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Abstract

A k-colouring of a graph G is a mapping ¢ from the set of vertices of G
to the set {1,...,k} of colours such that adjacent vertices receive distinct
colours. Such a k-colouring is called acyclic, if for every two distinct colours
1 and j, the subgraph induced by all the edges linking a vertex coloured with
i and a vertex coloured with j is acyclic. In other words, every cycle in G
has at least three distinct colours.

Acyclic colourings were introduced by Griinbaum in 1973, and since then
have been widely studied. In particular, the problem of acyclic colourings
of graphs with bounded maximum degree has been investigated. In 2011,
Kostochka and Stocker showed that any graph with maximum degree 5 can
be acyclically coloured with at most 7 colours. The question, whether this
bound is achieved, remains open. In this note we prove that any graph with
maximum degree 5 and maximum average degree at most 4 admits an acyclic
6-colouring. We also provide examples of graphs with these properties.
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degree.
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1. INTRODUCTION AND NOTATION

In this note we address the problem of acyclic colourings of graphs with maximum
degree at most 5 and small maximum average degree. All considered graphs are
finite and simple, i.e., without loops or multiple edges. We use standard notation.
For a graph G we denote its vertex and edge set by V(G) and E(G), respectively.
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For a vertex z € V(G), d(x) stands for the degree of xz. We use A(G) and
d(G) to denote the maximum and minimum vertex degree of G, respectively. For
undefined concepts we refer the reader to [9].

A k-colouring of a graph G is a mapping ¢ from the set of vertices of G to the
set {1,...,k} of colours such that adjacent vertices receive distinct colours. Such
k-colouring is called acyclic, if for every two distinct colours ¢ and j, the subgraph
induced by all the edges linking a vertex coloured with ¢ and a vertex coloured
with j is acyclic. In other words, every cycle in G has at least three distinct
colours. The minimum k such that G has an acyclic k-colouring is called the
acyclic chromatic number of G, denoted by x4(G).

Acyclic colourings were introduced by Griinbaum in 1973 [5], and since then
have been widely studied and investigated by many authors. In particular, a lot
of attention has been paid to the problem of acyclic colourings of graphs with
bounded maximum degree. Griinbaum showed in [5] that the acyclic chromatic
number of any cubic graph is at most 4. Later, Skulrattanakulchai presented a
linear time algorithm that uses at most 4 colours to acyclically colour the vertices
of any graph with maximum degree at most 3 [8]. Burstein [3] proved that the
acyclic chromatic number of graphs with maximum degree 4 is at most 5. Acyclic
colourings of planar and outerplanar graphs were also considered, see, for instance
[1, 2]. The problem of determining the acyclic chromatic number of a graph is
very difficult in general, even for graphs with bounded degree. Kostochka proves
in [6] that it is an NP-complete problem to decide for a given graph G whether
Xa(G) < 3.

The paper concerns acyclic colourings of graphs with maximum degree 5.
Fertin and Raspaud considered this problem in [4] and proved that any such
graph admits an acyclic 9-colouring. Recently, Kostochka and Stocker improved
this bound to 7, see [7]. The question, posed in [7], is whether there are graphs for
which this bound is achieved? It is known, that there are graphs with maximum
degree 5 and acyclic chromatic number 6 (for example Kg, the complete graph on
6 vertices). In this paper we give a non-trivial family of graphs with maximum
degree 5, which are acyclically 6 colourable. We use the notion of the mazimum
average degree, Mad(G), of a graph G defined as follows:

[E(H))]
[V (H)]

Mad(©) = max {2 (00 s Gl

Our main result is
Theorem 1. Let G be a graph such that A(G) <5 and Mad(G) < 4. Then
Xa(G) < 6.

We also present examples of graphs that satisfy the assumptions of Theorem 1
and need at least 6 colours in any acyclic colouring.
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2. PROOF OF THEOREM 1

Before we proceed, we first state the lemma presenting some structural properties
of graphs with maximum degree 5 and maximum average degree at most 4.

Lemma 2. Let G be a graph such that A(G) =5, 6(G) > 3 and Mad(G) < 4.
Then G contains at least one of the following configurations:
(A1) a vertex of degree at most 4 adjacent to a vertex of degree 3, or

(A2) a vertex of degree 5, adjacent to at least two vertices of degree 3.

Proof. We use the discharging method to prove the lemma. Let G = (V, E) be
a graph such that A(G) = 5, §(G) > 3 and Mad(G) < 4. Initially, we define a
mapping w on V as follows: for each z € V let w(x) = d(z). Clearly, the fact
that Mad(G) < 4 yields

(1) ervw(az) < A|V|.

