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Abstract

A balanced colouring of a graph G is a colouring of some of the vertices of
G with two colours, say red and blue, such that there is the same number of
vertices in each colour. The balanced decomposition number f(G) of G is the
minimum integer s with the following property: For any balanced colouring
of G, there is a partition V (G) = V1 ∪̇ · · · ∪̇Vr such that, for every i, Vi

induces a connected subgraph of order at most s, and contains the same
number of red and blue vertices. The function f(G) was introduced by
Fujita and Nakamigawa in 2008. They conjectured that f(G) ≤ ⌊n

2
⌋ + 1 if

G is a 2-connected graph on n vertices. In this paper, we shall prove two
partial results, in the cases when G is a subdivided K4, and a 2-connected
series-parallel graph.
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1. Introduction

In this paper, all graphs will be simple and finite. For such a graph G, let V (G)
be its vertex set and E(G) be its edge set. For X ⊂ V (G), let Xc = V (G)\X; let
G[X] be the subgraph of G induced by X; and let N(X) = {v ∈ Xc : vx ∈ E(G)
for some x ∈ X} be the open neighbourhood of X in G. For a subgraph H ⊂ G,
the graph H −X is the subgraph of H induced by V (H) \X. We write H − u

for H − {u}. For k ∈ N, G is a k-connected graph if |V (G)| ≥ k + 1, and G−X

is connected for every X ⊂ V (G) with |X| ≤ k − 1. For u, v ∈ V (G), the graph
distance from u to v in G is denoted by dG(u, v). If P is a path with end-vertices
u and v, then intP is the path P − {u, v} (this is vacuous if |V (P )| ≤ 2).

We refer the reader to [1] for any undefined graph theoretic terms.
In 2008, Fujita and Nakamigawa [6] introduced the balanced decomposition

number of a graph. For a graph G, a balanced colouring of G is a pair (R,B),
where R,B ⊂ V (G), R∩B = ∅, and |R| = |B|. We refer the vertices of R (resp. B)
as the red (resp. blue) vertices, and those of V (G)\(R∪B) the uncoloured vertices.
A set X ⊂ V (G) is a balanced set if |X ∩R| = |X ∩B|, and G[X] is connected. A
balanced decomposition of G is a partition V (G) = V1 ∪̇ · · · ∪̇Vr (for some r ≥ 1),
such that each Vi is a balanced set. We may also write the balanced decomposition
as P = {V1, . . . , Vr}. The size of P is the maximum of |V1|, . . . , |Vr|.

If G is a disconnected graph, then any balanced colouring of G with one red
vertex and one blue vertex, in different components, has no possible balanced de-
composition. Hence, we will only consider balanced decompositions for connected
graphs.

If G is a connected graph of order n, and k ∈ Z, 0 ≤ k ≤ ⌊n
2
⌋, define

f(k,G) = min{s ∈ N : every balanced colouring (R,B) of G with

|R| = |B| = k has a balanced decomposition of size ≤ s}.

Note that f(k,G) ≤ n, so that f(k,G) is well-defined. The balanced decomposi-

tion number of G is then defined as

f(G) = max
{

f(k,G) : 0 ≤ k ≤
⌊n

2

⌋}

.

Fujita and Nakamigawa [6] made the following conjecture.

Conjecture 1 [6]. If G is a 2-connected graph of order n, then f(G) ≤ ⌊n
2
⌋+ 1.

The partial result when G = Cn, the cycle of order n, was solved [6].

Theorem 2 [6]. If n ≥ 3, then f(Cn) = ⌊n
2
⌋+ 1.

Also, the partial result when G is a generalised Θ-graph was solved [4]. A gen-

eralised Θ-graph (with t paths) is a graph G which is the union of t ≥ 2 paths,
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Q1, . . . , Qt say, with each having the same two end-vertices, x and y say, such
that V (Qi) ∩ V (Qj) = {x, y} for any i 6= j. Note that the Qi are pairwise inter-
nally vertex-disjoint paths. In addition, all but at most one of the Qi have order
at least 3. The vertices x and y are the source and sink of G. We also write
G = Θ(Q1, . . . , Qt).

In the proof of Theorem 3 [4], the following assertion, which contains a struc-
tural statement about balanced decompositions, was in fact proved.

Theorem 3 [4]. Let G = Θ(Q1, . . . , Qt) be a generalised Θ-graph of order n,

where t ≥ 2, with source x and sink y. Then ⌈n−t+1

2
⌉ ≤ f(G) ≤ ⌊n

2
⌋+ 1. Hence,

if t is fixed, then f(G) = n
2
+O(1).

Furthermore, there exists a balanced decomposition P for G of size at most

⌊n
2
⌋+ 1 with one of the following forms.

