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Abstract

Let 'y(CT;DC_'n) be t}gdomination number of the Cartesian product of
directed cycles C,, and C,, for m,n 2_)2. Shaheen [13] and Liu et al. ([11],
[12]) determined the value of (C,,0C,,) when m < 6 and [12] when both m

and n = 0(mod 3). In this article we give, in general, the value of v(C,,,0C},)
when m = 2(mod 3) and improve the known lower bounds for most of the
remaining cases. We also disprove the conjectured formula for the case m
= 0(mod 3) appearing in [12].

Keywords: directed graph, Cartesian product, domination number, di-
rected cycle.

2010 Mathematics Subject Classification: 05C69,05C38.

1. INTRODUCTION AND DEFINITIONS

Let D = (V, A) be a finite directed graph (digraph for short) without loops or
multiple arcs.

A vertex u dominates a vertex vifu=voruv € A. Aset W CV is a domi-
nating set of D if any vertex of V' is dominated by at least one vertex of W. The
domination number of D, denoted by (D) is the minimum cardinality of a dom-
inating set. The set V is a dominating set thus v(D) is finite. These definitions
extend to digraphs the classical domination notion for undirected graphs.

The determination of the domination number of a directed or undirected
graph is, in general, a difficult question in graph theory. Furthermore this problem
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has connections with information theory. For example the domination number of
hypercubes is linked to error-correcting codes. Among the lot of related works,
Haynes et al. ([7], [8]) mention the special cases of the domination of Cartesian
products of undirected paths, cycles or more general graphs ([1] to [6], [9], [10]).

For two digraphs Dy = (V1, A1) and Dy = (Va, Ag) the Cartesian product
D,0Ds is the digraph with vertex set V4 x V4 and (z1, 22)(y1, y2) € A(D10Dy) if
and only if x1y1 € A1 and x5 = ys or xays € Ao and x1 = y1. Note that Do0OD;
is isomorphic to D10D5. In [13] Shaheen determined the domination number of
C,aC, for m < 6 and arbitrary n. In two articles [11], [12] Liu et al. considered
independently the domination number of the Cartesian product of two directed
cycles. They gave also the value of (C DC’ ) when m < 6 and when both m
and n = 0(mod 3) [12]. Furthermore they proposed lower and upper bounds for
the general case.

In this paper we are able to give, in general, the value of 'y(C' DC ) when
m = 2(mod 3) and we improve the lower bounds for most of the still unknown
cases. We also disprove the conjectured formula appearing in [12] for the case m
= 0(mod 3).

We denote the vertices of a directed cycle C’—:L by C,, ={0,1,...,n — 1}, the
integers considered modulo n. Thus, when used for vertex labeling, a4+b and a—b
will denote the vertices a + b and (a — b)(mod n). Notice that there exists an arc
zy from x to y in C—> if and only if y = x 4+ 1(mod n), thus with our convg;cion

if and only if fy=2x + 1. For any 7 in {0,1,...,n — 1} we will denote by C?, the
subgraph of C’ DC’ 1nduced by the vertices {(k‘ i) ke{0,1,...,m—1}}. Note

that C’Z is isomorphic to C . We will denote by C?, the set of vertices of C”

2.  GENERAL BOUNDS AND THE CASE m = 2(mod 3)

e
We start this section by developing a general upper bound for +(C,,0C,,). Then
we will construct minimum dominating sets for m = 2(mod 3). These optimal
sets will be obtained from integer solutions of a system of equations.

— —
Proposition 1. Let W be a dominating set of Cp,0C,. Then for all i in
{0,1,...,n — 1} considered modulo n we have |Wﬁ Cfrjl‘ + 2 |Wﬂ Cﬁn‘ > m.

Proof. The m vertices of C’ can only be dominated by vertices of W N C¢,
and W N CiL. Each of the vertices of W N C! dominates two vertices in C?,.
Similarly, each of the vertices of W N Ci ! dominates one vertex in C% . The
result follows. |

Theorem 2. Let m,n > 2 and k1 = L%J Then
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(i) if m = 0(mod 3), then ’y(CT,zDCT:L) > nky, or
(ii) 4f m = 1(mod 3), then fy(CT)mDE’Z) >nky + 5, or
(iii) if m = 2(mod 3), then v(CT,L)DC—)'n) > nky +n.

