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Abstract

In this note we present some sufficient conditions for the uniqueness of a
stable matching in the Gale-Shapley marriage classical model of even size.
We also state the result on the existence of exactly two stable matchings in
the marriage problem of odd size with the same conditions.
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1. Introduction

The stable marriage problem was introduced in the seminal paper of Gale and
Shapley [4]. Its many variants have been widely studied in the literature [7]
mainly because of some important practical applications, such as National Res-
ident Matching Program [8] and similar large-scale matching schemes. In the
classical form of the problem we consider two disjoint n-element sets, the set of
women W ={W1, . . . ,Wn} and the set of men M={M1, . . . ,Mn}. All women
and men have preferences over the opposite sex represented by the linearly or-
dered lists. The notation (Wi : Mi1 , . . . ,Min) means that for Wi the man Mij
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is better than Mik for all k greater than j. In the case when we only know, or
we are only interested in some parts of the lists, the symbol ”|” substitutes their
possible elements. We write (Wi : |Mi1 ,Mi2 |Mi3 |) when Wi prefers Mi1 to Mi2 ;
Mi1 to Mi3 ; and Mi2 to Mi3 . Moreover, it is possible that there are other men
at the W ′

is list of preferences who are better than Mi1 , there are possibly some
men between Mi2 and Mi3 and there is no man between Mi1 and Mi2 . It has
to be noted that we can construct many W ′

is lists of preferences given by the
description (Wi : |Mi1 ,Mi2 |Mi3 |).

Let W and M be two tables, each of n2 elements (of size n), representing
preferences of the sexes. The ith row of the table W shows preferences of Wi and
has the form Mi1 , . . . ,Min , when (Wi : Mi1 , . . .Min) (M = {Mi1 , . . .Min}). The
table M is constructed analogously. If W, M are of size n, then a pair (W,M)
is called a marriage problem of size n.

A matching σ is an arbitrary bijection of W onto M . For simplicity, we
write σ(i) = j instead of σ(Wi) = Mj . A matching σ is unstable for given tables
of preferences, if there is a woman Wi and a man Mj such that σ(i) 6= j but
each of Wi, Mj prefers the other to her/his partner in σ ((Wi : |Mj |Mσ(i)|),
(Mj : |Wi|Wσ−1(j)|)). Such a pair Wi, Mj is said to be a blocking pair for σ. A
matching for which there is no blocking pair is called stable.

In 1962 Gale and Shapley, using a model of college admission, showed [4, 3]
that for any tables of preferences a stable matching always exists, but it does not
have to be unique.

The problem of determining the maximum number of stable matchings among
all the marriage problems of size n was posed by Knuth [6] and still remains an
open question. In [1] it was shown that this number is not greater than three
quarters of all n! possible matchings. On the other hand Knuth established that
this number exceeds 2

n
2 for n ≥ 2 and Gusfield and Irving showed that for n

being a power of 2 it is at least 2n−1, which can be improved to (2.28)n/(1+
√
3)

based on the construction given by Irving and Leather [5].

Another interesting question concerning the number of stable matchings is
how many of all the marriage problems of size n have exactly one stable matching.
To solve this problem there must be recognized some necessary and sufficient
conditions, which guarantee the existance of exactly one stable matching (recall
that there always exists one stable matching). Let [n] = {1, . . . , n}. In [2]
Eeckhout derived the sufficient conditions on the tables W, M of size n that
yield the uniqueness of the stable matching σ(i) = i, i ∈ [n]. These conditions
are: for each i ∈ [n] the woman Wi prefers Mi to Mj for all j > i, and the man
Mi prefers Wi to Wj for all j > i. Using this result and taking into account that
for fixed i ∈ [n], the number of W ′

is lists of preferences, that satisfy the condition:
”Wi prefers Mi to Mj for all j > i” is n!

(n−i+1) , we can produce m problems (W,

M) of size n for which there exists exactly one stable matching σ(i) = i, i ∈ [n],
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where

m =

( n
∏

i=1

n!

(n− i+ 1)

)2

=

(

(n!)n

n · (n− 1) · · · 1

)2

=

(

(n!)n−1

)2

=

(

n!

)2n−2

.

In this note we give
((n−2)!)

2n

4 new marriage problems of even size n (not included
in the set of problems that satisfy Eeckhout’s conditions), for which there exists
the unique stable matching σ(i) = i, i ∈ [n], (Theorem 1). Our result generalizes
the example given in [2] by Ahmed Alkan for n = 4. Along the way, we observe
that the conditions described in this note as sufficient for the uniqueness, in
the above mentioned case (even n), create pairs W, M with exactly two stable
matchings for an odd n (Theorem 2). It seems to be an interesting fact too.