(i) P = {V1, V2, V3}, where x ∈ V1, y ∈ V2, and V3 ⊂ V (intQi) (possibly empty,

whence P = {V1, V2}) for some i.

(ii) P = {V1, V2}, where x, y ∈ V1; V2 ⊂ V (intQi) for some i with |V (Qi)| ≥
⌊n
2
⌋+ 2; and |V2| = ⌊n

2
⌋ or |V2| = ⌊n

2
⌋+ 1.

(iii) P = {V (Q1), V (intQ2), . . . , V (intQt)}.

Finally, we have partial results when the number of coloured vertices of G is small
[5, 6].

Theorem 4 [5, 6]. If G is a 2-connected graph of order n ≥ max(2k, 3), then
f(k,G) ≤ ⌊n

2
⌋+ 1 for k = 1, 2, 3.

Conjecture 1 remains open. In Section 3, we shall prove the partial result in the
case when G is a subdivided K4, which we denote by TK4.

Theorem 5. If G is a TK4 of order n, then f(G) ≤ ⌊n
2
⌋+ 1.

A graph is a series-parallel (SP) graph if it can be obtained as follows. Start with
a path of length at least 1. Perform a sequence of operations of the following
type successively.

(∗) Replace an edge with a generalised Θ-graph, by identifying the vertices of
the edge with the source and the sink of the generalised Θ-graph.

The end-vertices of the initial path are the source and the sink of the SP graph.

There are many other formulations of SP graphs (see, for example [2, 3]),
and they are easily seen to be equivalent to the above. By a result of Duffin [2],
an SP graph is 2-connected if and only if it can be obtained as described above,
with at least one operation, and the initial path has length 1. In Section 4, we
shall prove the following case of Conjecture 1.
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Theorem 6. If G is a 2-connected series-parallel graph of order n, then f(G) ≤
⌊n
2
⌋+ 1.

Note that Theorems 5 and 6 are exclusive from each other. Theorem 6 has
an instant corollary. A result of Elmallah and Colbourn [3] says that if G is a
3-connected planar graph, then G has a spanning 2-connected SP graph.

Corollary 7. If G is a 3-connected planar graph of order n, then f(G) ≤ ⌊n
2
⌋+1.

We remark that if the “2-connected” assumption on G is neglected in Theorem
6, then f(G) can vary greatly. For example, if G is a path, then f(G) = n. On
the other hand, if G is a generalised Θ-graph with paths of length 2, and with a
“pendant” edge attached to the source, then it can be shown that f(G) ≤ ⌊n

2
⌋+2.

2. Tools

In this section, we develop some tools which we will need in the proofs of Theorems
5 and 6. Firstly, Lemma 8 below will be needed for both proofs.

Lemma 8. Let G be a connected graph of order n. Suppose that there is a

numbering of V (G) with 1, . . . , n such that the subgraph of G induced by any set of

at least ⌈n
2
⌉−1 consecutive vertices (modulo n) is connected. Then f(G) ≤ ⌊n

2
⌋+1.

Proof. Let (R,B) be a balanced colouring of G. For 1 ≤ i ≤ n, let Ai be the
vertices numbered i, i+1, . . . , i+⌊n

2
⌋−1 (modulo n), and g(i) = |Ai∩R|−|Ai∩B|.

We have |g(i) − g(i + 1)| ≤ 2 (where g(n + 1) = g(1) by convention) for every
i, and

∑n
i=1

g(i) = 0. Hence for some i, either g(i) = 0, or without loss of
generality, g(i) = −1 and g(i+ 1) = 1. If the former, then {Ai, A

c
i} is a suitable

balanced decomposition, since |Ai|, |A
c
i | ≥ ⌈n

2
⌉ − 1. If the latter, let w be the

vertex numbered i+⌊n
2
⌋ (modulo n). Then, w ∈ R, and |(Ai∪{w})∩R| = |(Ai∪

{w})∩B|. Hence, {Ai ∪ {w}, (Ai ∪ {w})c} is a suitable balanced decomposition,
since |Ai ∪ {w}|, |(Ai ∪ {w})c| ≥ ⌈n

2
⌉ − 1.

Next, we shall develop some ideas about SP graphs. This part of Section 2 can
be interesting in its own right.

We first recall the well-known series and parallel compositions of SP graphs.
Let G1 and G2 be two SP graphs, with sources a1, a2 and sinks b1, b2. Then, their
series composition is the graph G1+sG2, formed by identifying b1 and a2. Their
parallel composition is the graph G1 +p G2, formed by identifying a1, a2, and
b1, b2. Both of these compositions can be extended to three or more SP graphs
in the obvious way. Observe that G1 +s G2 is connected, but not 2-connected,
while G1 +p G2 is 2-connected.
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For the rest of the paper, we assume that all SP graphs are obtained as follows.
Start with a path G0 with end-vertices x0 and y0, and replace edges successively
with generalised Θ-graphs by the operation (∗) m times, for some m ≥ 1. Let
T1, . . . , Tm be the generalised Θ-graphs. For each i, let xi and yi be the source
and sink of Ti. We make the following assumptions.

