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Abstract

To every graph (or digraph) A, there is an associated automorphism
group Aut(A). Frucht’s theorem asserts the converse association; that for
any finite group G there is a graph (or digraph) A for which Aut(A) ∼= G.

A new operation on digraphs was introduced recently as an aid in solving
certain questions regarding cancellation over the direct product of digraphs.
Given a digraph A, its factorial A! is certain digraph whose vertex set is the
permutations of V (A). The arc set E(A!) forms a group, and the loops form
a subgroup that is isomorphic to Aut(A). (So E(A!) can be regarded as an
extension of Aut(A).)

This note proves an analogue of Frucht’s theorem in which Aut(A) is
replaced by the group E(A!). Given any finite group G, we show that there
is a graph A for which E(A!) ∼= G.
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1. Introduction

We regard a digraph A is a binary relation E(A) on a finite vertex set V (A), that
is, a subset E(A) ⊆ V (A) × V (A). An ordered pair in E(A) is called an arc; it
is denoted as [x, y] and visualized as an arrow pointing from x to y. A reflexive
arc [x, x] is called a loop. A graph is a digraph that is symmetric (as a relation);
thus we view any edge xy in a graph as consisting of two arcs [x, y] and [y, x].
But in drawing a graph, we sometimes represent these two arcs as a single edge
(without an arrow) joining x to y.
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The degree of a vertex x of a digraph is the ordered pair (id(x), od(x)) of its in-
degree and out-degree. (We also use id to denote identity maps; the distinction
should always be clear from context.) For a graph, the in- and out-degrees of a
vertex are always equal; we call this common value the degree of the vertex.

Frucht’s theorem (see Theorem 5.6 of [1]) states that for any finite group G,
there is a graph whose automorphism group is isomorphic to G.

Recently a new group invariant of a digraph was introduced. Given a digraph
A, its factorial A! is a certain digraph whose vertices are the permutations of
V (A). (Its formal definition is given in Section 3 below.) The arc set E(A!)
forms a group, where the operation is pairwise multiplication of endpoints. In
fact (as we shall see) Aut(A) can be naturally identified with a subgroup of
E(A!). Thus E(A!) is an extension of Aut(A); it carries all the information of
the automorphism group, plus more.

Curiosity compels us to ask if an analogue of Frucht’s theorem holds for
E(A!). Given an arbitrary finite group G, is there a digraph (or graph) A for
which E(A!) ∼= G? This note gives an affirmative answer.

In what follows, we first sketch a proof of Frucht’s theorem (Though it is a
standard result, we will need to modify the standard construction slightly.) Next
we define the notion of the digraph factorial, and note that E(A!) is a group.
Finally, our main results are proved.

Although it is not an essential ingredient of this note, the idea of the direct
product of graphs may help the reader appreciate the significance of digraph
factorial. The direct product of two digraphs A and B is the digraph A×B whose
vertex set is the Cartesian product V (A) × V (B) and whose arcs are the pairs
[(x, y), (x′, y′)] with [x, x′] ∈ E(A) and [y, y′] ∈ E(B).

2. Frucht’s Theorem

We now briefly recall the proof of Frucht’s theorem, that to any finite group G
there is a graph A with Aut(A) ∼= G. Our approach and notation follows that
of [1], though our encoding of the arcs differs slightly, so that no vertex of A has
degree 1.

Given G, let ∆ = {h1, h2, . . . , hk} be a set of its generators. Form the Cayley
color graph D∆(G). This is a digraph whose vertices are the elements of G and
whose arcs have form [g, ghi], where g ∈ G. We view an arc of form [g, ghi] as
having color i.

There is a subgroup of Aut(D∆(G)) consisting of automorphisms that pre-
serve the colors of the arcs. Call this the group of color-preserving automorphisms.
It is easy to check that this group is precisely {ϕg : g ∈ G}, where ϕg(x) = gx,
and that it is isomorphic to G.
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Figure 1. Replace each arc of color i with a length-4 path supporting a tower of height i.

Next, convert digraph D∆(G) to a graph A by encoding its arcs as shown in Fig-
ure 1. Replace each arc [g, ghi] of color i with a path of length four, on which is
placed an asymmetric “tower” whose shorter side has height i. It is easy to con-
firm that Aut(A) is isomorphic to the group of color-preserving automorphisms
of D∆(G), that is, Aut(A) ∼= G.

Note that, so long as |G| 6= 2, no vertex of A has degree 1.

3. The Digraph Factorial

We now recall the factorial operation on digraphs, a construction that has ap-
peared in [2, 3, 4, 5] and [6]. Given a digraph A, we let SV (A) denote the symmetric
group on V (A), that is, the set of permutations of the vertices of A, the set of
bijections V (A) → V (A).

Definition. Given a digraph A, its factorial is another digraph, denoted as A!,
and defined on the vertex set V (A!) = SV (A). For the arcs, [α, β] ∈ E(A!)
provided that [x, y] ∈ E(A) ⇐⇒ [α(x), β(y)] ∈ E(A) for all pairs x, y ∈ V (A).