All the results presented herein can be expressed in the graph theory language
as results on the number of stable perfect matchings in a complete balanced
bipartite graph with 2n vertices. In this model, each vertex v has assigned a list
consisting of all the vertices of the opposite bipartition set, whose elements are

linearly ordered by
v≺. A perfect matching N of such a graph is not stable if

there are verices x, y from different bipartition sets, such that xy /∈ N and for

a, b satisfying xa ∈ N , yb ∈ N there hold a
x≺ y and b

y
≺ x. In our paper we do

not use the graph theory model and describe our results in language of two-sided
matching problem, widely known in economics and computer science oriented
papers.

2. Main Results

We shall say that tables of preferences W, M for women {W1, . . . ,Wn} and men
{M1, . . . ,Mn} satisfy conditions (∗) if the following hold:

1. (W1 : M2,M1|), and

2. (Wn−1 : Mn−2,Mn−1|Mn|M1|), and

3. (Wi : Mi−1,Mi|) for i ∈ [n] \ {1, n− 1}, and

4. (M1 : Wn−1,W1|), and

5. (M2 : Wn,W2, |W3|W1|), and

6. (Mn : Wn−1,Wn|), and

7. (Mi : Wi−2,Wi|) for i ∈ [n] \ {1, 2, n}.
In the remaining part of this section we shall prove the two following main results
of this note.
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Theorem 1. Let n ≥ 4 and let (W, M) be a marriage problem of even size n
that satisfies the conditions (∗). There exists a unique stable matching for W,

M.

Theorem 2. Let n ≥ 5 and let (W, M) be a marriage problem of odd size n that

satisfies the conditions (∗). There exist exactly two different stable matchings σ1,
σ2 for W, M such that:

(1) σ1(i) = i for all i ∈ [n], and

(2) σ2(i) = i for all odd i ∈ [n − 2] and σ2(n) = 2, σ2(n − 1) = n, σ2(n − i) =
n− i+ 2 for all odd i ∈ {3, . . . , n− 2}.

To make the proofs of Theorems 1, 2 more readable, we divide them into lemmas.
Let tables W, M of preferences for women {W1, . . . ,Wn} and men {M1, . . . ,

Mn} be given. We define, for i, j ∈ [n], a set Ai,j(W,M) as the set of all the
cuples (s, l) such that Wi, Mj is a blocking pair for each matching σ satisfying
σ(i) = s and σ(l) = j. We can easily see that

Ai,j(W,M) = {(s, l) : (Wi : |Mj |Ms|) and (Mj : |Wi|Wl|)}.

Lemma 3. Let n ≥ 4 and let (W, M) be a marriage problem of size n that

satisfies the conditions (∗). If σ is a stable matching for W, M, then σ(1) = 1.

Proof. To the contrary, let us first assume that σ(1) = 2. It implies that W3,M2

is a blocking pair for σ, which is impossible because σ is stable. Next, assume
that σ(1) = s, for some s ≥ 3. Because for each k ∈ [n] \ {1, n − 1} we have
(s, k) ∈ A1,1(W,M) and because σ(1) 6= 1 it follows that σ(n − 1) = 1. Hence,
consequently, Wn−1,Mn is a blocking pair for σ, a contradiction.

Lemma 4. Let n ≥ 4 and let (W, M) be a marriage problem of size n that

satisfies the conditions (∗). Next assume that σ is a stable matching for W, M.

(1) If n is even, then σ(2) = 2.

(2) If n is odd and σ(2) 6= 2, then σ(n) = 2, σ(n − 1) = n and for each odd

i ∈ {3, . . . , n− 2} there holds σ(n− i) = n− i+ 2.

Proof. From Lemma 3 we have σ(1) = 1, which implies σ(2) 6= 1. Assume that
n is arbitrary (even or odd) and σ(2) 6= 2. Then σ(2) = s, where s ∈ {3, . . . , n}.
Because (s, l) ∈ A2,2 for all l ∈ {3, . . . , n − 1} ∪ {1} we deduce that σ(n) = 2.
Similarly, the argument (p, q) ∈ An,n for all p, q ∈ {1, . . . , n−2} yields σ(n−1) =
n.

Now we focus on the fact that (n, l) ∈ An−1,n−1 for all l ∈ [n]\{n−1, n−3}.
Hence σ(n − 3) = n − 1. Next, step by step, assuming that σ(1) = 1, σ(2) = s,
where s ∈ {3, . . . , n}, σ(n) = 2, σ(n− 1) = n and σ(n− j) = n− j+2 for all odd
j ∈ {3, . . . , i} with odd i (i ≤ n− 3) we shall note that σ(n− (i+ 2)) = n− (i+
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2)+2 = n− i. Indeed, (n− (i+2), l) ∈ An−i,n−i for all l ∈ [n]\{n− i, n− (i+2)},
which shows the assertion.