In the discharging step, the values of w are distributed between adjacent vertices,
according to the rule described below. In this way we obtain a new mapping w’.
After this procedure, each z € V' has a new value w'(x), but the sums of values
of w' and w, counted over all the vertices, remain the same. We show that
if G contains neither (A1) nor (A2), then for each vertex z, we have w'(z) >
4 and there exists at least one vertex for which this value is strictly greater
than 4, obtaining a contradiction with inequality (1). We have only one rule for
distributing values between adjacent vertices:

(R1) If z is a vertex of degree 5, then x gives % to each its neighbour of degree
3.

Now we compute the values of vertices of G, considering several cases, depending
on the degree of x.

If d(z) = 3, then w'(z) = 3431 = 43 > 4, because G does not contain the
configuration (Al).

If d(z) = 4, then w'(z) = w(z) = 4.

If d(xz) = 5, then observe that z is adjacent to at most one vertex of degree 3,
since otherwise configuration (A2) occurs. Hence, w'(z) >5— 1 =41 > 4.

As we have shown, for each vertex z of G, if d(z) = 4, then w'(z) equals 4, and
if x is of degree 3 or 5, then w'(z) is greater than 4. This and the fact A(G) =5
implies >~y w(x) = > oy w'(x) > 4|V, contrary to inequality (1). |

Now we are ready to prove Theorem 1. To this end, we introduce two useful
notions. Let G be a graph and assume c is its acyclic k-colouring. For a vertex « €



94 A. FIEDOROWICZ

V(G), we denote by C(x) the multiset of colours assigned by ¢ to the neighbours
of z. Let i, j be distinct colours, x,y € V(G), and P be a path from x to y in G.
We call a path P an alternating (i, j)-path (from x to y), if the vertices of P are
alternately coloured with ¢ and j.

Proof of Theorem 1. Let G = (V, E) be a minimal, with respect to the num-
ber of edges, counterexample to the theorem. There is no loss of generality in
assuming G is connected. It is easy to see §(G) > 2. If A(G) < 4, then from the
theorem of Burnstein [3] it follows that G has an acyclic 5-colouring. Hence we
may assume A(G) = 5. Now we provide some additional properties of G.

Claim 1. G does not contain vertices of degree 2.

Proof. Assume, contrary to our claim, that there is a vertex x of degree 2.
Let y and z be its neighbours. Consider G’ = G — zy. G being a minimal
counterexample implies G’ has an acyclic 6-colouring ¢. We consider two cases.

Case 1. Let ¢(x) # c(y), w.l.o.g., ¢(x) =1, ¢(y) = 2. We cannot extend this
colouring to an acyclic 6-colouring of G only if we have an alternating (1, 2)-path
from z to y, passing through z (if this is not the case, then adding the edge xy
does not create any bichromatic cycle). It follows ¢(z) = 2 and 1 € C(z). Since
d(z) <5, there is a colour o € {3,4,5,6}, a ¢ C(z) such that we can recolour x
with «, obtaining an acyclic 6-colouring that can be extended.

Case 2. Assume c(z) = c(y), w.l.o.g., c¢(x) =1 = ¢(y). Observe c(z) # 1.
Hence we can recolour x with any colour o € {2,3,4,5,6}, o # ¢(z), obtaining
an acyclic 6-colouring that clearly can be extended. 0

Claim 2. G contains no vertex of degree at most 4 adjacent to a vertex of degree
3.

Proof. Assume to the contrary that there is a vertex x of degree at most 4
adjacent to a vertex y of degree 3. We may assume d(x) = 4, since similar
arguments hold if d(z) = 3. Let G’ = G — zy. From the fact that G is a minimal
counterexample it follows G’ has an acyclic 6-colouring ¢. We claim that we
can extend this colouring. To see this, we consider two cases. Let yi1,y2 be the
neighbours of y in G’.

Case 1. Assume c¢(z) = ¢(y), wlo.g., c(xr) = 1 = c(y). Observe that
if c(y1) # c(y2), then we can recolour y with any colour @ € {2,...,6} \
{1,c(y1),c(y2)}. It is easy to see that the obtained colouring can be extended.
Therefore we may assume c(y1) = ¢(y2) = 2. If we can recolour y with any colour
a € {3,...,6}, then we are done, because again we obtain an acyclic 6-colouring
of G’ that can be extended. On the other hand, y cannot be recoloured only if
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for each colour o € {3,...,6} there is an alternating (2, «)-path from y; to ya. It
follows C'(y1) = C(y2) = {1, 3,4,5,6}. We recolour y; with 1 and y with a colour
g€ {3,...,6}, B & C(x). Such a colour exists, since in C(z) there are at most
three distinct colours. Clearly, the obtained colouring can be extended.

Case 2. Suppose c(z) # c(y), wlo.g., c(z) = 1, ¢(y) = 2. Observe that
if 1 ¢ C(y), then the colouring ¢ can be extended, since we do not create any
bichromatic cycle. Hence, 1 € C(y) and there are two subcases to consider.