The definition implies that there is a loop at α ∈ V (A!) if and only if α is an
automorphism of A. In particular, E(A!) always contains the loop [id, id].

It is immediate that the arc set E(A!) is a group with identity [id, id] and
multiplication [α, β][γ, δ] = [αγ, βδ]. We also have [α, β]−1 = [α−1, β−1]. Observe
that Aut(A) embeds as a subgroup of E(A!), for it is the set of loops [α, α] of
E(A!). In this sense, E(A!) can be regarded as an extension of Aut(A).

Our first example explains the origins of the term “factorial.” Let K∗

n be the
complete (symmetric) graph with a loop at each vertex. Our definition yields
K∗

n!
∼= K∗

n!. Readers familiar with the direct product will recognize that

K∗

n!
∼= K∗

n!
∼= K∗

n ×K∗

n−1 ×K∗

n−2 × · · · ×K∗

3 ×K∗

2 ×K∗

1 .

Note that E(K∗

n!) consists of all elements [α, β] where α, β ∈ Sn, so we see that
E(K∗

n!) is the group product Sn ×Sn. (Here Sn is the symmetric group on the n
vertices of K∗

n.)
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The computation of E(K∗

n!) was easy, because every pair of vertices in K∗

n is an
arc, so the conditions in Definition 3 for [α, β] to be an arc cannot fail to hold.
For less obvious computations, it is helpful to keep in mind the following inter-
pretation of E(A!). Any arc [α, β] ∈ E(A!) can be regarded as a permutation of
the arcs of A, where [α, β]([x, y]) = [α(x), β(z)]. This permutation preserves in-
incidences and out-incidences in the following sense: Given two arcs [x, y], [x, z]
of A that have a common tail, [α, β] carries them to the two arcs [α(x), β(y)],
[α(x), β(z)] of A with a common tail. Given two arcs [x, y], [z, y] with a com-
mon tip, [α, β] carries them to the two arcs [α(x), β(y)], [α(z), β(y)] of A with a
common tip.

Bear in mind, however, that even if the tip of [x, y] meets the tail of [y, z],
then the arcs [α, β]([x, y]) and [α, β]([y, z]) need not meet; they can be far apart
in A. To illustrate these ideas, Figure 2 shows the effect of a typical [α, β] on the
arcs incident with a typical vertex z of A. Observe that for any vertex z of A,
the out-degrees of z and α(z) are the same, as are the in-degrees of z and β(z).

u

v

w

x

y

z

α(v)

α(w)

α(x)

β(z)

β(u)

β(w)

β(y)

α(z)

A A

Figure 2. Action of an arc [α, β] ∈ E(A!) on the neighborhood of a vertex z ∈ E(A).

By an alternating walk in A we mean a walk in which any two successive arcs
have opposite orientations. The above remarks imply that an arc [α, β] of A!,
viewed as a permutation of the arcs of A, maps alternating walks to alternating
walks. Figure 3 illustrates this. We will use this observation frequently.
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α(e)

β(f)
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Figure 3. An arc [α, β] ∈ E(A!) sends alternating walks to alternating walks.
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With the above remarks in mind, we can easily compute other factorials. Consider
the transitive tournament T3 on three vertices. Its in-degrees are distinct, as are
its out-degrees, so [α, β] ∈ E(T3!) if and only if α = id = β. Thus E(T3!) =
{[id, id]} is the trivial group.

This is illustrated in Figure 4 (using cycle notation for the permutations),
along with three other examples. The second line in the figure shows K2 and its
factorial K2!, which has two loops, forming a group that is isomorphic to Z/2Z.
The third part of the figure shows a graph A and its factorial; here the four arcs
form a group that is isomorphic to the Klein 4-group. For the directed cycle

−→
C3,

the reader can verify that its factorial is as shown, and that E(
−→
C3!) ∼= S3.

0 1 2
T3

id (02) (01) (12) (012) (021)
−→

T3!

0 1
K2

id (01)
K2!

0 1 2
A

id (02) (01) (12) (012) (021)
A!

0 1 2 −→

C3

id (02) (01) (12) (012) (021)
−→

C3!

Figure 4. Examples of digraphs (left) and their factorials (right).

We remark that if A is a graph (i.e. symmetric digraph), then A! is also a graph.
However, this fact is not necessary here, so the simple proof is omited.

We close this section with the briefest mention of one use of the factorial
operation. The cancellation problem for the direct product asks under what
conditions A × C ∼= B × C implies A ∼= B. Lovász [8] gives conditions on
C that guarantee this: it is necessary and sufficient that C does not admit a
homomorphism into a disjoint union of directed cycles. But it is also meaningful
to ask for conditions on A that guarantee cancellation. As proved in [6] (for
graphs) and [4] (for digraphs), the answer involves certain structural properties
of the factorial A!.