Proof. Let W be a dominating set of C?Dﬁ'n and for any 7 in {0,1,...,n — 1}
let a; = |W N C¢,|. Notice first, as noticed by Liu et al. [12], that each of the
vertices of W dominates three vertices of C—>mD(7>n and thus [W| > %*. This
general bound give the announced result for m = 3k, 'y(CT)mDE'Z) > nky + g for
m = 3k1 + 1 and fy(CTrtDC_)n) > nky + 2% for m = 3k; + 2. We will improve these
two last results to verify parts (ii) and (iii) of the theorem.

Assume first m = 3k; + 1. Let J be the set of j € {0,1,...,n — 1} such that
aj < k. If J =0, then |W| > n(ky + 1) > nk; + 5 and we are done. Otherwise
let J/={j|j+1(modn) € J}. By Proposition 1, for any i in {0,1,...,n — 1}
considered modulo n, we have a;_1 + 2a; > 3k; + 1. Then if i belongs to J,
a;_1 +a; > 2k; + 1. A first consequence is that there are no consecutive indices,
taken modulo n, in J. Indeed, if j — 1 and j are in J then, by definition of .J,
aj—1+aj < 2k in contradiction with the previous inequality. By definition of J’
we have thus JNJ' = (.

Now let K={j € {0,1,...,n—1}, j ¢ JUJ'}. We can write {0,1,...,n— 1}
=JUJ'UK where J, J' and K are disjoint sets. Notice that 6 : j — j—1(mod n)
induces a one to one mapping between J and J'.

The cardinality of W is [W| = 3 ,cq01, n-13 @G = ey @i T 2y @i +
Y ick @i- We can use 6 for grouping 2 by 2 the elements of J U J' and write
Dies Gt ey i = Dicy @it Dicy Go() = 2ies (@i +ai-1). Using ai—1 +a; >
2k1 + 1, because i € J, we obtain ), ;a; + > a; > |J| (2k +1).

If i € K then i ¢ J and a; > k; + 1. Since |K| = n — 2|J| we have
Yick @i = (n—2|J[)(ky+1). Then [W| = Zie{(),l,...,n—l} a; > |J|(2k1 +1)+ (n—
2|J]) (k1 + 1) = nky +n —[J|. Since |J| =|J'|and JNJ =0 ,n—|J| > & and
the conclusion for (ii) follows.

The case m = 3k; + 2 is similar. Let J be the set of j € {0,1,...,n — 1} such
that a; <k;. If J=0 then we are done. Otherwise let J'={j | j + 1(mod n) € J}.
If i € J we have a;_1 + 2a; > 3k; + 2 thus a;_1 +a; > 2k1 + 2. Then JNJ' =0
and ZiGJUJ’ a; > |J| (2](31 + 2) Therefore ZiE{O,l,...,n—l} a; > |J|(2k1 + 2) + (n —
21J|) (k1 + 1) > n(ks + 1). |

Let us now study in detail the case m = 2(mod 3). Assume m = 3k + 2.

Let A be the set of k; + 1 vertices of C—'m> defined by A = {0}U{2+3p | p=
0,1,...,k1 — 1} = {0} U{2,5,...,m — 6,m — 3}. For any i in {0,1,...,m — 1}
let us call A; = {j | j — ¢ (mod m) € A} the translate, considered modulo m, of
A by i. We have thus 4; = {i} U{i+2,i+5,...,i—6,i — 3} (see Figure 1).
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5

We will call a set S of vertices of C,,,0C,, an A-set if for any j in {0,1,...,n—1}

we have SN Cj, = A; for some i in {0,1,...,n — 1}. It will be convenient to

denote this index ¢, function of j, as i;. If S is a A-set then |S|= n(k; + 1); thus

if a set is both a A-set and a dominating set, by Theorem 2, it is minimum and
5 5

we have v(C,,,0C),) = n(ky + 1).

T
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Figure 1. Ai—hAi and Ai+27Ai.

Lemma 3. Let m = 3k; +2. Let S be a A-set and for any j in {0,1,...,n -1}
define ij as the index such that SN C}, = Ai; . Assume that
(i) foranyje{l,...,n—1} i; =41 +1(mod m) ori; =i;_1 — 2 (mod m)
and
(ii) 49 = ip—1 + 1 (mod m) orig =in—1 — 2 (mod m).
Then S is a dominating set of Cp,0C,,.