Subcase 2.1. Assume C(y) contains two distinct colours, w.l.o.g., C(y) =
{1,3}. If we cannot extend the colouring ¢, then there is an alternating (1, 2)-
path from z to y. Hence 2 € C'(x). It follows C(z) contains at most two colours
among 4, 5,6. Thus there is a colour a € {4,5,6}, a & C(x). We recolour y with
« and obtain an acyclic 6-colouring that can be extended.

Subcase 2.2. Let C(y) = {1,1}. Again, there must be an alternating (1, 2)-
path from z to y and hence 2 € C(x). We may assume that this alternating
path is passing through y;. Observe that if we can recolour z with any colour
a € {3,4,5,6}, then we are done, because the colouring obtained in this way can
be extended. Hence such a recolouring is impossible. Recall that dg/(z) = 3 and
2 € C(x). If C(x) contains three distinct colours, then clearly we can recolour
xz. Thus in C(z) at least one colour occurs more than once. We may assume
that one of the following situations holds: C(z) = {2,3,3} or C(x) = {2,2,3}
or C(z) = {2,2,2}. In all cases, if we can recolour y with a colour 8 € {4,5,6},
then we are done, because the obtained colouring can be extended. It follows
there is an alternating (1, 3)-path from y; to yg, for each § € {4,5,6}. Thus
C(y1) ={2,2,4,5,6}. We recolour y; with 3 and y with 4. We obtain an acyclic
6-colouring that can be extended. 0O

Claim 3. G contains no vertex of degree 5 adjacent to at least two vertices of
degree 3.

Proof. Assume that there is a vertex = of degree 5 adjacent to vertices y and
z, both of degree 3. Let G’ = G — xy. From the fact that G is a minimal
counterexample it follows G’ has an acyclic 6-colouring c¢. We claim that we
can extend this colouring. To this end, we consider two cases. Let y1,y2 be the
neighbours of y in G’.

Case 1. Let c(z) # c(y), w.lo.g., c(z) = 1,c(y) = 2. We cannot extend
the colouring c¢ only if there is an alternating (1,2)-path from x to y. Hence,
1€ C(y),2 € C(z). We may assume that this path passes through y;. We need
to consider two subcases.

Subcase 1.1. Assume C(y) = {1,3}. Observe that we can recolour y with
any colour a € {4,5,6} and what we obtain is again an acyclic 6-colouring of
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G’. If any of these colourings can be extended, then we are done. Otherwise,
for each o € {4,5,6} there is an alternating (1, a)-path from z to y. Thus
C(z) = {2,4,5,6}. Now we focus on the vertex z. If ¢(z) # c(y), then we first
recolour y with ¢(z). (It can be always done, since c(z) € {2,4,5,6}.) Now
¢(z) = c(y). For each a € {2,4,5,6} there is an alternating (1, a)-path from z to
y, thus C(z) contains 1 at least twice. We try to recolour x with 3. It is easy to
see that we obtain an acyclic 6-colouring of G’. If we can extend this colouring,
then we are done. Otherwise, there is an alternating (3, ¢(y))-path from z to y.
Thus, C(z) = {1,1,3}. We choose any colour 5 € {2,4,5,6}, § # c(y), and we
recolour y with 8,  with ¢(y) and z with 3, obtaining an acyclic 6-colouring of
G’ that can be extended.

Subcase 1.2. Let C(y) = {1,1}. We start with an easy observation that plays
an important role in the rest of the proof. Recall that there is an alternating
(1,2)-path from x to y. If there were two (or more) such paths, we would have a
bichromatic (1,2)-cycle in ¢, what is impossible, since the colouring ¢ is acyclic.
Thus we have the following

Observation 3. There is exactly one alternating (1,2)-path from x to y.

We try to recolour y with a colour o € {3,4,5,6}. If any of the obtained colour-
ings is acyclic and can be extended, then we are done. Hence we may assume
that either we cannot recolour y with any such « (because the obtained colour-
ing is not acyclic) or we cannot extend this colouring. It follows that for any
colour o € {3,4,5,6} there must be an alternating (1, a)-path from z to y or an
alternating (1, «)-path from y; to y2 (or both). According to this, there are five
situations which may occur.

Subcase 1.2.1. Assume that for each o € {3,4,5,6} there is an alternating
(1, a)-path from z to y. Thus C(x) must contain colours 2,3,4,5 and 6. This is
impossible, since dgr(x) = 4.

Subcase 1.2.2. For exactly three colours a from the set {3,4,5,6} we have
an alternating (1, «)-path from x to y. It follows C(z) contains four distinct
colours. We may recolour x with 8 € {3,4,5,6}, 5 ¢ C(x) and obtain an acyclic
6-colouring that can be extended.

