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Abstract

Let γ(
−→
Cm2

−→
Cn) be the domination number of the Cartesian product of

directed cycles
−→
Cm and

−→
Cn for m,n ≥ 2. Shaheen [13] and Liu et al. ([11],

[12]) determined the value of γ(
−→
Cm2

−→
Cn) when m ≤ 6 and [12] when both m

and n ≡ 0(mod 3). In this article we give, in general, the value of γ(
−→
Cm2

−→
Cn)

when m ≡ 2(mod 3) and improve the known lower bounds for most of the
remaining cases. We also disprove the conjectured formula for the case m
≡ 0(mod 3) appearing in [12].

Keywords: directed graph, Cartesian product, domination number, di-
rected cycle.

2010 Mathematics Subject Classification: 05C69,05C38.

1. Introduction and Definitions

Let D = (V,A) be a finite directed graph (digraph for short) without loops or
multiple arcs.

A vertex u dominates a vertex v if u = v or uv ∈ A. A set W ⊆ V is a domi-

nating set of D if any vertex of V is dominated by at least one vertex of W . The
domination number of D, denoted by γ(D) is the minimum cardinality of a dom-
inating set. The set V is a dominating set thus γ(D) is finite. These definitions
extend to digraphs the classical domination notion for undirected graphs.

The determination of the domination number of a directed or undirected
graph is, in general, a difficult question in graph theory. Furthermore this problem
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has connections with information theory. For example the domination number of
hypercubes is linked to error-correcting codes. Among the lot of related works,
Haynes et al. ([7], [8]) mention the special cases of the domination of Cartesian
products of undirected paths, cycles or more general graphs ([1] to [6], [9], [10]).

For two digraphs D1 = (V1, A1) and D2 = (V2, A2) the Cartesian product

D12D2 is the digraph with vertex set V1×V2 and (x1, x2)(y1, y2) ∈ A(D12D2) if
and only if x1y1 ∈ A1 and x2 = y2 or x2y2 ∈ A2 and x1 = y1. Note that D22D1

is isomorphic to D12D2. In [13] Shaheen determined the domination number of
−→
Cm2

−→
Cn for m ≤ 6 and arbitrary n. In two articles [11], [12] Liu et al. considered

independently the domination number of the Cartesian product of two directed

cycles. They gave also the value of γ(
−→
Cm2

−→
Cn) when m ≤ 6 and when both m

and n ≡ 0(mod 3) [12]. Furthermore they proposed lower and upper bounds for
the general case.

In this paper we are able to give, in general, the value of γ(
−→
Cm2

−→
Cn) when

m ≡ 2(mod 3) and we improve the lower bounds for most of the still unknown
cases. We also disprove the conjectured formula appearing in [12] for the case m
≡ 0(mod 3).

We denote the vertices of a directed cycle
−→
Cn by Cn = {0, 1, . . . , n− 1}, the

integers considered modulo n. Thus, when used for vertex labeling, a+b and a−b
will denote the vertices a+ b and (a− b)(mod n). Notice that there exists an arc

xy from x to y in
−→
Cn if and only if y ≡ x+ 1(mod n), thus with our convention,

if and only if y = x+ 1. For any i in {0, 1, . . . , n− 1} we will denote by
−→
Ci
m the

subgraph of
−→
Cm2

−→
Cn induced by the vertices {(k, i) | k ∈ {0, 1, . . . ,m− 1}}. Note

that
−→
Ci
m is isomorphic to

−→
Cm. We will denote by Ci

m the set of vertices of
−→
Ci
m.

2. General Bounds and the Case m ≡ 2(mod 3)

We start this section by developing a general upper bound for γ(
−→
Cm2

−→
Cn). Then

we will construct minimum dominating sets for m ≡ 2(mod 3). These optimal
sets will be obtained from integer solutions of a system of equations.

Proposition 1. Let W be a dominating set of
−→
Cm2

−→
Cn. Then for all i in

{0, 1, . . . , n− 1} considered modulo n we have
∣

∣W ∩ Ci−1
m

∣

∣ + 2
∣

∣W ∩ Ci
m

∣

∣ ≥ m.

Proof. The m vertices of Ci
m can only be dominated by vertices of W ∩ Ci

m

and W ∩ Ci−1
m . Each of the vertices of W ∩ Ci

m dominates two vertices in Ci
m.

Similarly, each of the vertices of W ∩ Ci−1
m dominates one vertex in Ci

m. The
result follows.

