-1\}$ considered modulo n, we have $a_{i-1} + 2a_i \geq 3k_1 + 1$. Then if i belongs to J, $a_{i-1} + a_i \geq 2k_1 + 1$. A first consequence is that there are no consecutive indices, taken modulo n, in J. Indeed, if j - 1 and j are in J then, by definition of J, $a_{j-1} + a_j \leq 2k_1$ in contradiction with the previous inequality. By definition of J' we have thus $J \cap J' = \emptyset$.

Now let $K = \{j \in \{0, 1, ..., n-1\}, j \notin J \cup J'\}$. We can write $\{0, 1, ..., n-1\}$ = $J \cup J' \cup K$ where J, J' and K are disjoint sets. Notice that $\theta : j \mapsto j-1 \pmod{n}$ induces a one to one mapping between J and J'.

The cardinality of W is $|W| = \sum_{i \in \{0,1,\dots,n-1\}} a_i = \sum_{i \in J} a_i + \sum_{i \in J'} a_i + \sum_{i \in J'} a_i + \sum_{i \in J} a_i + \sum_{i \in J'} a_i + \sum_{i \in J'} a_i + \sum_{i \in J'} a_i + \sum_{i \in J} a_i + \sum_{i \in J} a_{\theta(i)} = \sum_{i \in J} (a_i + a_{i-1})$. Using $a_{i-1} + a_i \ge 2k_1 + 1$, because $i \in J$, we obtain $\sum_{i \in J} a_i + \sum_{i \in J'} a_i \ge |J| (2k_1 + 1)$. If $i \in K$ then $i \notin J$ and $a_i \ge k_1 + 1$. Since |K| = n - 2|J| we have

If $i \in K$ then $i \notin J$ and $a_i \ge k_1 + 1$. Since |K| = n - 2|J| we have $\sum_{i \in K} a_i \ge (n - 2|J|)(k_1 + 1)$. Then $|W| = \sum_{i \in \{0, 1, \dots, n-1\}} a_i \ge |J|(2k_1 + 1) + (n - 2|J|)(k_1 + 1) = nk_1 + n - |J|$. Since |J| = |J'| and $J \cap J' = \emptyset$, $n - |J| \ge \frac{n}{2}$ and the conclusion for (ii) follows.

The case $m = 3k_1 + 2$ is similar. Let J be the set of $j \in \{0, 1, \ldots, n-1\}$ such that $a_j \leq k_1$. If $J = \emptyset$ then we are done. Otherwise let $J' = \{j \mid j+1 \pmod{n} \in J\}$. If $i \in J$ we have $a_{i-1} + 2a_i \geq 3k_1 + 2$ thus $a_{i-1} + a_i \geq 2k_1 + 2$. Then $J \cap J' = \emptyset$ and $\sum_{i \in J \cup J'} a_i \geq |J| (2k_1 + 2)$. Therefore $\sum_{i \in \{0,1,\ldots,n-1\}} a_i \geq |J| (2k_1 + 2) + (n - 2|J|)(k_1 + 1) \geq n(k_1 + 1)$.

Let us now study in detail the case $m \equiv 2 \pmod{3}$. Assume $m = 3k_1 + 2$. Let A be the set of $k_1 + 1$ vertices of $\overrightarrow{C_m}$ defined by $A = \{0\} \cup \{2 + 3p \mid p = 0, 1, \dots, k_1 - 1\} = \{0\} \cup \{2, 5, \dots, m - 6, m - 3\}$. For any i in $\{0, 1, \dots, m - 1\}$ let us call $A_i = \{j \mid j - i \pmod{m} \in A\}$ the *translate*, considered modulo m, of A by i. We have thus $A_i = \{i\} \cup \{i + 2, i + 5, \dots, i - 6, i - 3\}$ (see Figure 1). We will call a set S of vertices of $\overrightarrow{C_m} \Box \overrightarrow{C_n}$ an A-set if for any j in $\{0, 1, \ldots, n-1\}$ we have $S \cap C_m^j = A_i$ for some i in $\{0, 1, \ldots, n-1\}$. It will be convenient to denote this index i, function of j, as i_j . If S is a A-set then $|S| = n(k_1 + 1)$; thus if a set is both a A-set and a dominating set, by Theorem 2, it is minimum and we have $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n}) = n(k_1 + 1)$.



Figure 1. A_{i-1}, A_i and A_{i+2}, A_i .

Lemma 3. Let $m = 3k_1 + 2$. Let S be a A-set and for any j in $\{0, 1, \ldots, n-1\}$ define i_j as the index such that $S \cap C_m^j = A_{i_j}$. Assume that

(i) for any $j \in \{1, \dots, n-1\}$ $i_j \equiv i_{j-1} + 1 \pmod{m}$ or $i_j \equiv i_{j-1} - 2 \pmod{m}$ and

(ii) $i_0 \equiv i_{n-1} + 1 \pmod{m}$ or $i_0 \equiv i_{n-1} - 2 \pmod{m}$. Then S is a dominating set of $\overrightarrow{C_m} \Box \overrightarrow{C_n}$.

