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Abstract

A vertex-colored graph is rainbow vertex-connected if any two vertices
are connected by a path whose internal vertices have distinct colors. The
rainbow vertex-connection of a connected graph G, denoted by rvc(G), is the
smallest number of colors that are needed in order to make G rainbow vertex-
connected. It was proved that ifG is a graph of order n with minimum degree
δ, then rvc(G) < 11n/δ. In this paper, we show that rvc(G) ≤ 3n/(δ+1)+5
for δ ≥

√
n− 1 − 1 and n ≥ 290, while rvc(G) ≤ 4n/(δ + 1) + 5 for 16 ≤

δ ≤
√
n− 1 − 2 and rvc(G) ≤ 4n/(δ + 1) + C(δ) for 6 ≤ δ ≤ 15, where

C(δ) = e
3 log(δ3+2δ2+3)−3(log 3−1)

δ−3 − 2. We also prove that rvc(G) ≤ 3n/4 − 2
for δ = 3, rvc(G) ≤ 3n/5 − 8/5 for δ = 4 and rvc(G) ≤ n/2 − 2 for
δ = 5. Moreover, an example constructed by Caro et al. shows that when
δ ≥

√
n− 1−1 and δ = 3, 4, 5, our bounds are seen to be tight up to additive

constants.
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1. Introduction

All graphs considered in this paper are simple, finite and undirected. We follow
the notation and terminology of Bondy and Murty [2]. An edge-colored graph is
rainbow connected if any two vertices are connected by a path whose edges have
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distinct colors. Obviously, if G is rainbow connected, then it is also connected.
This concept of rainbow connection in graphs was introduced by Chartrand et al.

in [6]. The rainbow connection number of a connected graph G, denoted by
rc(G), is the smallest number of colors that are needed in order to make G
rainbow connected. Observe that diam(G) ≤ rc(G) ≤ n− 1. It is easy to verify
that rc(G) = 1 if and only if G is a complete graph, that rc(G) = n − 1 if and
only if G is a tree. It was shown that computing the rainbow connection number
of an arbitrary graph is NP-hard [4]. There are some approaches to study the
bounds of rc(G), we refer to [3, 5, 10, 13].

In [10], Krivelevich and Yuster proposed the concept of rainbow vertex-
connection. A vertex-colored graph is rainbow vertex-connected if any two vertices
are connected by a path whose internal vertices have distinct colors. The rainbow
vertex-connection of a connected graph G, denoted by rvc(G), is the smallest
number of colors that are needed in order to make G rainbow vertex-connected.
An easy observation is that if G is of order n then rvc(G) ≤ n−2 and rvc(G) = 0
if and only if G is a complete graph. Notice that rvc(G) ≥ diam(G) − 1 with
equality if the diameter is 1 or 2. For rainbow connection and rainbow vertex-
connection, some examples are given to show that there is no upper bound for
one of parameters in terms of the other in [10]. It was also shown that computing
the rainbow vertex-connection number of an arbitrary graph is NP-hard [7].

As natural combinatorial concepts, rainbow connection and rainbow vertex-
connection attract many attentions of the researchers. Besides its theoretical
interest, the rainbow connection can also find applications in networking prob-
lems. Actually, these new concepts come from the communication of information
between agencies of government. Suppose we want to route messages in a cellular
network in such a way that each link on the route between two vertices is assigned
with a distinct channel. The minimum number of channels that we have to use,
is exactly the rainbow connection of the underlying graph. For more details on
various rainbow connections we refer the reader to a new book [11].

Krivelevich and Yuster [10] proved that if G is a graph with n vertices and
minimum degree δ, then rvc(G) < 11n/δ. In this paper, by the similar method
of [10], we will improve this bound for given order n and minimum degree δ. We
will show that rvc(G) ≤ 3n/(δ + 1) + 5 for δ ≥

√
n− 1 − 1 and n ≥ 290, while

rvc(G) ≤ 4n/(δ+1)+5 for 16 ≤ δ ≤
√
n− 1−2 and rvc(G) ≤ 4n/(δ+1)+C(δ)

for 6 ≤ δ ≤ 15, where C(δ) = e
3 log(δ3+2δ2+3)−3(log 3−1)

δ−3 − 2. We also prove that
rvc(G) ≤ 3n/4−2 for δ = 3, rvc(G) ≤ 3n/5−8/5 for δ = 4 and rvc(G) ≤ n/2−2
for δ = 5.