Subcase 1.2.3. We have an alternating (1, a)-path from x to y only for two
colours from {3,4,5,6}, say for 3 and 4. Thus there are alternating (1,5)- and
(1,6)-paths from y; to y2. Hence C(y1) ={2,2,5,6,5}. If 8 =3 (or 5 =4), then
we recolour y; with 4 (or with 3). Observation 3 yields there is no alternating
(1,2)-path from x to y, hence we can extend the obtained colouring. Assume
g € {2,5,6}. It follows that both an alternating (1,3)-path and an alternating
(1,4)-path from x to y must pass through y. Hence, C(y2) = {2,3,4,5,6}. We
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recolour ys with 2 and y with 3. Clearly, we obtain an acyclic 6-colouring that
can be extended.

Subcase 1.2.4. There is only one alternating (1, «)-path from z to y, where
a € {3,4,5,6}. W.lLo.g., we may assume « = 3. Hence, C(y1) = {2,2,4,5,6}.
We recolour y; with 3. Observation 3 yields the obtained acyclic 6-colouring can
be extended.

Subcase 1.2.5. Finally, assume that we have all alternating (1, a)-paths from
y1 to yo, for each o € {3,4, 5,6}, but this is clearly impossible, because d(y;) < 5.

Case 2. Assume c(x) = c(y), w.lo.g., ¢(x) = 1 = ¢(y). If we can recolour

y with any colour from the set {2,...,6} and obtain an acyclic 6-colouring of
G’, then we are done, since we get the situation considered in Case 1. Such a
recolouring is impossible only if ¢(y1) = ¢(y2) = «, where a € {2,...,6}, and

for each colour 8 € {2,...,6}, 8 # «, there is an alternating («, 5)-path from y;
to yo. For simplicity, we assume o = 2. Thus, C(y1) = C(y2) = {1,3,4,5,6}.
Assume for a moment that there exists a colour 5’ € {3,4,5,6}, 8’ ¢ C(z). Then
we can recolour y; with 1, y with 8’ and we are done, because the obtained
colouring can be extended. Hence C(z) = {3,4,5,6}. We focus on z. W.lLo.g.,
¢(z) = 3. We recolour y; with 1, y with 3. It is obvious that we obtain an
acyclic 6-colouring of G'. We cannot extend this colouring only if there is an
alternating (1,3)-path. Hence 1 € C(z). In this case we recolour x with 2. If
we still cannot extend the colouring, then there is an alternating (2,3)-path. It
follows C'(z) = {1,1,2}. We recolour z with 4, x with 3, y with 4 and y; with 1.
We obtain an acyclic 6-colouring of G’ that can be extended. 0

To finish the proof it is enough to observe that Claim 1 implies G satisfies the
assumptions of Lemma 2. Hence G contains (A1) or (A2), but by Claims 2 and
3 this is impossible. [

3. CONCLUDING REMARKS

We have proved that any graph with maximum degree at most 5 and with maxi-
mum average degree at most 4 has an acyclic 6-colouring. Now we indicate that
there are graphs that satisfy these three conditions. For example, a graph Gy
presented in Figure 2. It is easy to check that A(G;) = 5 and Mad(Gp) = 4.
Hence x,(G1) < 6, by Theorem 1. We prove that G; does not have any acyclic
5-colouring. To this end, we first consider a graph Gy (see Figure 1). Let the
vertices of Gy be denoted as in Figure 1. It is easy to see that x4(Go) = 5. More-
over, in any acyclic 5-colouring of Gy, there is exactly one index i € {1, 2,3}, such
that both x; and y; have the same colour (w.l.o.g., i = 1), and all other vertices
have distinct colours (see Figure 1). Now let us try to extend this colouring to
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Y1

1

Y3 Y2

Figure 1. Graph Gy. Figure 2. Graph Gj.

an acyclic 5-colouring of G;. We focus on z;. Clearly, z; cannot be coloured
with the same colour as y;. Furthermore, we cannot use any of the other four
colours, because we create a bichromatic cycle of length 4. The fact that ¢ was an
arbitrary acyclic 5-colouring of Gy implies x,(G1) > 6. Hence, xq(G1) = 6 (its
acyclic 6-colouring is presented in Figure 2). There are also other graphs satisfy-
ing the above mentioned conditions, for instance, the graph presented in Figure
3. Nevertheless, for all such graphs, which we know, their maximum average
degree equals 4. We conclude with the following problem: Are there graphs with
maximum degree 5, acyclic chromatic number 6 and maximum average degree
less than 47

Figure 3. Graph G satisfying A(G2) = 5, Mad(G2) = 4 and x,(G2) = 6.
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