Proof. Note first that for any i in $\{0, 1, \ldots, m-1\}$ the set of non dominated vertices of C_m by A_i is $T = \{i+4, i+7, \ldots, i-4, i-1\}$. Note also that $A_{i+2} = \{i+2\} \cup \{i+4, i+7, \ldots, i-4, i-1\}$ and $A_{i-1} = \{i-1\} \cup \{i+1, i+4, \ldots, i-7, i-4\}$. Thus $T \subset A_{i+2}$ and $T \subset A_{i-1}$.

Let j in $\{1, \ldots, n-1\}$. Let us prove that the vertices of C_m^j are dominated. Indeed, by the previous remark and the lemma hypothesis, the vertices non dominated by $S \cap C_m^j$ are dominated by $S \cap C_m^{j-1}$ (see Figure 1). For the same reasons the vertices of C_m^0 are dominated by those of $S \cap C_m^0$ and $S \cap C_m^{n-1}$.

We will prove next that the existence of solutions to some system of equations over integers implies the existence of an A-set satisfying the hypothesis of Lemma 3.

Lemma 4. Let $m = 3k_1 + 2$. If there exist integers $a, b \ge 0$ such that (i) a + b = n - 1 and (ii) $a - 2b \equiv 2 \pmod{m}$ or $a - 2b \equiv m - 1 \pmod{m}$. Then $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n}) = n(k_1 + 1)$.

Proof. Consider a word $w = w_1 \dots w_{n-1}$ on the alphabet $\{1, -2\}$ with a occurrences of 1 and b of -2. Such a word exists, for example $w = 1^a (-2)^b$. We can associate with w a set S of vertices of $\overrightarrow{C_m} \Box \overrightarrow{C_n}$ using the following algorithm:

 $S \cap C_m^0 = A_0$ For i = 1 to n - 1 do begin Let k such that $S \cap C_m^{i-1} = A_k$ If $w_i = 1$ let $k' \equiv k + 1 \pmod{m}$ else $k' \equiv k - 2 \pmod{m}$ $S \cap C_m^i := A_{k'}$ end

By construction S is an A-set. Notice that we have $S \cap C_m^{n-1} := A_{i_{n-1}}$ where $i_{n-1} \equiv \sum_{k=1}^{n-1} w_k \equiv a - 2b \pmod{m}$. Thus $i_{n-1} \equiv 2 \pmod{m}$ or $i_{n-1} \equiv m-1 \pmod{m}$. By Lemma 3, S is a dominating set. Furthermore, because S is a A-set, $|S| = n(k_1 + 1)$, thus by Theorem 2 it is minimum and we have $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n}) = n(k_1 + 1)$.

With the exception of one subcase we can find solutions (a, b) of the system and thus obtain minimum dominating sets for $m \equiv 2 \pmod{3}$.

Theorem 5. Let $m, n \ge 2$ and $m \equiv 2 \pmod{3}$. Let $k_1 = \lfloor \frac{m}{3} \rfloor$ and $k_2 = \lfloor \frac{n}{3} \rfloor$. (i) If $n = 3k_2$, then $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n}) = n(k_1 + 1)$, and

(ii) if $n = 3k_2 + 1$ and $2k_2 \ge k_1$, then $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n}) = n(k_1 + 1)$, and

(iii) if
$$n = 3k_2 + 1$$
 and $2k_2 < k_1$, then $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n}) > n(k_1 + 1)$, and

(iv) if
$$n = 3k_2 + 2$$
 and $n \ge m$, then $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n}) = n(k_1 + 1)$, and

(v) if
$$n = 3k_2 + 2$$
 and $n \le m$, then $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n}) = m(k_2 + 1)$.

Proof. We will use Lemma 4 considering the following integer solutions of

$$\left\{ \begin{array}{l} a,b\geq 0\\ a+b=n-1\\ a-2b\equiv 2\;(\!\!\!\mod m) \text{ or } a-2b\equiv m-1\;(\!\!\!\mod m) \end{array} \right.$$

(i) If
$$n = 3k_2$$
, then $k_2 \ge 1$. Take $a = 2k_2$ and $b = k_2 - 1$.

- (ii) If $n = 3k_2 + 1$ and $2k_2 \ge k_1$, then take $a = 2k_2 k_1$ and $b = k_2 + k_1$.
- (iii) If $n = 3k_2 + 1$ and $2k_2 < k_1$, then $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n}) = \gamma(\overrightarrow{C_n} \Box \overrightarrow{C_m}) \ge \frac{(2k_2+1)m}{2}$ by Theorem 2. Furthermore, $\frac{(2k_2+1)m}{2} - n(k_1+1) = \frac{k_1}{2} - k_2 > 0$.

(iv) If
$$n = 3k_2 + 2$$
 and $k_2 \ge k_1$, then take $a = 2k_2 - 2k_1$ and $b = k_2 + 2k_1 + 1$.
(v) If $n = 3k_2 + 2$ and $k_2 \le k_1$, then use $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n}) = \gamma(\overrightarrow{C_n} \Box \overrightarrow{C_m})$.

