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Abstract

We formulate and prove a formula to compute the expected value of
the minimal random basis of an arbitrary finite matroid whose elements are
assigned weights which are independent and uniformly distributed on the
interval [0,1]. This method yields an exact formula in terms of the Tutte
polynomial. We give a simple formula to find the minimal random basis of
the projective geometry PG (r — 1, q).
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1. INTRODUCTION

This paper is devoted to compute the expected value of the minimal random
basis of an arbitrary finite matroid whose elements are assigned weights which
are independent and uniformly distributed on the interval [0,1]. Contents of
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this paper were originated in [10]. Our main aim is to give a counterpart of the
results of Steele and Fill given in [15] (see also [3]). We reformulate their method
to avoid such terms as vertex, component and similar ones. This enabled us to
transfer results from graph to matroids (W. Tutte: “If a theorem about graphs
can be expressed in terms of edges and circuits only it probably exemplifies a
more general theorem about matroids” — see Oxley [14]).

Note however that investigations of minimal basis of random graphs were
originated by Frieze in [4] (see also [1], [5] and [6]). In those papers authors
considered r-regular n-vertex graph G with random independent edge lengths,
each uniformly distributed on [0, 1]. They gave a formula of expected length of a
minimum spanning tree mst (G).

In Section 2 we give some basic definition and notation needed in the next
section of the paper. In Section 3 we find the expected value of the minimal basis
of matroid in general and estimation of its variance. In Section 4 we consider
more detailed the case of projective geometry PG (r —1,q). Using the Tutte
polynomial we are interested in finding the expected value of the minimal basis
and moreover its variance in a more effective way. We investigate the weight of
the first k£ elements of minimal basis.

2. DEFINITIONS AND NOTATIONS

Let M = (E,B) be a matroid on the finite ground set E (where |E| = m) with
collection of basis B. The rank of a set A C E is denoted p (A4).
The Tutte polynomial is expressed by the formula

(1) T(Miz,y) =Y (x—1)PE 7@ (y 1)l A=)
ACE

For any matroid M, if (z,y) belongs to the hyperbola (x — 1) (y — 1) = 1 then
(2) T (M;a,y) = ol (@ — 1)/ 71E

We refer the reader the chapter [2] written by Brylawski and Oxley as a source
of very important properties of Tutte polynomial for matroids.

Finite projective geometries in matroid theory are analogous to complete
graphs in graph theory. Let GF (q) be a Galois field, where ¢ is the power
of prime. Let V (r,q) be an r-dimensional vector space over GF (q). There
exists a omne-to-one correspondence between subspaces of projective geometry
PG (r —1,q) and subspaces of space V (r,q). “Directions” in V (r,q) are points
of the projective geometry PG (r — 1,q) of dimension r — 1. The monograph [7]
gives a detailed exposition of this subject, see also [13] or [16]. Let ¢ be fixed
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1
and n a nonnegative integer. We use the standard notation [n] = 1 T (see for

example [8] or [9]). The Gaussian coefficients are defined as follows:

[Z] @ =D =) (" =)

(" =1 (" —q)...(¢" —¢" ")
for1 <k <nand [ﬂ = 1. It is well known (see [7]) that the projective geometry

PG (r —1,q) has [r] elements and subspaces of rank-k.

r
k

Let {X.,e € E} be a family of independent random variables uniformly
distributed on the interval [0, 1]. The variable X, is the weight associated with
the element e € E. Let I(A) denote the indicator of a set A. The weight

Was (M) of the minimal basis MB (M) of the matroid M is given by

Wi = mi .
MB (M) min > | Xl (e € B)
eck

We define
et (M)={ee E: X, <t}

and
mb (M) =E (Wup (M)) .

3. MINIMAL Basis

The proof of Theorem 1 demonstrates that the method used by Steele and Fill
takes advantage only of matroidal properties of graphs such as rank and inde-
pendence.