Theorem 2. Let m,n ≥ 2 and k1 =
⌊

m
3

⌋

. Then
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(i) if m ≡ 0(mod 3), then γ(
−→
Cm2

−→
Cn) ≥ nk1, or

(ii) if m ≡ 1(mod 3), then γ(
−→
Cm2

−→
Cn) ≥ nk1 +

n
2 , or

(iii) if m ≡ 2(mod 3), then γ(
−→
Cm2

−→
Cn) ≥ nk1 + n.

Proof. Let W be a dominating set of
−→
Cm2

−→
Cn and for any i in {0, 1, . . . , n− 1}

let ai = |W ∩ Ci
m|. Notice first, as noticed by Liu et al. [12], that each of the

vertices of W dominates three vertices of
−→
Cm2

−→
Cn and thus |W | ≥ mn

3 . This

general bound give the announced result for m = 3k1, γ(
−→
Cm2

−→
Cn) ≥ nk1 +

n
3 for

m = 3k1 + 1 and γ(
−→
Cm2

−→
Cn) ≥ nk1 + 2n

3 for m = 3k1 + 2. We will improve these
two last results to verify parts (ii) and (iii) of the theorem.

Assume first m = 3k1 +1. Let J be the set of j ∈ {0, 1, . . . , n− 1} such that
aj ≤ k1. If J = ∅, then |W | ≥ n(k1 + 1) ≥ nk1 +

n
2 and we are done. Otherwise

let J ′ = {j | j + 1 (mod n) ∈ J}. By Proposition 1, for any i in {0, 1, . . . , n− 1}
considered modulo n, we have ai−1 + 2ai ≥ 3k1 + 1. Then if i belongs to J ,
ai−1 + ai ≥ 2k1 + 1. A first consequence is that there are no consecutive indices,
taken modulo n, in J . Indeed, if j − 1 and j are in J then, by definition of J ,
aj−1+ aj ≤ 2k1 in contradiction with the previous inequality. By definition of J ′

we have thus J ∩ J ′ = ∅.

Now let K={j ∈ {0, 1, . . . , n− 1} , j /∈ J ∪ J ′}. We can write {0, 1, . . . , n− 1}
=J∪J ′∪K where J , J ′ and K are disjoint sets. Notice that θ : j 7→ j−1(mod n)
induces a one to one mapping between J and J ′.

The cardinality of W is |W | =
∑

i∈{0,1,...,n−1} ai =
∑

i∈J ai +
∑

i∈J ′ ai +
∑

i∈K ai. We can use θ for grouping 2 by 2 the elements of J ∪ J ′ and write
∑

i∈J ai +
∑

i∈J ′ ai =
∑

i∈J ai +
∑

i∈J aθ(i) =
∑

i∈J(ai + ai−1). Using ai−1 + ai ≥
2k1 + 1, because i ∈ J , we obtain

∑

i∈J ai +
∑

i∈J ′ ai ≥ |J | (2k1 + 1).

If i ∈ K then i /∈ J and ai ≥ k1 + 1. Since |K| = n − 2|J | we have
∑

i∈K ai ≥ (n−2|J |)(k1+1). Then |W | =
∑

i∈{0,1,...,n−1} ai ≥ |J |(2k1+1)+(n−

2|J |)(k1 + 1) = nk1 + n− |J |. Since |J | = |J ′| and J ∩ J ′ = ∅ , n− |J | ≥ n
2 and

the conclusion for (ii) follows.

The case m = 3k1+2 is similar. Let J be the set of j ∈ {0, 1, . . . , n− 1} such
that aj≤k1. If J=∅ then we are done. Otherwise let J ′={j | j + 1(mod n) ∈ J}.
If i ∈ J we have ai−1 + 2ai ≥ 3k1 + 2 thus ai−1 + ai ≥ 2k1 + 2. Then J ∩ J ′=∅
and

∑

i∈J∪J ′ ai ≥ |J | (2k1 +2). Therefore
∑

i∈{0,1,...,n−1} ai ≥ |J |(2k1 +2)+ (n−
2|J |)(k1 + 1) ≥ n(k1 + 1).

Let us now study in detail the case m ≡ 2(mod 3). Assume m = 3k1 + 2.