Proof. Note first that for any 7 in {0,1,...,m — 1} the set of non dominated
vertices of Cp, by A; is T ={i+4,i+7,...,i—4,i— 1}. Note also that A; o =
{i+2}u{i+4,i+7,...;i—4,i—1}and A;—1 = {i—1}U{i+1,i+4,...,i—7,i—4}.
Thus T C Ai+2 and T C A;_1. ‘

Let j in {1,...,n — 1}. Let us prove that the vertices of C%, are dominated.
Indeed, by the previous remark and the lemma hypothesis, the vertices non dom-
inated by SNCj, are dominated by S ned (see Figure 1). For the same reasons
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the vertices of CY, are dominated by those of S N CY and SN CHL. |

We will prove next that the existence of solutions to some system of equations
over integers implies the existence of an A-set satisfying the hypothesis of Lemma
3.

Lemma 4. Let m = 3k1 + 2. If there exist integers a,b > 0 such that
(i) a+b=n—1 and
(ii) @ —2b =2 (mod m) or a —2b=m — 1 (mod m).
— =
Then v(C,,0C,) = n(ky +1).

Proof. Consider a word w = wj ... w,—1 on the alphabet {1, —2} with a occur-
rences of 1 and b of —2. Such a word exists, for example w = 19(—2)*. We can

— =
associate with w a set .S of vertices of C,,0C),, using the following algorithm:

SNCY = A
Fori=1ton—1do
begin

Let k such that SNCiL = A,
If w; =11let ¥ =k + 1(mod m) else k' =k — 2(mod m)
SN C;n = Ak;’
end
By construction S is an A-set. Notice that we have SN Cn~! := A; | where
In_1 = EZ;% wg = a — 2b (mod m). Thus i,—1 =2 (mod m) or i,_1 =m — 1

(mod m). By Lemma 3, S is a dominating set. Furthermore, because S is a A-
set, |S|= n(k1 + 1), thus by Theorem 2 it is minimum and we have v(C,,,0C,)

n(kl + 1).

With the exception of one subcase we can find solutions (a,b) of the system and
thus obtain minimum dominating sets for m = 2(mod 3).

Theorem 5. Let m,n > 2 and m = 2(mod 3). Let k1 = L%J and ko = L%J
— —
(i) If n = 3ko, then v(C,,OCy,) = n(ky + 1), and
(ii) if n = 3ka + 1 and 2ky > ky, then W(Fmﬂa) =n(ky +1), and
(iii) if n = 3ke + 1 and 2ka < k1, then 'y(CT;DC?n) >n(ky +1), and
) if n=23ks + 2 and n > m, then fy(CTm)DC_:L) =n(k1 +1), and
) if n =3ko +2 and n < m, then 'y(C—>mD(7>n) =m(ky+1).

(iv
(v
Proof. We will use Lemma 4 considering the following integer solutions of

a,b>0
a+b=n—-1
a—2b=2( mod m)ora—2b=m—1( mod m)
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(i) If n = 3ko, then ko > 1. Take a = 2k and b = ko — 1.
(ii) If n = 3ko + 1 and 2k > kq, then take a = 2ky — k1 and b = ko + ky.

(iii) If n = 3ky + 1 and 2k < ky, then y(CoOC)=(CaDOCyy) > Ekztlm
by Theorem 2. Furthermore, W —n(k1+1) = % — ko > 0.

(iv) If n = 3ky+2 and ko > k1, then take a = 2ky — 2k; and b = ko +2k1 + 1.
(v) If n = 3ks + 2 and k2 < ky, then use v(CTn)DE’Z)Z’Y(EZDCTn}). n

3. THE CASE m = 0(mod 3)
In [12] Liu et al. conjectured the following formula:

Conjecture 6. Let k > 2. Then ’y(CE)D(T;) =k(n+1) for n # 0(mod 3).

Our Theorem 5 confirms the conjecture when n = 2(mod 3). Unfortunately, the
formula is not always valid when n = 1(mod 3).
Indeed, consider C5;,0Cy. In [11] the following result is proved:

Theorem 7. Letn > 2. Then fy(C_ZDCT;) =3 jfn = 0(mod 8) and fy(C_>’4DC'_>n):
n+ 2] otherwise.

