ON THE DOMINATION OF CARTESIAN PRODUCT OF DIRECTED CYCLES: RESULTS FOR CERTAIN EQUIVALENCE CLASSES OF LENGTHS

Michel Mollard
CNRS Université Joseph Fourier
Institut Fourier
100, rue des Maths
38402 St Martin d'Hères Cedex France
e-mail: michel.mollard@ujf-grenoble.fr

Abstract

Let $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right)$ be the domination number of the Cartesian product of directed cycles $\overrightarrow{C_{m}}$ and $\overrightarrow{C_{n}}$ for $m, n \geq 2$. Shaheen [13] and Liu et al. ([11], [12]) determined the value of $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right)$ when $m \leq 6$ and [12] when both m and $n \equiv 0(\bmod 3)$. In this article we give, in general, the value of $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right)$ when $m \equiv 2(\bmod 3)$ and improve the known lower bounds for most of the remaining cases. We also disprove the conjectured formula for the case m $\equiv 0(\bmod 3)$ appearing in [12].

Keywords: directed graph, Cartesian product, domination number, directed cycle.
2010 Mathematics Subject Classification: 05C69,05C38.

1. Introduction and Definitions

Let $D=(V, A)$ be a finite directed graph (digraph for short) without loops or multiple arcs.

A vertex u dominates a vertex v if $u=v$ or $u v \in A$. A set $W \subseteq V$ is a dominating set of D if any vertex of V is dominated by at least one vertex of W. The domination number of D, denoted by $\gamma(D)$ is the minimum cardinality of a dominating set. The set V is a dominating set thus $\gamma(D)$ is finite. These definitions extend to digraphs the classical domination notion for undirected graphs.

The determination of the domination number of a directed or undirected graph is, in general, a difficult question in graph theory. Furthermore this problem
has connections with information theory. For example the domination number of hypercubes is linked to error-correcting codes. Among the lot of related works, Haynes et al. ([7], [8]) mention the special cases of the domination of Cartesian products of undirected paths, cycles or more general graphs ([1] to [6], [9], [10]).

For two digraphs $D_{1}=\left(V_{1}, A_{1}\right)$ and $D_{2}=\left(V_{2}, A_{2}\right)$ the Cartesian product $D_{1} \square D_{2}$ is the digraph with vertex set $V_{1} \times V_{2}$ and $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right) \in A\left(D_{1} \square D_{2}\right)$ if and only if $x_{1} y_{1} \in A_{1}$ and $x_{2}=y_{2}$ or $x_{2} y_{2} \in A_{2}$ and $x_{1}=y_{1}$. Note that $D_{2} \square D_{1}$ is isomorphic to $D_{1} \square D_{2}$. In [13] Shaheen determined the domination number of $\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}$ for $m \leq 6$ and arbitrary n. In two articles [11], [12] Liu et al. considered independently the domination number of the Cartesian product of two directed cycles. They gave also the value of $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right)$ when $m \leq 6$ and when both m and $n \equiv 0(\bmod 3)[12]$. Furthermore they proposed lower and upper bounds for the general case.

In this paper we are able to give, in general, the value of $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right)$ when $m \equiv 2(\bmod 3)$ and we improve the lower bounds for most of the still unknown cases. We also disprove the conjectured formula appearing in [12] for the case m $\equiv 0(\bmod 3)$.

We denote the vertices of a directed cycle $\overrightarrow{C_{n}}$ by $C_{n}=\{0,1, \ldots, n-1\}$, the integers considered modulo n. Thus, when used for vertex labeling, $a+b$ and $a-b$ will denote the vertices $a+b$ and $(a-b)(\bmod n)$. Notice that there exists an arc $x y$ from x to y in $\overrightarrow{C_{n}}$ if and only if $y \equiv x+1(\bmod n)$, thus with our convention, if and only if $y=x+1$. For any i in $\{0,1, \ldots, n-1\}$ we will denote by $\overrightarrow{C_{m}^{i}}$ the subgraph of $\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}$ induced by the vertices $\{(k, i) \mid k \in\{0,1, \ldots, m-1\}\}$. Note that $\overrightarrow{C_{m}^{i}}$ is isomorphic to $\overrightarrow{C_{m}}$. We will denote by C_{m}^{i} the set of vertices of $\overrightarrow{C_{m}^{i}}$.

2. General Bounds and the Case $m \equiv 2(\bmod 3)$

We start this section by developing a general upper bound for $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right)$. Then we will construct minimum dominating sets for $m \equiv 2(\bmod 3)$. These optimal sets will be obtained from integer solutions of a system of equations.