Let A be the set of k1 + 1 vertices of
−→
Cm defined by A = {0} ∪ {2 + 3p | p =

0, 1, . . . , k1 − 1} = {0} ∪ {2, 5, . . . ,m − 6,m − 3}. For any i in {0, 1, . . . ,m− 1}
let us call Ai = {j | j − i (mod m) ∈ A} the translate, considered modulo m, of
A by i. We have thus Ai = {i} ∪ {i+ 2, i+ 5, . . . , i− 6, i− 3} (see Figure 1).
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We will call a set S of vertices of
−→
Cm2

−→
Cn an A-set if for any j in {0, 1, . . . , n− 1}

we have S ∩ Cj
m = Ai for some i in {0, 1, . . . , n − 1}. It will be convenient to

denote this index i, function of j, as ij . If S is a A-set then |S|= n(k1 + 1); thus
if a set is both a A-set and a dominating set, by Theorem 2, it is minimum and

we have γ(
−→
Cm2

−→
Cn) = n(k1 + 1).

Figure 1. Ai−1, Ai and Ai+2, Ai.

Lemma 3. Let m = 3k1 + 2. Let S be a A-set and for any j in {0, 1, . . . , n− 1}
define ij as the index such that S ∩ Cj

m = Aij . Assume that

(i) for any j ∈ {1, . . . , n− 1} ij ≡ ij−1 + 1 (mod m) or ij ≡ ij−1 − 2 (mod m)
and

(ii) i0 ≡ in−1 + 1 (mod m) or i0 ≡ in−1 − 2 (mod m).

Then S is a dominating set of
−→
Cm2

−→
Cn.

Proof. Note first that for any i in {0, 1, . . . ,m− 1} the set of non dominated
vertices of Cm by Ai is T = {i+ 4, i+ 7, . . . , i− 4, i− 1}. Note also that Ai+2 =
{i+2}∪{i+4, i+7, . . . , i−4, i−1} and Ai−1 = {i−1}∪{i+1, i+4, . . . , i−7, i−4}.
Thus T ⊂ Ai+2 and T ⊂ Ai−1.

Let j in {1, . . . , n− 1}. Let us prove that the vertices of Cj
m are dominated.

Indeed, by the previous remark and the lemma hypothesis, the vertices non dom-
inated by S∩Cj

m are dominated by S∩Cj−1
m (see Figure 1). For the same reasons
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the vertices of C0
m are dominated by those of S ∩ C0

m and S ∩ Cn−1
m .

We will prove next that the existence of solutions to some system of equations
over integers implies the existence of an A-set satisfying the hypothesis of Lemma
3.

Lemma 4. Let m = 3k1 + 2. If there exist integers a, b ≥ 0 such that

(i) a+ b = n− 1 and

(ii) a− 2b ≡ 2 (mod m) or a− 2b ≡ m− 1 (mod m).

Then γ(
−→
Cm2

−→
Cn) = n(k1 + 1).

Proof. Consider a word w = w1 . . . wn−1 on the alphabet {1,−2} with a occur-
rences of 1 and b of −2. Such a word exists, for example w = 1a(−2)b. We can

associate with w a set S of vertices of
−→
Cm2

−→
Cn using the following algorithm:

S ∩ C0
m = A0

For i = 1 to n− 1 do
begin

Let k such that S ∩ Ci−1
m = Ak

If wi = 1 let k′ ≡ k + 1(mod m) else k′ ≡ k − 2(mod m)
S ∩ Ci

m := Ak′

end
By construction S is an A-set. Notice that we have S ∩ Cn−1

m := Ain−1
where

in−1 ≡
∑n−1

k=1 wk ≡ a− 2b (mod m). Thus in−1 ≡ 2 (mod m) or in−1 ≡ m− 1
(mod m). By Lemma 3, S is a dominating set. Furthermore, because S is a A-

set, |S|= n(k1+1), thus by Theorem 2 it is minimum and we have γ(
−→
Cm2

−→
Cn) =

n(k1 + 1).

With the exception of one subcase we can find solutions (a, b) of the system and
thus obtain minimum dominating sets for m ≡ 2(mod 3).

Theorem 5. Let m,n ≥ 2 and m ≡ 2(mod 3). Let k1 =
⌊

m
3

⌋

and k2 =
⌊

n
3

⌋

.

(i) If n = 3k2, then γ(
−→
Cm2

−→
Cn) = n(k1 + 1), and

(ii) if n = 3k2 + 1 and 2k2 ≥ k1, then γ(
−→
Cm2

−→
Cn) = n(k1 + 1), and

(iii) if n = 3k2 + 1 and 2k2 < k1, then γ(
−→
Cm2

−→
Cn) > n(k1 + 1), and

(iv) if n = 3k2 + 2 and n ≥ m, then γ(
−→
Cm2

−→
Cn) = n(k1 + 1), and

(v) if n = 3k2 + 2 and n ≤ m, then γ(
−→
Cm2

−→
Cn) = m(k2 + 1).