3. The Case $m \equiv 0 \pmod{3}$

In [12] Liu *et al.* conjectured the following formula:

Conjecture 6. Let
$$k \ge 2$$
. Then $\gamma(\overrightarrow{C_{3k}} \Box \overrightarrow{C_n}) = k(n+1)$ for $n \not\equiv 0 \pmod{3}$.

Our Theorem 5 confirms the conjecture when $n \equiv 2 \pmod{3}$. Unfortunately, the formula is not always valid when $n \equiv 1 \pmod{3}$.

Indeed, consider $C_{3k} \square C_4$. In [11] the following result is proved:

Theorem 7. Let $n \ge 2$. Then $\gamma(\overrightarrow{C_4} \Box \overrightarrow{C_n}) = \frac{3n}{2}$ if $n \equiv 0 \pmod{8}$ and $\gamma(\overrightarrow{C_4} \Box \overrightarrow{C_n}) = n + \lceil \frac{n+1}{2} \rceil$ otherwise.

We have thus $\gamma(\overrightarrow{C_{3k}} \Box \overrightarrow{C_4}) = \gamma(\overrightarrow{C_4} \Box \overrightarrow{C_{3k}}) = 3k + \lfloor \frac{3k+1}{2} \rfloor$ when $k \neq 0 \pmod{8}$. Alternately, Conjecture 6 proposes the value $\gamma(\overrightarrow{C_{3k}} \Box \overrightarrow{C_4}) = 5k$. These two numbers are different when $k \geq 3$.

4. Conclusion

Consider the possible remainder of m, n modulo 3. For some of the nine possibilities, we have found exact values for $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n})$. The remaining cases are:

- a) $m \equiv 0 \pmod{3}$ and $n \equiv 1 \pmod{3}$
- b) The symmetrical case $m \equiv 1 \pmod{3}$ and $n \equiv 0 \pmod{3}$.
- c) m and $n \equiv 1 \pmod{3}$.
- d) The case m or $n \equiv 2 \pmod{3}$ is not completely solved by Theorem 5. The following subcases are still open
 - i) $m \equiv 2 \pmod{3}$ and $n \equiv 1 \pmod{3}$ with m > 2n + 1
 - ii) the symmetrical case $m \equiv 1 \pmod{3}$ and $n \equiv 2 \pmod{3}$ with n > 2m+1.

ON THE DOMINATION OF CARTESIAN PRODUCT OF DIRECTED CYCLES... 393

For these values of m, n there does not always exist a dominating set reaching the bound stated if Theorem 2 and thus the determination of $\gamma(\overrightarrow{C_m} \Box \overrightarrow{C_n})$ seems to be a more difficult problem.

Acknowledgement

The author is gratitude to the suggestions of anonymous referees for improving the presentation of this paper.

References

- T.Y. Chang and W.E. Clark, The domination numbers of the 5 × n and 6 × n grid graphs, J. Graph Theory 17 (1993) 81–107. doi:10.1002/jgt.3190170110
- [2] M. El-Zahar and C.M. Pareek, Domination number of products of graphs, Ars Combin. 31 (1991) 223–227.
- [3] M. El-Zahar, S. Khamis and Kh. Nazzal, On the domination number of the Cartesian product of the cycle of length n and any graph, Discrete Appl. Math. 155 (2007) 515–522. doi:10.1016/j.dam.2006.07.003
- [4] R.J. Faudree and R.H. Schelp, The domination number for the product of graphs, Congr. Numer. 79 (1990) 29–33.
- S. Gravier and M. Mollard, On domination numbers of Cartesian product of paths, Discrete Appl. Math. 80 (1997) 247–250. doi:10.1016/S0166-218X(97)00091-7
- [6] B. Hartnell and D. Rall, On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24 (2004) 389–402. doi:10.7151/dmgt.1238
- [7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc. New York, 1998).
- [8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc. New York, 1998).
- M.S. Jacobson and L.F. Kinch, On the domination number of products of graphs I, Ars Combin. 18 (1983) 33-44.
- S. Klavžar and N. Seifter, Dominating Cartesian products of cycles, Discrete Appl. Math. 59 (1995) 129–136. doi:10.1016/0166-218X(93)E0167-W
- [11] J. Liu, X.D. Zhang, X. Chenand and J. Meng, On domination number of Cartesian product of directed cycles, Inform. Process. Lett. **110** (2010) 171–173. doi:10.1016/j.ipl.2009.11.005
- [12] J. Liu, X.D. Zhang, X. Chen and J. Meng, Domination number of Cartesian products of directed cycles, Inform. Process. Lett. **111** (2010) 36–39. doi:10.1016/j.ipl.2010.10.001

[13] R.S. Shaheen, Domination number of toroidal grid digraphs, Util. Math. 78 (2009) 175–184.

> Received 8 April 2011 Revised 24 May 2012 Accepted 28 May 2012

394