Proposition 1. Let W be a dominating set of $\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}$. Then for all i in $\{0,1, \ldots, n-1\}$ considered modulo n we have $\left|W \cap C_{m}^{i-1}\right|+2\left|W \cap C_{m}^{i}\right| \geq m$.

Proof. The m vertices of C_{m}^{i} can only be dominated by vertices of $W \cap C_{m}^{i}$ and $W \cap C_{m}^{i-1}$. Each of the vertices of $W \cap C_{m}^{i}$ dominates two vertices in C_{m}^{i}. Similarly, each of the vertices of $W \cap C_{m}^{i-1}$ dominates one vertex in C_{m}^{i}. The result follows.

Theorem 2. Let $m, n \geq 2$ and $k_{1}=\left\lfloor\frac{m}{3}\right\rfloor$. Then
(i) if $m \equiv 0(\bmod 3)$, then $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right) \geq n k_{1}$, or
(ii) if $m \equiv 1(\bmod 3)$, then $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right) \geq n k_{1}+\frac{n}{2}$, or
(iii) if $m \equiv 2(\bmod 3)$, then $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right) \geq n k_{1}+n$.

Proof. Let W be a dominating set of $\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}$ and for any i in $\{0,1, \ldots, n-1\}$ let $a_{i}=\left|W \cap C_{m}^{i}\right|$. Notice first, as noticed by Liu et al. [12], that each of the vertices of W dominates three vertices of $\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}$ and thus $|W| \geq \frac{m n}{3}$. This general bound give the announced result for $m=3 k_{1}, \gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right) \geq n k_{1}+\frac{n}{3}$ for $m=3 k_{1}+1$ and $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right) \geq n k_{1}+2 \frac{n}{3}$ for $m=3 k_{1}+2$. We will improve these two last results to verify parts (ii) and (iii) of the theorem.

Assume first $m=3 k_{1}+1$. Let J be the set of $j \in\{0,1, \ldots, n-1\}$ such that $a_{j} \leq k_{1}$. If $J=\emptyset$, then $|W| \geq n\left(k_{1}+1\right) \geq n k_{1}+\frac{n}{2}$ and we are done. Otherwise let $J^{\prime}=\{j \mid j+1(\bmod n) \in J\}$. By Proposition 1 , for any i in $\{0,1, \ldots, n-1\}$ considered modulo n, we have $a_{i-1}+2 a_{i} \geq 3 k_{1}+1$. Then if i belongs to J, $a_{i-1}+a_{i} \geq 2 k_{1}+1$. A first consequence is that there are no consecutive indices, taken modulo n, in J. Indeed, if $j-1$ and j are in J then, by definition of J, $a_{j-1}+a_{j} \leq 2 k_{1}$ in contradiction with the previous inequality. By definition of J^{\prime} we have thus $J \cap J^{\prime}=\emptyset$.
Now let $K=\left\{j \in\{0,1, \ldots, n-1\}, j \notin J \cup J^{\prime}\right\}$. We can write $\{0,1, \ldots, n-1\}$ $=J \cup J^{\prime} \cup K$ where J, J^{\prime} and K are disjoint sets. Notice that $\theta: j \mapsto j-1(\bmod n)$ induces a one to one mapping between J and J^{\prime}.

The cardinality of W is $|W|=\sum_{i \in\{0,1, \ldots, n-1\}} a_{i}=\sum_{i \in J} a_{i}+\sum_{i \in J^{\prime}} a_{i}+$ $\sum_{i \in K} a_{i}$. We can use θ for grouping 2 by 2 the elements of $J \cup J^{\prime}$ and write $\sum_{i \in J} a_{i}+\sum_{i \in J^{\prime}} a_{i}=\sum_{i \in J} a_{i}+\sum_{i \in J} a_{\theta(i)}=\sum_{i \in J}\left(a_{i}+a_{i-1}\right)$. Using $a_{i-1}+a_{i} \geq$ $2 k_{1}+1$, because $i \in J$, we obtain $\sum_{i \in J} a_{i}+\sum_{i \in J^{\prime}} a_{i} \geq|J|\left(2 k_{1}+1\right)$.

If $i \in K$ then $i \notin J$ and $a_{i} \geq k_{1}+1$. Since $|K|=n-2|J|$ we have $\sum_{i \in K} a_{i} \geq(n-2|J|)\left(k_{1}+1\right)$. Then $|W|=\sum_{i \in\{0,1, \ldots, n-1\}} a_{i} \geq|J|\left(2 k_{1}+1\right)+(n-$ $2|J|)\left(k_{1}+1\right)=n k_{1}+n-|J|$. Since $|J|=\left|J^{\prime}\right|$ and $J \cap J^{\prime}=\emptyset, n-|J| \geq \frac{n}{2}$ and the conclusion for (ii) follows.