Thus we obtained that if n is even, then 1 = σ(1) = σ(n−(n−1)) = 3, which
is impossible. If n is odd we have p = σ(2) = σ(n − (n − 2)) = 4, which gives
σ(1) = 1, σ(n) = 2, σ(n−1) = n and σ(n−i) = n−i+2 for odd i ∈ {3, . . . , n−2}.
Resuming, the assumptions (∗) and stability of σ imply that if n is even the only
possibility for σ(2) is to be equal 2 and if n is odd the assertion of the lemma
describing this case holds.

Lemma 5. Let n ≥ 4 and let (W, M) be a marriage problem of size n that

satisfies the conditions (∗). If σ is a stable matching for W, M and σ(1) = 1
and σ(2) = 2, then σ(i) = i for all i ∈ [n].

Proof. First we shall prove that if σ(i) = i for i ∈ {1, . . . , j − 1}, where 3 ≤ j ≤
n− 1, then σ(j) = j. Suppose, the above assumption is satisfied. The assertion
immediately follows from two observations:

• (s, l) ∈ Aj,j for all s ∈ [n] \ {j − 1, j} and l ∈ [n] \ {j − 2, j}, and

• σ(j − 1) = j − 1 and σ(j − 2) = j − 2.

The last step (σ(n) = n) is implied by the just obtained statement σ(i) = i for
all i ∈ [n− 1].

Lemma 6. Let n ≥ 5 and let (W, M) be a marriage problem of size n that

satisfies the conditions (∗). If σ is a stable matching for W, M and σ(1) = 1,
σ(n) = 2, σ(n − 1) = n and σ(n − i) = n − i + 2 for all odd i ∈ {3, . . . , n − 2},
then σ(i) = i for all odd i ∈ [n− 2].

Proof. To observe the statement, as in the previous two proofs, we shall show
that the assumptions σ(n) = 2, σ(n − 1) = n, σ(n − i) = n − i + 2 for all odd
i ∈ {3, . . . , n− 2} and the assumption σ(j) = j for all odd j satisfying j ≤ i and
i ∈ [n − 4], lead to σ(i + 2) = i + 2. The key argument is that (s, l) ∈ Ai+2,i+2

for s ∈ [n] \ {i+ 1, i+ 2} and l ∈ [n] \ {i, i+ 2}.

Proof of Theorem 1. It follows from Lemmas 3, 4, 5 and the fact that for any
tables W, M there always exists at least one stable matching.

Proof of Theorem 2. From Lemmas 3, 4, 6 we know that for W, M there
is no stable matching, which is different from σ1 and different from σ2. Thus
it is enough to observe that both σ1, σ2 are stable for W, M. By the way of
contradiction, assume that σ1 is unstable. It means one can find a blocking pair
Wi1 , Mj1 for σ1. Next, by the construction of σ1 we have i1 6= j1. If i1 < j1, then
the condition (Wi1 : |Mj1 |Mi1 |), which must be satisfied for the blocking pair,
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and the conditions (∗) imply j1 = 2 and i1 = 1. But (M2 : |W2|W1|) yields W1,
M2 could not be a blocking pair for σ1. If i1 > j1, then the fact (Mj1 : |Wi1 |Wj1 |)
and the conditions (∗) imply two possibilities: either i1 = n − 1 and j1 = 1 or
i1 = n and j1 = 2. Both of them are forbidden because (Wn : |Mn|M2|) and
(Wn−1 : |Mn−1|M1|). It leads to the assertion that σ1 is stable. Now let us
assume that σ2 is unstable and there is a blocking pair Wi2 , Mj2 for σ2. Because
Wi is the first element at the list of Mσ2(i) for σ2(i) = n and for all even numbers
σ2(i), we deduce that j2 has to be odd and less than n−1. Consequently, because
for the odd i ∈ [n] the first element at W ′

is list is Mk with k odd and the second
one is Mσ2(i), we obtain that i2 must be even.

Next, we can see that M1 could create a blocking pair only with Wn−1 (Wn−1

is the first element at the list of M1 and W1 = W
σ−1

2
(1) is the second one). But

Wn−1 prefers her partner in σ2 (Mσ2(n−1) = Mn) to M1, which excludes the
possibility j2 = 1. Actually, by the above consideration we have that j2 has to
be odd, different from 1 and different from n. For each such j2, the conditions
σ−1
2 (j2) = j2 and (Mj2 : Wj2−2,Wj2 |) are fulfilled. It finally gives i2 = j2 − 2,

which means that i2 must be odd, contrary to the previous claim.
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