4. An Analogue of Frucht’s Theorem

We are now ready to prove our main result, an analogue of Frucht’s theorem
for the factorial. The proof makes frequent appeals to the remarks in Section 3,
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namely that an arc [α, β] of A! preserves alternating walks in A, that z and α(z)
have the same out-degree, and that z and β(z) have the same in-degree.

Theorem 1. For any finite group G, there is a graph A for which E(A!) ∼= G.

Proof. If G is trivial, then E(K1!) ∼= G; and if |G| = 2, then E(K2!) ∼= G.
Thus assume that |G| > 2. By Frucht’s theorem, there is a graph B for which
Aut(B) ∼= G. By our construction in Section 2 (combined with the fact |G| > 2),
we may assume that all vertices of B have degree greater than 1. Extend B to
a graph A as illustrated in Figure 5. Specifically, for each vertex x ∈ V (B), add
three new vertices x1, x2 and x3, as well as new arcs as indicated in Figure 5.
Observe that each xi has degree i in A, whereas each x has degree d > 3.

B

A

x
x2

x3

x1

Figure 5. Construction of A. Here G ∼= Aut(B) ∼= Aut(A) ∼= E(A!).

So G ∼= Aut(B). We prove the theorem by first arguing that Aut(B) ∼= Aut(A)
and then that Aut(A) ∼= E(A!).

Now, every vertex of B has degree greater than 3, but this is not so with
the added vertices. Thus any automorphism of A is stable on V (A) − V (B)
and therefore restricts to an automorphism of B. Thus, to prove Aut(B) ∼=
Aut(A), we just need to show that any automorphism of B extends to a unique
automorphism of A. Suppose ϕ ∈ Aut(B). Clearly we can extend ϕ to an
automorphism of A by declaring ϕ(xi) = zi for each i ∈ {1, 2, 3}, whenever
ϕ(x) = z. Let us write this as ϕ(xi) = ϕ(x)i. It should be equally clear from our
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construction (see Figure 5) that any extension of ϕ to A must satisfy ϕ(xi) =
ϕ(x)i. It follows that Aut(B) ∼= Aut(A).

Next we confirm that Aut(A) ∼= E(A!). Define a map Aut(A) → E(A!) as
α 7→ [α, α]. It is straightforward that this is an injective (group) homomorphism;
showing surjectivity will complete the proof. We just need to show that any arc
[α, β] ∈ E(A!) satisfies α = β. (That is, that E(A!) consists wholly of loops.)

Suppose [α, β] ∈ E(A!). We first show α(x) = β(x) for any x ∈ V (B). As a
map on arcs, [α, β] sends the alternating closed walk W = [x, x2], [x3, x2], [x3, x]
to an alternating walk W ′ = [α(x), β(x2)], [α(x3), β(x2)], [α(x3), β(x)], whose in-
ternal vertices have degrees 2 and 3, and whose end vertices have degrees greater
than 3. The construction of A dictates that W ′ must begin and end at the same
vertex of B, hence α(x) = β(x).

Next, for any x ∈ V (B), the vertex x1 has degree (1, 1) and is joined to x
by an alternating walk [x1, x3], [x, x3]. Then α(x1) must have out-degree 1, and
it is on an alternating walk [α(x1), β(x3)][α(x), β(x3)] joining α(x1) to α(x). By
construction of A, there is only one vertex that meets these conditions; it must
be that α(x1) = α(x)1. Similarly, β(x1) has in-degree 1 and is the first vertex of
an alternating walk [α(x3), β(x1)], [α(x3), β(x)] terminating at β(x) = α(x). As
above, we infer that β(x1) = β(x)1 = α(x)1 = α(x1), so α(x1) = β(x1) for all x.

Repeating this argument for x2 (but using out- and in-degrees 2, and walks of
length 1) we get α(x2) = β(x2) for all x; and for the same reason α(x3) = β(x3).
Thus we have shown α = β, and the proof is complete.

Let
−→
P2 denote the directed path on two vertices, that is, the digraph with vertex

set {0, 1} and arc set {[0, 1]}. We close with an auxiliary result that relates E(A!)
to the automorphism group of the direct product A×

−→
P2.

Proposition 2. If all vertices of a digraph A have positive in- and out-degrees,

then E(A!) ∼= Aut(A×
−→
P2).

Proof. Consider the vertices of A×
−→
P2. By the definition of the direct product,

those of form (x, 0) have positive out-degree and zero in-degree; and those of form
(x, 1) have zero out-degree and positive in-degree. Thus any automorphism of
A ×

−→
P2 permutes the vertices of the first kind, and permutes the vertices of the

second kind; but it sends no vertex of the first kind to the second, nor vice versa.
Thus any automorphism ϕ can be regarded as a pair ϕ = (α, β) of permutations
of V (A), where ϕ(x, 0) = (α(x), 0) and ϕ(x, 1) = (β(x), 1). Straightforward
applications of the definitions show that the map [α, β] 7→ (α, β) is the desired
isomorphism.
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