The case $m=3 k_{1}+2$ is similar. Let J be the set of $j \in\{0,1, \ldots, n-1\}$ such that $a_{j} \leq k_{1}$. If $J=\emptyset$ then we are done. Otherwise let $J^{\prime}=\{j \mid j+1(\bmod n) \in J\}$. If $i \in J$ we have $a_{i-1}+2 a_{i} \geq 3 k_{1}+2$ thus $a_{i-1}+a_{i} \geq 2 k_{1}+2$. Then $J \cap J^{\prime}=\emptyset$ and $\sum_{i \in J \cup J^{\prime}} a_{i} \geq|J|\left(2 k_{1}+2\right)$. Therefore $\sum_{i \in\{0,1, \ldots, n-1\}} a_{i} \geq|J|\left(2 k_{1}+2\right)+(n-$ $2|J|)\left(k_{1}+1\right) \geq n\left(k_{1}+1\right)$.

Let us now study in detail the case $m \equiv 2(\bmod 3)$. Assume $m=3 k_{1}+2$. Let A be the set of $k_{1}+1$ vertices of $\overrightarrow{C_{m}}$ defined by $A=\{0\} \cup\{2+3 p \mid p=$ $\left.0,1, \ldots, k_{1}-1\right\}=\{0\} \cup\{2,5, \ldots, m-6, m-3\}$. For any i in $\{0,1, \ldots, m-1\}$ let us call $A_{i}=\{j \mid j-i(\bmod m) \in A\}$ the translate, considered modulo m, of A by i. We have thus $A_{i}=\{i\} \cup\{i+2, i+5, \ldots, i-6, i-3\}$ (see Figure 1).

We will call a set S of vertices of $\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}$ an A-set if for any j in $\{0,1, \ldots, n-1\}$ we have $S \cap C_{m}^{j}=A_{i}$ for some i in $\{0,1, \ldots, n-1\}$. It will be convenient to denote this index i, function of j, as i_{j}. If S is a A-set then $|S|=n\left(k_{1}+1\right)$; thus if a set is both a A-set and a dominating set, by Theorem 2 , it is minimum and we have $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right)=n\left(k_{1}+1\right)$.

Figure 1. A_{i-1}, A_{i} and A_{i+2}, A_{i}.

Lemma 3. Let $m=3 k_{1}+2$. Let S be a A-set and for any j in $\{0,1, \ldots, n-1\}$ define i_{j} as the index such that $S \cap C_{m}^{j}=A_{i_{j}}$. Assume that
(i) for any $j \in\{1, \ldots, n-1\} i_{j} \equiv i_{j-1}+1(\bmod m)$ or $i_{j} \equiv i_{j-1}-2(\bmod m)$ and
(ii) $i_{0} \equiv i_{n-1}+1(\bmod m)$ or $i_{0} \equiv i_{n-1}-2(\bmod m)$.

Then S is a dominating set of $\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}$.
Proof. Note first that for any i in $\{0,1, \ldots, m-1\}$ the set of non dominated vertices of C_{m} by A_{i} is $T=\{i+4, i+7, \ldots, i-4, i-1\}$. Note also that $A_{i+2}=$ $\{i+2\} \cup\{i+4, i+7, \ldots, i-4, i-1\}$ and $A_{i-1}=\{i-1\} \cup\{i+1, i+4, \ldots, i-7, i-4\}$. Thus $T \subset A_{i+2}$ and $T \subset A_{i-1}$.

Let j in $\{1, \ldots, n-1\}$. Let us prove that the vertices of C_{m}^{j} are dominated. Indeed, by the previous remark and the lemma hypothesis, the vertices non dominated by $S \cap C_{m}^{j}$ are dominated by $S \cap C_{m}^{j-1}$ (see Figure 1). For the same reasons
the vertices of C_{m}^{0} are dominated by those of $S \cap C_{m}^{0}$ and $S \cap C_{m}^{n-1}$.
We will prove next that the existence of solutions to some system of equations over integers implies the existence of an A-set satisfying the hypothesis of Lemma 3.

Lemma 4. Let $m=3 k_{1}+2$. If there exist integers $a, b \geq 0$ such that
(i) $a+b=n-1$ and
(ii) $a-2 b \equiv 2(\bmod m)$ or $a-2 b \equiv m-1(\bmod m)$.