(†) No Ti replaces an edge e of some Tj (j < i) which joins xj and yj .

Otherwise, the same final SP graph can be obtained by appending T ′

j instead of
Tj when Tj was appended, where T ′

j is the graph obtained from Tj by replacing
e with Ti (by the operation (∗)).

(‡) For any i, Ti is appended as follows. Ti replaces the edge ab which appeared
in some first Tj (j < i), or in G0. If the former, assume that dTj

(a, xj) <
dTj

(b, xj). If the latter, assume that dG0
(a, x0) < dG0

(b, x0). In both cases,
identify xi with a, and yi with b.

Now, for an SP graph G, we shall define a linear ordering ≺ on V (G). First,
for a generalised Θ-graph T = Θ(Q1, . . . , Qt) (for some t ≥ 2) with source a

and sink b, define a linear ordering ≺T on V (T ) as follows. We have u ≺T v if
either u = a, or v = b, or u ∈ V (intQi) and v ∈ V (intQj) for some i < j, or
u, v ∈ V (intQi) with dQi

(u, a) < dQi
(v, a) for some i. Next, for 1 ≤ i ≤ m, let Gi

be the SP graph obtained after T1, . . . , Ti have been appended (so that G = Gm).
We define a linear ordering ≺i on V (Gi) for each i. Proceed inductively. Initially,
define the linear ordering ≺0 on V (G0) by u ≺0 v if dG0

(u, x0) < dG0
(v, x0). Now

for i ≥ 1, suppose that we have defined the linear ordering ≺i−1 on V (Gi−1).
The graph Ti has a linear ordering ≺Ti

. The vertices xi, yi are identified with an
edge ab ∈ E(Gi−1), and ab first appeared either as an edge of G0, or when some
Tj (j < i) was appended. Define the linear ordering ≺i on V (Gi) as follows.

• If u, v 6∈ V (Ti − {a, b}) and u ≺i−1 v in Gi−1, then u ≺i v.

• If u, v ∈ V (Ti − {a, b}) and u ≺Ti
v in Ti, then u ≺i v.

• Suppose that u 6∈ V (Ti − {a, b}) and v ∈ V (Ti − {a, b}).

– If ab ∈ E(G0), or ab ∈ E(Tj) with a 6= xj , b 6= yj , then u ≺i v if
u ≺i−1 a or u = a in Gi−1, and v ≺i u otherwise.

– If ab ∈ E(Tj) with a = xj , b 6= yj , then u ≺i v if u ≺i−1 b in Gi−1, and
v ≺i u otherwise.

– If ab ∈ E(Tj) with a 6= xj , b = yj , then u ≺i v if u ≺i−1 a or u = a in
Gi−1, and v ≺i u otherwise.
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Finally, set ≺=≺m. Note that ≺ is well-defined, in view of (†) and (‡). In
practice, the linear ordering ≺ is quite simple. Figure 1 shows an example.
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Figure 1. The linear ordering ≺.

With the linear ordering ≺ now defined, we have the following lemma.

Lemma 9. Let G be an SP graph, with the linear ordering ≺ on V (G) as defined.
Then, every subgraph of G induced by an initial segment or a final segment of ≺
is connected.

Proof. We use all the terms that we have already defined. We show inductively
that the lemma holds for each ≺i on Gi. The lemma clearly holds for G0. Now
for 1 ≤ i ≤ m, suppose that it holds for Gi−1. Gi is obtained from Gi−1 by
replacing an edge ab ∈ E(Gi−1) with the graph Ti, by identifying xi, yi with a, b

in such a way that (†) and (‡) are satisfied. Note that a ≺i−1 b and a ≺i b. We
also have the linear ordering ≺Ti

on V (Ti).
Observe that any initial segment and final segment of ≺Ti

induces a connected
subgraph of Ti. Also, by the definition of ≺i, V (Ti −{xi, yi}) is a single segment
in V (Gi). Let I ⊂ V (Gi) be an initial segment of ≺i and Ic = V (Gi) \ I be the
corresponding final segment. It suffices to show that both Gi[I] and Gi[I

c] are
connected.

• If a, b 6∈ I, then I is also an initial segment of ≺i−1 in V (Gi−1). Let I ′ =
V (Gi−1) \ I be the corresponding final segment. We have Gi[I] = Gi−1[I],
and Gi[I

c] is obtained from Gi−1[I
′] by replacing ab with Ti, so is connected.