Theorem 1. For an arbitrary finite matroid M
1
(3) Whis (M)ZT—/p(et(M))dt.
0
Proof. For an arbitrary set A and any x € [0, 1] the following equality holds
1
zl(a € A) = /]I(t <z,a € A)dt,
0

then we have
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Wus (M) = ) XI(e € MB (M))
ee M

L 1
=3 [ 1(t < Xe,e e MB(M))dt = — [ p(e (M))dt.
/ /

ec M 0

Now we rewrite the formula (1) to the form more usable in the next theorem
to express Wy (M) by Tutte polynomial. Let us denote n(A4) = p(F) — p (4).
Then from the formula (1) we get

1

T(Mizy) = g5 > =D (@-Dly-1)™Y
ACE
(4) o (1 ALy el ( | i
S N =2 B ) R (I YR U
(y—1) ACE( y ) (y)
Substituting y = ﬁ and =1+ %et, and p = % and 1—p= % into
(4) we get

5) T(Miz,y) = <1> <1>m_r I (1l )

p L=p ACE

Theorem 2. For an arbitrary finite matroid M

S
(6) mb(M)E(WMBw»jlppTng’f’llp)) dp
0 '577

1—p

and

(7)

1 1
Var (Wars (M)) <0/1<1pp>2T:<§4.71p711p>) dp + 2mb (M) — (mb (M))?,
'p’l-p

where T, (x,y) denotes the partial derivative of T (x,y) with respect to x.
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Proof. The moment generating function for the random variable 7 (e, (M)) is
determined by the formula

o(t)=E (etmep(M))) ,
Hence

(8) e(t) = Z plAl (1 — pymlAl gin(A),

ACE

Comparing (8) with (5) we obtain
., 1 1
p(t)=p"(1-p)" T<M 1+ ppt1>-

To evaluate E (1 (e, (M))) we calculate ¢’ (¢) |¢=o.

Substituting ¢ = 0 we get

E (1 (e0 (M)) A ’%’111’)
p

pT<’

We now turn to the formula (3) and we get

ﬁ

1 1
1 1 T:l? ( N 1 >
E(Wyp (M / P P dp,
P o)
0 )
p’l-p
which gives (6).

To estimate Var (Wysp (M)) we shall first calculate E (n? (e, (M))).

—_

1_p>2 Taca;(
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Therefore

The formula (9) gives (7), then we obtain the assertion. |

The point (1 p) belongs to the hyperbola (x — 1) (y — 1) = 1. Then applying

equality (2) to (6) and (7), we obtain a following version of Theorem 2.

Theorem 3. For an arbitrary matroid M

(10) mb (M

O\H
E
E
=
A/
—_
<
s
~
|
=
QU
iS]

and
; | p\ )
Var (Wi (M) < (0 (E))”  p (E) 0/ a-p® (227 ap

b e
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to (2) we get

1
Proof. Substituting x = — and y = 1
-Dp

p
Bl /1 _ o\ PE)-IE|
()= () (5 e
We calculate the derivatives from (1):
T, (M) = 2E07 (s, — —L 37 p () (@ - 1P (1A
B x—1 B x—1 i
and
Tow (M;2,y)=—p (E) (z — 1) 2T (M;2,y) + p(E) (z — 1) T (M 2,9)
+(z — 1)*2 Z p(A) (z— 1)P(E)*P(A) (y — 1)|A\*P(A)
ACE
—(@=1)7"" 3" p(A) (p(B) = p(A)) (z—1)PE P (y—1)lAl=eld)
ACE
Therefore
Tow ()= 250 (0 (B)T (0,3~ 1)
e ® X o) a1y gy -
_ Z p(A) (z p(E)—p(A) (y — 1)|A|*P(A)
ACE
+2 (A (p(B) = p(A)) (w = 1D (y — 1) A0,

ACE
Since (z,y) belongs to the hyperbola (z — 1) (y — 1) = 1, then for y = 2/ (x — 1)

and after substitution x = — and easy computations we obtain

T< ;,11 ) _r (1292,212 (1;]9>p(E)_1
( p)

—~
[
K
/_\
ﬁ
~_
=
Dj
ﬂM
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and

(13)

e <1 ;p)_Q (1 ;p>p(E) ((p(E))2 (1—p) B _ (B (1 ;p)"’(m

Yo <1gp>_m| (2008-1) -3 o4y (1;’)_'14| )

Substituting (12) to (6) we get

o\
) mon=[{pE-a-0" T o () ) @
which gives (10). Substituting (13) to (7) we get

; . —p(E)
Vs () < [ 0-p)® <<p (B (1-p) ! p(B) (1 p)
0

p
~ 3 (4) (H’)_A (2 (E) - 1> + 3 p(ay <1—p)_A| dp
Ang p g Ang p
+2mb (M) — (mb (M))?,
which gives (11). |

The Tutte polynomial T (M;x,y) on the hyperbola (z — 1) (y — 1) = 1 is a func-
tion of x depending only on p (F) and |E|. This property is not shared by the
first derivative T, (M;x,y) as is shown by the following example.