Then $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right)=n\left(k_{1}+1\right)$.
Proof. Consider a word $w=w_{1} \ldots w_{n-1}$ on the alphabet $\{1,-2\}$ with a occurrences of 1 and b of -2 . Such a word exists, for example $w=1^{a}(-2)^{b}$. We can associate with w a set S of vertices of $\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}$ using the following algorithm:
$S \cap C_{m}^{0}=A_{0}$
For $i=1$ to $n-1$ do
begin
Let k such that $S \cap C_{m}^{i-1}=A_{k}$
If $w_{i}=1$ let $k^{\prime} \equiv k+1(\bmod m)$ else $k^{\prime} \equiv k-2(\bmod m)$
$S \cap C_{m}^{i}:=A_{k^{\prime}}$
end
By construction S is an A-set. Notice that we have $S \cap C_{m}^{n-1}:=A_{i_{n-1}}$ where $i_{n-1} \equiv \sum_{k=1}^{n-1} w_{k} \equiv a-2 b(\bmod m)$. Thus $i_{n-1} \equiv 2(\bmod m)$ or $i_{n-1} \equiv m-1$
$(\bmod m)$. By Lemma $3, S$ is a dominating set. Furthermore, because S is a A set, $|S|=n\left(k_{1}+1\right)$, thus by Theorem 2 it is minimum and we have $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right)=$ $n\left(k_{1}+1\right)$.

With the exception of one subcase we can find solutions (a, b) of the system and thus obtain minimum dominating sets for $m \equiv 2(\bmod 3)$.

Theorem 5. Let $m, n \geq 2$ and $m \equiv 2(\bmod 3)$. Let $k_{1}=\left\lfloor\frac{m}{3}\right\rfloor$ and $k_{2}=\left\lfloor\frac{n}{3}\right\rfloor$.
(i) If $n=3 k_{2}$, then $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right)=n\left(k_{1}+1\right)$, and
(ii) if $n=3 k_{2}+1$ and $2 k_{2} \geq k_{1}$, then $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right)=n\left(k_{1}+1\right)$, and
(iii) if $n=3 k_{2}+1$ and $2 k_{2}<k_{1}$, then $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right)>n\left(k_{1}+1\right)$, and
(iv) if $n=3 k_{2}+2$ and $n \geq m$, then $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right)=n\left(k_{1}+1\right)$, and
(v) if $n=3 k_{2}+2$ and $n \leq m$, then $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right)=m\left(k_{2}+1\right)$.

Proof. We will use Lemma 4 considering the following integer solutions of

$$
\left\{\begin{array}{l}
a, b \geq 0 \\
a+b=n-1 \\
a-2 b \equiv 2(\bmod m) \text { or } a-2 b \equiv m-1(\bmod m)
\end{array}\right.
$$

(i) If $n=3 k_{2}$, then $k_{2} \geq 1$. Take $a=2 k_{2}$ and $b=k_{2}-1$.
(ii) If $n=3 k_{2}+1$ and $2 k_{2} \geq k_{1}$, then take $a=2 k_{2}-k_{1}$ and $b=k_{2}+k_{1}$.
(iii) If $n=3 k_{2}+1$ and $2 k_{2}<k_{1}$, then $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right)=\gamma\left(\overrightarrow{C_{n}} \square \overrightarrow{C_{m}}\right) \geq \frac{\left(2 k_{2}+1\right) m}{2}$ by Theorem 2. Furthermore, $\frac{\left(2 k_{2}+1\right) m}{2}-n\left(k_{1}+1\right)=\frac{k_{1}}{2}-k_{2}>0$.
(iv) If $n=3 k_{2}+2$ and $k_{2} \geq k_{1}$, then take $a=2 k_{2}-2 k_{1}$ and $b=k_{2}+2 k_{1}+1$.
(v) If $n=3 k_{2}+2$ and $k_{2} \leq k_{1}$, then use $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right)=\gamma\left(\overrightarrow{C_{n}} \square \overrightarrow{C_{m}}\right)$.

3. The Case $m \equiv 0(\bmod 3)$

In [12] Liu et al. conjectured the following formula:
Conjecture 6. Let $k \geq 2$. Then $\gamma\left(\overrightarrow{C_{3 k}} \square \overrightarrow{C_{n}}\right)=k(n+1)$ for $n \not \equiv 0(\bmod 3)$.
Our Theorem 5 confirms the conjecture when $n \equiv 2(\bmod 3)$. Unfortunately, the formula is not always valid when $n \equiv 1(\bmod 3)$.