Moreover, an example shows that when δ ≥
√
n− 1 − 1 and δ = 3, 4, 5,

our bounds are seen to be tight up to additive factors. To see this, we recall
the graph constructed by Caro et al. [3], which was used to interpret the upper
bound of rainbow connection rc(G). A connected n-vertex graphH is constructed
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as follows. Take m copies of a complete graph Kδ+1, denoted X1, . . . , Xm and
label the vertices of Xi with xi,1, . . . , xi,δ+1. Take two copies of Kδ+2, denoted
X0, Xm+1 and similarly label their vertices. Now, connect xi,2 with xi+1,1 for
i = 0, . . . ,m with an edge, and delete the edges xi,1xi,2 for i = 0, . . . ,m + 1.
Observe that the obtained graph H has n = (m+2)(δ+1)+2 vertices, minimum
degree δ and diameter 3n

δ+1 − δ+7
δ+1 . Therefore, the upper bound of rvc(G) cannot

be improved below 3n
δ+1 − δ+7

δ+1 − 1 = 3n−6
δ+1 − 2.

2. rvc(G) and Minimum Degree

Let G(n, δ) be the class of simple connected n-vertex graphs with minimum degree
δ. Let ℓ(n, δ) be the maximum value of m such that every G ∈ G(n, δ) has a
spanning tree with at least m leaves. We can obtain a trivial upper bound for
rvc(G).

Lemma 1. A connected graph G of order n with maximum degree ∆(G) has

rvc(G) ≤ n− ℓ(n, δ) and rvc(G) ≤ n−∆(G).

Proof. It is obvious that rvc(G) ≤ n− ℓ(n, δ). For a connected graph G of order
n with maximum degree ∆(G) = k, a spanning tree T of G grown from a vertex
v with degree k has maximum degree ∆(T ) = k. It deduces that T has at least
k leaves. Thus, rvc(G) ≤ n−∆(G) holds.

Note that finding the maximum number of leaves in a spanning tree of G is NP-
hard. Linial and Sturtevant (unpublished) [12] proved that ℓ(n, 3) ≥ n/4+2. For
δ = 4, the optimal bound ℓ(n, 4) ≥ 2/5n+ 8/5 is proved in [8] and in [9]. In [8],
it is also proved that ℓ(n, 5) ≥ n/2+ 2. Indeed, Kleitman and West in [9] proved
that ℓ(n, δ) ≥ (1 − b ln δ/δ)n for large δ, where b is any constant exceeding 2.5.
Hence, the following theorem is obvious.

Theorem 2. For a connected graph G of order n with minimum degree δ, rvc(G)
≤ 3n/4 − 2 for δ = 3, rvc(G) ≤ 3n/5 − 8/5 for δ = 4 and rvc(G) ≤ n/2 − 2
for δ = 5. For sufficiently large δ, rvc(G) ≤ (b ln δ)n/δ, where b is any constant

exceeding 2.5.

Using the similar proof methods as [10], we will prove the following theorem by
constructing a connected (δ/3)-strong 2-step dominating set S whose size is at
most 3n/(δ + 1)− 2.

Theorem 3. A connected graph G of order n with minimum degree δ has rvc(G)
≤ 3n/(δ+1)+ 5 for δ ≥

√
n− 1− 1 and n ≥ 290, while rvc(G) ≤ 4n/(δ+1)+ 5

for 16 ≤ δ ≤
√
n− 1− 2 and rvc(G) ≤ 4n/(δ + 1) + C(δ) for 6 ≤ δ ≤ 15, where

C(δ) = e
3 log(δ3+2δ2+3)−3(log 3−1)

δ−3 − 2.
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Now we state some lemmas that are needed to prove Theorem 3. The first lemma
is from [10].

Lemma 4. If G is a connected graph with minimum degree δ, then it has a

connected spanning subgraph with minimum degree δ and with less than n(δ +
1/(δ + 1)) edges.