A similar argument applies if a, b ∈ I.

• If a ∈ I and b 6∈ I, then Gi[I] is formed by attaching Ti[J
′] to Gi−1[J ] at a,

where J is some initial segment of ≺i−1 in V (Gi−1) containing a but not b,
and J ′ is some initial segment of ≺Ti

in V (Ti). Clearly, Gi[I] is connected.
Gi[I

c] has a similar structure, so it is also connected.
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3. Subdivision of K4

Proof of Theorem 5. Let G be a TK4 of order n. Let x1, . . . , x4 be the branch
vertices ofG, andQ1, . . . , Q6 be the sub-paths joining them, with V (Q1)∩V (Q5)∩
V (Q6) = {x1}, V (Q1)∩V (Q2)∩V (Q3) = {x2}, V (Q2)∩V (Q4)∩V (Q6) = {x3},
V (Q3) ∩ V (Q4) ∩ V (Q5) = {x4}. Assume that |V (Qi)| ≥ 3 for each i (so that
n ≥ 10), otherwise the result follows from Theorem 3. Let (R,B) be a balanced
colouring of G.

Case 1. |V (Qi)| ≤ ⌊n
2
⌋ for all 1 ≤ i ≤ 6. We proceed by proving several

claims.

Claim 10. There exist partitions V (intQ4) = S1 ∪̇S2, V (intQ5) = T1 ∪̇T2 and

V (intQ6) = U1 ∪̇U2 such that the graphs H1 = G[V (Q1) ∪ T1 ∪ U2], H2 =
G[V (Q2)∪U1∪S2] and H3 = G[V (Q3)∪S1∪T2] are connected, with |V (Hi)| ≤ ⌊n

2
⌋

for each i.

Proof. Recall that 3 ≤ |V (Qi)| ≤ ⌊n
2
⌋ for each i. If there is no partition

V (intQ4) = S1 ∪̇S2 such that G[V (Q2) ∪ S2] and G[V (Q3) ∪ S1] are connected
and have order at most ⌊n

2
⌋, then we would have |V (G)| ≥ 2⌊n

2
⌋ + 4 > n, a

contradiction. Hence, take a suitable partition V (intQ4) = S1 ∪̇S2. If parti-
tions V (intQ5) = T1 ∪̇T2 and V (intQ6) = U1 ∪̇U2 do not simultaneously exist
such that G[V (Q1) ∪ T1 ∪ U2], G[V (Q2) ∪ U1 ∪ S2] and G[V (Q3) ∪ S1 ∪ T2] are
connected and have order at most ⌊n

2
⌋, then a similar counting argument gives

|V (G)| ≥ 2⌊n
2
⌋+ 2 > n, another contradiction.

From here, H1, H2 and H3 are defined as in Claim 10.

Claim 11. For some i, there exists a balanced set A ⊂ V (Hi), with x2 ∈ A.

Proof. The claim holds if x2 ∈ (R ∪B)c. Without loss of generality, let x2 ∈ R.
If such a set A does not exist, then |V (Hi) ∩ R| > |V (Hi) ∩ B| for every i, so
|R| = 1+

∑

3

i=1
|V (Hi − x2) ∩R| ≥ 1 +

∑

3

i=1
|V (Hi) ∩B| > |B|, a contradiction.

Claim 12. Let A  V (Q4∪Q5∪Q6)
c be a balanced set with x2 ∈ A, |A| ≤ ⌊n

2
⌋−1,

and N(A) ⊂ R or N(A) ⊂ B. Then for some i, there exists a balanced set

C ⊂ V (Hi −A) with N(C) ∩ V (Hi) ∩A 6= ∅.

Proof. It suffices to prove the claim with N(A) ⊂ R. If such a set C does not
exist, then |V (Hi − A) ∩ R| > |V (Hi − A) ∩ B| for every i. But, |Ac ∩ R| =
∑

3

i=1
|V (Hi −A)∩R| >

∑

3

i=1
|V (Hi −A)∩B| = |Ac ∩B|, a contradiction, since

Ac is a balanced set.
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Claim 13. Let A be a balanced set with V (Q1) ⊂ A ⊂ V (Q4)
c, |A| ≤ ⌊n

2
⌋ − 1,

N(A) \ {x3, x4} ⊂ R or N(A) \ {x3, x4} ⊂ B, and A 6⊃ V (intQ2 ∪ intQ6), A 6⊃
V (intQ3 ∪ intQ5). Then, there exists a balanced set C ⊂ X with N(C) ∩A 6= ∅,
|C| ≤ ⌊n

2
⌋ and (A∪C)c is connected, where X is either V ((Q3∪Q5 ∪ intQ4)−A)

or V ((Q2 ∪Q6 ∪ intQ4)−A).