Indeed, consider $C_{3 k} \square C_{4}$. In [11] the following result is proved:
Theorem 7. Let $n \geq 2$. Then $\gamma\left(\overrightarrow{C_{4}} \square \overrightarrow{C_{n}}\right)=\frac{3 n}{2}$ if $n \equiv 0(\bmod 8)$ and $\gamma\left(\overrightarrow{C_{4}} \square \overrightarrow{C_{n}}\right)=$ $n+\left\lceil\frac{n+1}{2}\right\rceil$ otherwise.
We have thus $\gamma\left(\overrightarrow{C_{3 k}} \square \overrightarrow{C_{4}}\right)=\gamma\left(\overrightarrow{C_{4}} \square \overrightarrow{C_{3 k}}\right)=3 k+\left\lceil\frac{3 k+1}{2}\right\rceil$ when $k \not \equiv 0(\bmod 8)$. Alternately, Conjecture 6 proposes the value $\gamma\left(\overrightarrow{C_{3 k}} \square \overrightarrow{C_{4}}\right)=5 k$. These two numbers are different when $k \geq 3$.

4. Conclusion

Consider the possible remainder of m, n modulo 3 . For some of the nine possibilities, we have found exact values for $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right)$. The remaining cases are:
a) $m \equiv 0(\bmod 3)$ and $n \equiv 1(\bmod 3)$
b) The symmetrical case $m \equiv 1(\bmod 3)$ and $n \equiv 0(\bmod 3)$.
c) m and $n \equiv 1(\bmod 3)$.
d) The case m or $n \equiv 2(\bmod 3)$ is not completely solved by Theorem 5 . The following subcases are still open
i) $m \equiv 2(\bmod 3)$ and $n \equiv 1(\bmod 3)$ with $m>2 n+1$
ii) the symmetrical case $m \equiv 1(\bmod 3)$ and $n \equiv 2(\bmod 3)$ with $n>2 m+1$.

For these values of m, n there does not always exist a dominating set reaching the bound stated if Theorem 2 and thus the determination of $\gamma\left(\overrightarrow{C_{m}} \square \overrightarrow{C_{n}}\right)$ seems to be a more difficult problem.

Acknowledgement

The author is gratitude to the suggestions of anonymous referees for improving the presentation of this paper.

References

[1] T.Y. Chang and W.E. Clark, The domination numbers of the $5 \times n$ and $6 \times n$ grid graphs, J. Graph Theory 17 (1993) 81-107. doi:10.1002/jgt. 3190170110
[2] M. El-Zahar and C.M. Pareek, Domination number of products of graphs, Ars Combin. 31 (1991) 223-227.
[3] M. El-Zahar, S. Khamis and Kh. Nazzal, On the domination number of the Cartesian product of the cycle of length n and any graph, Discrete Appl. Math. 155 (2007) 515-522. doi:10.1016/j.dam.2006.07.003
[4] R.J. Faudree and R.H. Schelp, The domination number for the product of graphs, Congr. Numer. 79 (1990) 29-33.
[5] S. Gravier and M. Mollard, On domination numbers of Cartesian product of paths, Discrete Appl. Math. 80 (1997) 247-250. doi:10.1016/S0166-218X(97)00091-7
[6] B. Hartnell and D. Rall, On dominating the Cartesian product of a graph and K_{2}, Discuss. Math. Graph Theory 24 (2004) 389-402. doi:10.7151/dmgt. 1238
[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc. New York, 1998).
[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc. New York, 1998).
[9] M.S. Jacobson and L.F. Kinch, On the domination number of products of graphs I, Ars Combin. 18 (1983) 33-44.
[10] S. Klavžar and N. Seifter, Dominating Cartesian products of cycles, Discrete Appl. Math. 59 (1995) 129-136. doi:10.1016/0166-218X(93)E0167-W
[11] J. Liu, X.D. Zhang, X. Chenand and J. Meng, On domination number of Cartesian product of directed cycles, Inform. Process. Lett. 110 (2010) 171-173. doi:10.1016/j.ipl.2009.11.005
[12] J. Liu, X.D. Zhang, X. Chen and J. Meng, Domination number of Cartesian products of directed cycles, Inform. Process. Lett. 111 (2010) 36-39. doi:10.1016/j.ipl.2010.10.001
[13] R.S. Shaheen, Domination number of toroidal grid digraphs, Util. Math. 78 (2009) 175-184.

Received 8 April 2011
Revised 24 May 2012
Accepted 28 May 2012