A set of vertices S of a graph G is called a 2-step dominating set, if every vertex
of V (G) \ S has either a neighbor in S or a common neighbor with a vertex in
S. In [10], the authors introduced a special type of 2-step dominating set. A
2-step dominating set is k-strong, if every vertex that is not dominated by it has
at least k neighbors that are dominated by it. We call a 2-step dominating set
S is connected, if the subgraph induced by S connected. Similarly, we can define
the concept of connected k-strong 2-step dominating set. Motivated by the proof
methods used in [5], we can get the following result.

Lemma 5. If G is a graph of order n with minimum degree δ ≥ 2, then G has a

connected (δ/3)-strong 2-step dominating set S whose size is at most 3n/(δ+1)−2.

Proof. For any T ⊆ V (G), denote by Nk(T ) the set of all vertices with distance
exactly k from T . We construct a connected (δ/3)-strong 2-step dominating set
S as follows:

Procedure 1. Initialize S′ = {u} for some u ∈ V (G). As long asN3(S′) 6= ∅,
take a vertex v ∈ N3(S′) and add vertices v, x1, x2 to S′, where vx2x1x0 is a
shortest path from v to S′ and x0 ∈ S′.

Procedure 2. Initialize S = S′ obtained from Procedure 1. As long as there
exists a vertex v ∈ N2(S) such that |N(v)∩N2(S)| ≥ 2δ/3+1, add vertices v, y1
to S, where vy1y0 is a shortest path from v to S and y0 ∈ S.

Clearly S′ remains connected after every iteration in Procedure 1. Therefore,
when Procedure 1 ends, S′ is a connected 2-step dominating set. Let k1 be
the number of iterations executed in Procedure 1. Observe that when a new
vertex from N3(S′) is added to S′, |S′ ∪ N1(S′)| increases by at least δ + 1 in

each iteration. Thus, we have k1 + 1 ≤ |S′∪N1(S′)|
δ+1 = n−|N2(S′)|

δ+1 . Furthermore,

|S′| = 3k1 + 1 ≤ 3(n−|N2(S′)|)
δ+1 − 2 since three more vertices are added in each

iteration.

Notice that S also remains connected after every iteration in Procedure 2.
When Procedure 2 ends, each v ∈ N2(S) has at most 2δ/3 neighbors in N2(S),
i.e., has at least δ/3 neighbors in N1(S), so S is a connected (δ/3)-strong 2-step
dominating set. Let k2 be the number of iterations executed in Procedure 2.
Observe that when a new vertex from N2(S) is added to S, |N2(S)| reduces
by at least 2δ/3 + 2 in each iteration. Thus, we have k2 ≤ |N2(S′)|

2δ/3+2 = 3|N2(S′)|
2δ+6 .



On the Rainbow Vertex-connection 311

Furthermore,

|S| = |S′|+ 2k2 ≤
3
(

n− |N2(S′)|
)

δ + 1
− 2 +

6|N2(S′)|
2δ + 6

<
3n

δ + 1
− 2.

Before proceeding, we first recall the Lovász Local Lemma [1].

The Lovász Local Lemma Let A1, A2, . . . , An be the events in an arbitrary

probability space. Suppose that each event Ai is mutually independent of a set of

all the other events Aj but at most d, and that P [Ai] ≤ p for all 1 ≤ i ≤ n. If

ep(d+ 1) < 1, then Pr[
∧n

i=1Ai] > 0.

Proof of Theorem 3. Suppose G is a connected graph of order n with mini-
mum degree δ. By Lemma 4, we may assume that G has less than n(δ+1/(δ+1))
edges. By Lemma 5, let S be a connected (δ/3)-strong 2-step dominating set of
G with at most 3n/(δ + 1)− 2 vertices.

Suppose δ ≥
√
n− 1− 1. Observe that each vertex v of N1(S) has less than

(δ + 1)2 neighbors in N2(S), since (δ + 1)2 ≥ n − 1 and v has another neighbor
in S. We assign colors to G as follows: distinct colors to each vertex of S and
seven new colors to vertices of N1(S) such that each vertex of N1(S) chooses its
color randomly and independently from all other vertices of N1(S). Hence, the
total number of colors we used is at most

|S|+ 7 ≤ 3n

δ + 1
− 2 + 7 =

3n

δ + 1
+ 5.