Proof. It suffices to prove the claim with N(A) \ {x3, x4} ⊂ R. Let Vi =
V (intQi −A) for i ∈ {2, 3, 5, 6}, and I = {i ∈ {2, 3, 5, 6} : Vi 6= ∅}.

If we cannot find a suitable set C ⊂ Vi ∪ {x4} for some i ∈ {3, 5}, then
|(V3 ∪ V5 ∪ {x4}) ∩R| > |(V3 ∪ V5 ∪ {x4}) ∩B| (whether 3, 5 ∈ I, or 3 ∈ I, 5 6∈ I,
or 3 6∈ I, 5 ∈ I). Similarly, |(V2 ∪ V6 ∪ {x3}) ∩R| > |(V2 ∪ V6 ∪ {x3}) ∩B|. Since
Ac is a balanced set, it is clear that there exists a partition V (Q4) = W1 ∪̇W2

such that V3 ∪ V5 ∪W1 and V2 ∪ V6 ∪W2 are balanced sets. One of these has at
most ⌊n

2
⌋ vertices and hence is a suitable set for C.

Claim 14. Let A be a balanced set with V (Q1∪Q3∪Q5)\{x4} ⊂ A ⊂ V (G−x3),
|A| ≤ ⌊n

2
⌋ − 1, and N(A) \ {x3} ⊂ R or N(A) \ {x3} ⊂ B. Then, there exists a

balanced set C ⊂ X with N(C) ∩ X ∩ A 6= ∅ and |C| ≤ ⌊n
2
⌋, where X is either

V (intQ2 −A), V (Q4 − (A ∪ {x3})) or V (intQ6 −A).

Proof. It suffices to prove the claim with N(A) \ {x3} ⊂ R. For i ∈ {2, 4, 6}, let
Xi = V (Qi − (A ∪ {x3})). Let J = {i ∈ {2, 4, 6} : Xi 6= ∅}. Note that |J | ≥ 2,
otherwise we have |A| ≥ n − ⌊n

2
⌋ = ⌈n

2
⌉, a contradiction. If we cannot find a

suitable C ⊂ Xi for some i ∈ J , then |Xi ∩ R| > |Xi ∩ B| for each i ∈ J . But,
|Ac ∩R| ≥

∑

i∈J |Xi ∩R| ≥
∑

i∈J |Xi ∩B|+ 2 > |Ac ∩B|, a contradiction, since
Ac is a balanced set.

We now describe an algorithm. Take a balanced set A1 as given by Claim 11.
Without loss of generality, A1 ⊂ V (H1). We have |A1| ≤ ⌊n

2
⌋.

Step 1. If |A1| = ⌊n
2
⌋, stop. {A1, A

c
1} is a suitable balanced decomposition

for G. Otherwise, |A1| ≤ ⌊n
2
⌋ − 1. If V (Q1) ⊂ A1, go to Step 3. If A1 = V (Q4 ∪

Q5∪Q6)
c, stop. V (Q4∪Q5∪Q6) is a balanced set, so by Theorem 2, Q4∪Q5∪Q6

has a balanced decomposition P with size at most ⌊n
2
⌋ + 1. Hence, {A1} ∪ P is

a suitable balanced decomposition for G. Otherwise, A1  V (Q4 ∪Q5 ∪Q6)
c. If

there is an uncoloured vertex u ∈ N(A1), or red and blue vertices v, w ∈ N(A1),
let A2 = A1 ∪ {u} or A2 = A1 ∪ {v, w} accordingly; if not, go to Step 2. We can
choose u, or v and w, such that at most one of x1, x3, x4 is appended to A1. A2 is
another balanced set. If |A2| = ⌊n

2
⌋ or |A2| = ⌊n

2
⌋+1, stop; {A2, A

c
2} is a suitable

balanced decomposition for G. Otherwise, |A2| ≤ ⌊n
2
⌋ − 1. If we have appended

exactly one of x1, x3, x4, go to Step 3, using A2 for A1. Otherwise, repeat Step
1, using A2 for A1.
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Step 2. We have either N(A1) ⊂ R or N(A1) ⊂ B. The set A1 satisfies the
conditions of Claim 12, and we can find a balanced set C as described. If |A1 ∪
C| ≥ ⌊n

2
⌋, stop. We have a suitable balanced decomposition {A1, C, (A1 ∪ C)c}

for G. Otherwise, |A1 ∪ C| ≤ ⌊n
2
⌋ − 1. If we have exactly one of x1, x3, x4 in

A1 ∪ C, go to Step 3, using A1 ∪ C for A1. Otherwise, go back to Step 1, using
A1 ∪ C for A1.