Proof. We will use Lemma 4 considering the following integer solutions of







a, b ≥ 0
a+ b = n− 1 .

a− 2b ≡ 2 ( mod m) or a− 2b ≡ m− 1 ( mod m)
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(i) If n = 3k2, then k2 ≥ 1. Take a = 2k2 and b = k2 − 1.

(ii) If n = 3k2 + 1 and 2k2 ≥ k1, then take a = 2k2 − k1 and b = k2 + k1.

(iii) If n = 3k2 + 1 and 2k2 < k1, then γ(
−→
Cm2

−→
Cn)=γ(

−→
Cn2

−→
Cm) ≥ (2k2+1)m

2

by Theorem 2. Furthermore, (2k2+1)m
2 − n(k1 + 1) = k1

2 − k2 > 0.

(iv) If n = 3k2+2 and k2 ≥ k1, then take a = 2k2−2k1 and b = k2+2k1+1.

(v) If n = 3k2 + 2 and k2 ≤ k1, then use γ(
−→
Cm2

−→
Cn)=γ(

−→
Cn2

−→
Cm).

3. The Case m ≡ 0(mod 3)

In [12] Liu et al. conjectured the following formula:

Conjecture 6. Let k ≥ 2. Then γ(
−−→
C3k2

−→
Cn) = k(n+ 1) for n 6≡ 0(mod 3).

Our Theorem 5 confirms the conjecture when n ≡ 2(mod 3). Unfortunately, the
formula is not always valid when n ≡ 1(mod 3).

Indeed, consider C3k2C4. In [11] the following result is proved:

Theorem 7. Let n ≥ 2. Then γ(
−→
C42

−→
Cn) =

3n
2 if n ≡ 0(mod 8) and γ(

−→
C42

−→
Cn)=

n+
⌈

n+1
2

⌉

otherwise.

We have thus γ(
−−→
C3k2

−→
C4) = γ(

−→
C42

−−→
C3k) = 3k +

⌈

3k+1
2

⌉

when k 6≡ 0(mod 8). Al-

ternately, Conjecture 6 proposes the value γ(
−−→
C3k2

−→
C4) = 5k. These two numbers

are different when k ≥ 3.

4. Conclusion

Consider the possible remainder of m, n modulo 3. For some of the nine possi-

bilities, we have found exact values for γ(
−→
Cm2

−→
Cn). The remaining cases are:

a) m ≡ 0(mod 3) and n ≡ 1(mod 3)

b) The symmetrical case m ≡ 1(mod 3) and n ≡ 0(mod 3).

c) m and n ≡ 1(mod 3).

d) The case m or n ≡ 2(mod 3) is not completely solved by Theorem 5. The
following subcases are still open

i) m ≡ 2(mod 3) and n ≡ 1(mod 3) with m > 2n+ 1

ii) the symmetrical case m ≡ 1(mod 3) and n ≡ 2(mod 3) with n > 2m+1.
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For these values of m,n there does not always exist a dominating set reaching

the bound stated if Theorem 2 and thus the determination of γ(
−→
Cm2

−→
Cn) seems

to be a more difficult problem.
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[10] S. Klavžar and N. Seifter, Dominating Cartesian products of cycles , Discrete Appl.
Math. 59 (1995) 129–136.
doi:10.1016/0166-218X(93)E0167-W

[11] J. Liu, X.D. Zhang, X. Chenand and J. Meng, On domination number of Cartesian

product of directed cycles , Inform. Process. Lett. 110 (2010) 171–173.
doi:10.1016/j.ipl.2009.11.005

[12] J. Liu, X.D. Zhang, X. Chen and J. Meng, Domination number of Cartesian products

of directed cycles , Inform. Process. Lett. 111 (2010) 36–39.
doi:10.1016/j.ipl.2010.10.001

http://dx.doi.org/10.1002/jgt.3190170110
http://dx.doi.org/10.1016/j.dam.2006.07.003
http://dx.doi.org/10.1016/S0166-218X\(97\)00091-7
http://dx.doi.org/10.7151/dmgt.1238
http://dx.doi.org/10.1016/0166-218X\(93\)E0167-W
http://dx.doi.org/10.1016/j.ipl.2009.11.005
http://dx.doi.org/10.1016/j.ipl.2010.10.001


394 M. Mollard

[13] R.S. Shaheen, Domination number of toroidal grid digraphs , Util. Math. 78 (2009)
175–184.

Received 8 April 2011
Revised 24 May 2012

Accepted 28 May 2012

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