4. THE CASE OF PROJECTIVE GEOMETRIES

Now, we consider more carefully the case where the matroids are projective ge-
ometries.

From Theorem 1 we obtain the exact value of expectation of minimal basis
of PG(r —1,q).

Corollary 4. For M = PG (r — 1,q)

(15) mb (M) :r—;km Zk: m (—1) ¢ o [klel.

=0t
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Proof. The expected value of the rank of a random subset of the projective
geometry is given by

r
r—1

_ZkH )16 p(b),

where P%) is the probability that M has the rank k. Since

k v
PO =3 [*] (-1 g 1 = gyt

=0t

E (p (M)) = TP(T‘) + (T _ 1) plr—1) [ :| (1 _p)[r]—[r—l] NI

(16)

(see [9], formula (5.1.6)) then using (16) we obtain after simple computations

O/E e Z’“HiH e

j=0

Lemma 5. Let M = PG (r —1,q). Then Tutte polynomials and its derivatives
have the form:

(17) T(M;z,y) =

r—1 r—j—1
7 (ym - jzoym u H (z=1)(y—1) - ql)) :

=0
(18)
1 r—1 T r—j—1 r—j—1 ‘
Ty (Msa,y) = rzymH Y- I (@-D@-1-4),
A= i
Tew (M;x —

(Mizy) = Zy u R (y—1)

(19) r—j—1
X H a:—l y—l)—qi),
[z#zk ?;él]

where

Aj={(k)):ke{0,....,r—j—1},1€{0,...,r—j—1},k #1}.
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Proof. The formula (17) was proved in [12]. By simple differentiation we have
formulas (18) and (19). |

If (x—1)(y—1) =1, then letting y = 2/ (z — 1) and = = % we have

S O >

J=0

Proposition 6. For M = PG(r —1,q),

and

1, (5 S a-p I (- a)
P pr(1—p) "

(1-p) i(l —p) U H _H_ (1—¢') dp
=0 Iz
S 1)

[r] =] +1

dp

—

)
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Var (WMB (M))
r—2 . ; i
1— r—1 — T r—j—1yyr—j—1 i
1 ) 2(52) S a-p VIS I 0 - a)

i#£l
p—r (1 _ p)r—[r}

dp

S N ' +2mb (M) — (mb (M))? .

Order the elements e1, e, ..., ey of PG(r—1,q) so that e; has weight Z;. Let
(Y1,Ys,...,Y,) be the subsequence of the sequence (Z1,Zs,...,Z,) such that
( ) — Z(n) and k; is the least index such that ey, ¢ o{ek,,€x,, ..., €xk_, }, where
(A) denotes the subspace spanned by A. Note that k1 = 1, kg =2and k; > i
for i > 3. We call the random variables Y7, Ys, ..., Y, the g-analogs of the order
statistics. Problem of limiting distribution of Yy, for r — oo was considered in
[11]. In this paper we restrict ourselves to a finite n.

Let .
COT B o N e N B )
P = nzlm_[2+2 [r]=n ) [r] = (-1 + 1)

be a probability that to find the minimal weight of the first k + 1 increaseable
ordered elements of basis in PG (r — 1,q) was chosen i,,_1 + 2 points. The first
factor determines a probability that successively chosen points belong to a space
which was generated by previous chosen points.

Laborious but routine calculations give the following theorem.

Theorem 7. Let Wy, denote a minimal weight of the first k + 1 elements of a
basis in PG (r —1,q). Then for k > 2

m) EZZm 1+25

m—1

EW), = EWj_1 + > H P
[1<11<22< <ip_1 ]
i1 <l-1,1=2,...k

besides EW, = EZ; + EZ>.
Note finally that EW,_; = mb (PG (r — 1,q)), where mb (PG (r — 1,q)) is calcu-
lated from (15) or (6).
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