Step 3. Re-label the Qi, xj and Hk by cycling Q1 → Q2 → Q3 → Q1,
Q4 → Q5 → Q6 → Q4, x1 → x3 → x4 → x1, and H1 → H2 → H3 → H1, so
that V (Q1) ⊂ A1 ⊂ V (Q4)

c in the re-labelling. If A1 ⊃ V (intQ3 ∪ intQ5) or
A1 ⊃ V (intQ2 ∪ intQ6), go to Step 5. Otherwise, if there is an uncoloured vertex
u ∈ N(A1) \ {x3, x4}, or red and blue vertices v, w ∈ N(A1) \ {x3, x4}, let A3 =
A1 ∪ {u} or A3 = A1 ∪ {v, w} accordingly; if not, go to Step 4. If |A3| = ⌊n

2
⌋ or

|A3| = ⌊n
2
⌋+1, stop. We have a suitable balanced decomposition {A3, A

c
3} for G.

Otherwise, |A3| ≤ ⌊n
2
⌋−1. If A3 ⊃ V (intQ3 ∪ intQ5) or A3 ⊃ V (intQ2 ∪ intQ6),

go to Step 5, using A3 for A1. Otherwise, repeat Step 3, using A3 for A1.

Step 4. We have either N(A1) \ {x3, x4} ⊂ R or N(A1) \ {x3, x4} ⊂ B. The
set A1 satisfies the conditions of Claim 13, and we can find a balanced set C as
described. If |A1 ∪ C| ≥ ⌊n

2
⌋, stop. We have a suitable balanced decomposition

{A1, C, (A1 ∪ C)c} for G. Otherwise, |A1 ∪ C| ≤ ⌊n
2
⌋ − 1. If we have exactly one

of x3, x4 in A1∪C, go to Step 5, using A1∪C for A1. Otherwise, go back to Step
3, using A1 ∪ C for A1.

Step 5. Re-label the Qi, xj and Hk by Q2 ↔ Q3, Q5 ↔ Q6, x3 ↔ x4
and H2 ↔ H3, so that V (Q1 ∪ Q3 ∪ Q5) \ {x4} ⊂ A1 ⊂ V (G − x3) in the re-
labelling. If there is an uncoloured vertex u ∈ N(A1) \ {x3}, or red and blue
vertices v, w ∈ N(A1) \ {x3}, let A4 = A1 ∪ {u} or A4 = A1 ∪ {v, w} accordingly.
If |A4| = ⌊n

2
⌋ or |A4| = ⌊n

2
⌋+1, stop. We have a suitable balanced decomposition

{A4, A
c
4} for G. Otherwise, |A4| ≤ ⌊n

2
⌋ − 1. Repeat Step 5, using A4 for A1.

If N(A1) \ {x3} ⊂ R or N(A1) \ {x3} ⊂ B, then A1 satisfies the conditions of
Claim 14, and we can find a balanced set C as described. If |A1∪C| ≥ ⌊n

2
⌋, stop.

We have a suitable balanced decomposition {A1, C, (A1 ∪C)c} for G. Otherwise,
|A1 ∪ C| ≤ ⌊n

2
⌋ − 1. Repeat Step 5, using A1 ∪ C for A1.

The algorithm must terminate, since whenever we append new vertices, we are
increasing the number of vertices in A1. When the algorithm terminates, we will
obtain a suitable balanced decomposition for G.

Case 2. Without loss of generality, |V (Q1)| ≥ ⌊n
2
⌋+ 1. Number the vertices

of G with 1, . . . , n as follows. Start at x1 and move along Q1 to x2. Then, move
along Q2 to the vertex adjacent to x3. Then, move along Q3 from the vertex
adjacent to x2 to the vertex adjacent to x4. Then, move along Q4 from x3 to x4.
Then, move along Q5 from the vertex adjacent to x4 to the vertex adjacent to x1.
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Finally, move along Q6, from the vertex adjacent to x3 to the vertex adjacent to
x1.

This numbering satisfies the condition of Lemma 8. Indeed, let A ⊂ V (G) be
a set of consecutive vertices (modulo n), with first vertex v, and |A| ≥ ⌈n

2
⌉ − 1.

Every initial segment induces a connected subgraph ofG. If v ∈ V (Q1), thenG[A]
is connected. If v ∈ V (Q1)

c, then note that |V (Q1)
c| ≤ n−(⌊n

2
⌋+1) ≤ |A|. Hence,

either A = V (Q1)
c, or A is the union of an initial segment and a final segment.

In either case, G[A] is connected. Hence by Lemma 8, we have f(G) ≤ ⌊n
2
⌋+ 1.