— —

We have thus v(Cs,0Cy) = ~(C4OCs;) = 3k + [‘%THW when &k # 0(mod 8). Al-
ternately, Conjecture 6 proposes the value v(C3;0Cy) = 5k. These two numbers
are different when k& > 3.

4. CONCLUSION

Consider the possible remainder of m, n modulo 3. For some of the nine possi-
bilities, we have found exact values for v(C,,0C),). The remaining cases are:

a) m = 0(mod 3) and n = 1(mod 3)
b) The symmetrical case m = 1(mod 3) and n = 0(mod 3).

)
)

c¢) m and n = 1(mod 3).
)

d) The case m or n = 2(mod 3) is not completely solved by Theorem 5. The
following subcases are still open

i) m = 2(mod 3) and n = 1(mod 3) with m > 2n + 1
ii) the symmetrical case m = 1(mod 3) and n = 2(mod 3) with n > 2m+1.
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For these values of m,n there does not always exist a dominatirﬁ set reaching
the bound stated if Theorem 2 and thus the determination of «(C,,0C},) seems
to be a more difficult problem.

Acknowledgement

The author is gratitude to the suggestions of anonymous referees for improving
the presentation of this paper.

REFERENCES

[1] T.Y. Chang and W.E. Clark, The domination numbers of the 5 x n and 6 x n grid
graphs, J. Graph Theory 17 (1993) 81-107.
doi:10.1002/jgt.3190170110

[2] M. El-Zahar and C.M. Pareek, Domination number of products of graphs, Ars Com-
bin. 31 (1991) 223-227.

[3] M. El-Zahar, S. Khamis and Kh. Nazzal, On the domination number of the Cartesian
product of the cycle of length n and any graph, Discrete Appl. Math. 155 (2007)
515-522.
doi:10.1016/j.dam.2006.07.003

[4] R.J. Faudree and R.H. Schelp, The domination number for the product of graphs,
Congr. Numer. 79 (1990) 29-33.

[5] S. Gravier and M. Mollard, On domination numbers of Cartesian product of paths,
Discrete Appl. Math. 80 (1997) 247-250.
doi:10.1016/S0166-218X(97)00091-7

[6] B. Hartnell and D. Rall, On dominating the Cartesian product of a graph and Ko,
Discuss. Math. Graph Theory 24 (2004) 389-402.
doi:10.7151/dmgt.1238

[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in
Graphs (Marcel Dekker, Inc. New York, 1998).

[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced
Topics (Marcel Dekker, Inc. New York, 1998).

[9] M.S. Jacobson and L.F. Kinch, On the domination number of products of graphs I,
Ars Combin. 18 (1983) 33-44.

[10] S. Klavzar and N. Seifter, Dominating Cartesian products of cycles, Discrete Appl.
Math. 59 (1995) 129-136.
doi:10.1016/0166-218X(93)E0167-W

[11] J. Liu, X.D. Zhang, X. Chenand and J. Meng, On domination number of Cartesian
product of directed cycles, Inform. Process. Lett. 110 (2010) 171-173.
doi:10.1016/j.ipl.2009.11.005

[12] J. Liu, X.D. Zhang, X. Chen and J. Meng, Domination number of Cartesian products
of directed cycles, Inform. Process. Lett. 111 (2010) 36-39.
doi:10.1016/j.ipl.2010.10.001


http://dx.doi.org/10.1002/jgt.3190170110
http://dx.doi.org/10.1016/j.dam.2006.07.003
http://dx.doi.org/10.1016/S0166-218X\(97\)00091-7
http://dx.doi.org/10.7151/dmgt.1238
http://dx.doi.org/10.1016/0166-218X\(93\)E0167-W
http://dx.doi.org/10.1016/j.ipl.2009.11.005
http://dx.doi.org/10.1016/j.ipl.2010.10.001

394 M. MOLLARD

[13] R.S. Shaheen, Domination number of toroidal grid digraphs, Util. Math. 78 (2009)
175-184.

Received 8 April 2011
Revised 24 May 2012
Accepted 28 May 2012


http://www.tcpdf.org