For each vertex u of N2(S), let Au be the event that all the neighbors of u in
N1(S), denoted by N1(u), are assigned at least two distinct colors. Now we
will prove Pr[Au] > 0 for each u ∈ N2(S). Notice that each vertex u ∈ N2(S)
has at least δ/3 neighbors in N1(S) since S is a connected (δ/3)-strong 2-step
dominating set of G. Therefore, we fix a set X(u) ⊂ N1(S) of neighbors of u
with |X(u)| = ⌈δ/3⌉. Let Bu be the event that all of the vertices in X(u) receive
the same color. Thus, Pr[Bu] ≤ 7−⌈δ/3⌉+1. As each vertex of N1(S) has less
than (δ + 1)2 neighbors in N2(S), we have that the event Bu is independent of
all other events Bv for v 6= u but at most ((δ + 1)2 − 1)⌈δ/3⌉ of them. Since for
δ ≥

√
n− 1− 1 and n ≥ 290,

e · 7 −⌈δ/3⌉+1
(

((δ + 1)2 − 1)⌈δ/3⌉+ 1
)

< 1,

by the Lovász Local Lemma, we have Pr[Au] > 0 for each u ∈ N2(S). Therefore,
for N1(S), there exists one coloring with seven colors such that every vertex of
N2(S) has at least two neighbors in N1(S) colored differently. It remains to show
that the graph G is rainbow vertex-connected. Let u, v be a pair of vertices such
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that u, v ∈ N2(S). If u and v have a common neighbor in N1(S), then we are
done. Denote by x1, y1 and x2, y2, respectively, the two neighbors of u and v in
N1(S) such that the colors of xi and yi are different for i = 1, 2. Without loss of
generality, suppose the colors of x1 and x2 are also different. Indeed, there exists
a required path between u and v: ux1w1Pw2x2v, where wi is the neighbor of xi
in S and P is the path connecting w1 and w2 in S. All other cases of u, v can be
checked easily.

From now on we assume δ ≤
√
n− 1 − 2. We partition N1(S) to two

subsets: D1 = {v ∈ N1(S) : v has at least (δ + 1)2 neighbors in N2(S)} and
D2 = N1(S) \D1. Since G has less than n(δ + 1/(δ + 1)) edges, we have |D1| ≤
n/(δ+1). Denote by L1 = {v ∈ N2(S) : v has at least one neighbor in D1} and
L2 = N2(S) \ L1.

Let C(δ) = 5 for 16 ≤ δ ≤
√
n− 1− 2 and C(δ) = e

3 log(δ3+2δ2+3)−3(log 3−1)
δ−3 − 2

for 6 ≤ δ ≤ 15. We assign colors to G as follows: distinct colors to each vertex
of S ∪ D1 and C(δ) + 2 new colors to vertices of D2 such that each vertex of
D2 chooses its color randomly and independently from all other vertices of D2.
Hence, the total number of colors we used is at most

|S|+ |D1|+ C(δ) + 2 ≤ 3n

δ + 1
− 2 +

n

δ + 1
+ C(δ) + 2 =

4n

δ + 1
+ C(δ).

For each vertex u of L2, let Au be the event that all the neighbors of u in D2

are assigned at least two distinct colors. Now we will prove Pr[Au] > 0 for
each u ∈ L2. Notice that each vertex u ∈ L2 has at least δ/3 neighbors in D1.
Therefore, we fix a set X(u) ⊂ D1 of neighbors of u with |X(u)| = ⌈δ/3⌉. Let
Bu be the event that all of the vertices in X(u) receive the same color. Thus,

Pr[Bu] ≤ (C(δ) + 2)−⌈δ/3⌉+1. As each vertex ofD2 has less than (δ+1)2 neighbors
in N2(S), we have that the event Bu is independent of all other events Bv for
v 6= u but at most ((δ + 1)2 − 1)⌈δ/3⌉ of them. Since

e · (C(δ) + 2)−⌈δ/3⌉+1 (((δ + 1)2 − 1)⌈δ/3⌉+ 1
)

< 1,

by the Lovász Local Lemma, we have Pr[Au] > 0 for each u ∈ L2. Therefore, for
D2, there exists one coloring with C(δ)+2 colors such that each vertex of L2 has
at least two neighbors in D2 colored differently.

Similarly, we can check that the graph G is also rainbow vertex-connected in
this case.

The proof is thus completed.
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