The proof of Theorem 5 is now complete.

4. Series-parallel Graphs

Proof of Theorem 6. Let G be a 2-connected SP graph of order n. G can be
obtained as described in Section 2, where (†) and (‡) are satisfied. Let T1, . . . , Tm

be the generalised Θ-graphs, for some m ≥ 1. Let T1 = Θ(Q1, . . . , Qt), for some
t ≥ 2, with source x and sink y. For a subgraph F ⊂ T1, let 〈F 〉 ⊂ G be the
subgraph of G that F has been transformed to.

Let (R,B) be a balanced colouring of G. We shall prove a stronger assertion.
There exists a balanced decomposition P for G of size at most ⌊n

2
⌋+1, with one

of the following forms.

(i) P = {V1, V2, V3}, where x ∈ V1, y ∈ V2, and V3 ⊂ V (〈Qi〉−{x, y}) (possibly
empty, whence P = {V1, V2}) for some i.

(ii) P = {V1, V2}, where x, y ∈ V1, and V2 ⊂ V (〈Qi〉 − {x, y}) for some i with
|V (〈Qi〉)| ≥ ⌊n

2
⌋+ 2, and |V2| = ⌊n

2
⌋ or |V2| = ⌊n

2
⌋+ 1.

(iii) P = {V (〈Q1〉), V (〈Q2〉 − {x, y}), . . . , V (〈Qt〉 − {x, y})}.

Case 1. |V (〈Qi〉)| ≤ ⌊n
2
⌋ + 1 for all 1 ≤ i ≤ t. We use induction on m. By

Theorem 3, the stronger assertion holds for m = 1. Now let m ≥ 2 and suppose
that the result holds for any 2-connected SP graph that can be obtained from
m− 1 applications of the operation (∗).

Let Tm = Θ(R1, . . . , Rs) for some s ≥ 2, with source a and sink b. Tm has
a linear ordering ≺Tm

as described in Section 2. Obtain the graph H from G

as follows. Replace Tm with a path P of order |V (Tm)| by identifying the end-
vertices of P with a and b, and with the vertex u ∈ V (Tm) corresponding to the
vertex u′ ∈ V (P ) by dP (u

′, a) + 1 being the position of u in ≺Tm
. Also, let u′

inherit the colour of u, and let ≺P be the corresponding linear ordering on V (P ).
The graph H can be obtained by m − 1 applications of the operation (∗),

so by induction, H has a balanced decomposition P ′ of size at most ⌊n
2
⌋ + 1,

with one of the forms (i) to (iii) as described above. If P ′ is of form (iii), then
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P ′ is a suitable balanced decomposition for G of form (iii), in view of (†) (since
{a, b} 6= {x, y}). If P ′ is of form (i) or (ii), then the path P is partitioned into at
most three sub-paths. If P is divided into one or two sub-paths, then by Lemma
9, P ′ is still a balanced decomposition in G and is of form (i) or (ii). If P is divided
into three sub-paths and P ′ is of form (ii), then P ′ = {V1, V2} as described. The
end-vertices of P must be in V1. This means that |V (P )| ≥ |V2| + 2 ≥ ⌊n

2
⌋ + 2,

a contradiction. Now, assume that P ′ is of form (i). Then, P ′ = {V1, V2, V3}
as described. G[V1] has the following structure: Take H[V1], remove an initial
segment of P (w.r.t. ≺P ), and replace with the corresponding initial segment of
V (Tm) (w.r.t. ≺Tm

). By Lemma 9, G[V1] is connected. Similarly, G[V2] is also
connected. Now, V3 is a middle segment of V (Tm) (w.r.t. ≺Tm

), so G[V3] consists
of possibly several disjoint paths, each one being a sub-path of Rj for some j.

We now describe an algorithm.

Step 1. If |V1| = ⌊n
2
⌋ or |V1| = ⌊n

2
⌋ + 1, stop. We have a suitable balanced

decomposition {V1, V
c
1 } forG. Otherwise, |V1| ≤ ⌊n

2
⌋−1. IfN(V1)∩V (Tm−b) ⊂ R

or N(V1)∩V (Tm−b) ⊂ B, go to Step 2. Otherwise, there is an uncoloured vertex
u ∈ N(V1) ∩ V (Tm − b), or red and blue vertices v, w ∈ N(V1) ∩ V (Tm − b). Let
V ′

1 = V1 ∪ {u} or V ′

1 = V1 ∪ {v, w}, and V ′

3 = V3 \ {u} or V ′

3 = V3 \ {v, w}
accordingly. Repeat Step 1, using V ′

1 for V1, and V ′

3 for V3.

Step 2. Note that G[V3] consists of paths A1, . . . , Ar, where for each i, Ai ⊂
intRj for some j, and Ai has one end-vertex adjacent to a vertex in V1, the other
adjacent to a vertex in V2. Let a1, . . . , ar be the end-vertices adjacent to vertices
in V1. Since N(V1) ∩ V (Tm − b) ⊂ R (resp. N(V1) ∩ V (Tm − b) ⊂ B), we have
a1, . . . , ar ∈ R (resp. a1, . . . , ar ∈ B). Since |V3 ∩ R| = |V3 ∩ B|, for some i and
x ∈ V (Ai), the path Q = ai · · ·x ⊂ Ai satisfies |V (Q) ∩ R| = |V (Q) ∩ B|. If
|V1 ∪ V (Q)| ≥ ⌊n

2
⌋ + 2, stop. {V1, V (Q), (V1 ∪ V (Q))c} is a suitable balanced

decomposition for G, since |V (Q)| < |V (Tm)| ≤ ⌊n
2
⌋. Otherwise, return to Step

1, using V1 ∪ V (Q) for V1 and V3 \ V (Q) for V3.

This algorithm must terminate, and when it does so, we have a balanced decom-
position of size at most ⌊n

2
⌋ + 1 for G, and with a structure of form (i) or (ii).

This completes the proof of Case 1.

Case 2. Without loss of generality, |V (〈Q1〉)| ≥ ⌊n
2
⌋ + 2. For a, b ∈ V (Q1),

let a · · · b ⊂ Q1 be the sub-path with end-vertices a and b. Let Q1 = u1 · · ·us for
some s ≥ 3, where u1 = x, us = y, and let Q′ = 〈Q2〉 +p · · · +p 〈Qt〉. Note that
|V (Q′)| ≤ ⌈n

2
⌉. We have

(a) either |V (〈ujuj+1〉)| ≤ ⌈n
2
⌉ for every 1 ≤ j < s,

(b) or |V (〈ujuj+1〉)| ≥ ⌈n
2
⌉+ 1 for some 1 ≤ j < s.
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If (b) holds, let Q′′ = 〈uj+1 · · ·us〉+sQ
′+s 〈u1 · · ·uj〉, so that |V (Q′′)| ≤ ⌊n

2
⌋+1.

Now, 〈ujuj+1〉 is a 2-connected SP graph, so we have 〈ujuj+1〉 = H1+p · · ·+pHr

for some r ≥ 2, and for every k, we have Hk is SP, and not a parallel composition.
Consider G as G = H1 +p · · · +p Hr +p Q

′′. If |V (Hk)| ≤ ⌊n
2
⌋ + 1 for every k,

then we are done by applying Case 1. Otherwise, if |V (Hℓ)| ≥ ⌊n
2
⌋+ 2 for some

ℓ, then we can go back to the start of Case 2. This procedure cannot be repeated
infinitely often, since each time that we have to restart Case 2, with (b) holding
and we obtain the corresponding graph Hℓ, the graphs Hℓ have strictly decreasing
orders.

Hence after applying the above procedure finitely many times, G will have a
structure such that (a) holds. We can describe this structure as follows. There are
vertices v1, . . . , vq ∈ V (G), where q ≥ 3, and SP graphs F1, . . . , Fq such that for
every 1 ≤ i ≤ q, Fi has source vi and sink vi+1 (where vq+1 = v1 by convention),
|V (Fi)| ≤ ⌈n

2
⌉, and G is the union of the Fi in this way. Number V (G) with

1, . . . , n as follows. Each Fi has a linear ordering ≺i as described in Section 2.
We have u precedes v in the numbering if either u = v1, or u, v ∈ V (Fi − vi) and
u ≺i v for some i, or u ∈ V (Fi − vi) and v ∈ V (Fj − vj) for some i < j. This
numbering satisfies the condition of Lemma 8. Indeed, let A ⊂ V (G) be a set
of consecutive vertices (modulo n) with |A| ≥ ⌈n

2
⌉ − 1. Since |V (Fi)| ≤ ⌈n

2
⌉ for

every i, the vertices of v1, . . . , vq in A are consecutive. Without loss of generality,
v1, . . . , vp ∈ A, where p ≥ 1. Then, A = V (F1 ∪ · · · ∪ Fp−1) ∪ I ∪ J , where I is
an initial segment of Fp − vp+1 (w.r.t. ≺p), and J is a final segment of Fq − vq
(w.r.t. ≺q). By Lemma 9, G[I] and G[J ] are both connected, so G[A] is also
connected. Hence, applying Lemma 8, we have f(G) ≤ ⌊n

2
⌋+1, and we are done

for Case 2.

This completes the proof of Theorem 6.
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