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Abstract

Given a graphG = (V,E) and a set Lv of admissible colors for each vertex
v ∈ V (termed the list at v), a list coloring of G is a (proper) vertex coloring
ϕ : V →

⋃
v∈V

Lv such that ϕ(v) ∈ Lv for all v ∈ V and ϕ(u) 6= ϕ(v) for all
uv ∈ E. If such a ϕ exists, G is said to be list colorable. The choice number

of G is the smallest natural number k for which G is list colorable whenever
each list contains at least k colors.

In this note we initiate the study of graphs in which the choice num-
ber equals the clique number or the chromatic number in every induced
subgraph. We call them choice-ω-perfect and choice-χ-perfect graphs, re-
spectively. The main result of the paper states that the square of every
cycle is choice-χ-perfect.
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1. Introduction

Based on the long-ago manuscript [15], in this note we initiate the study of some
hereditary classes of graphs that are defined by their list colorings in relation to
chromatic number and clique number. In flavor, these questions have strongly
been motivated by the theory of perfect graphs.

We begin with some basic definitions on list coloring. Let a graph G = (V,E)
be given together with a set Lv of admissible colors for each vertex v ∈ V . We call
Lv the list at v. A list coloring of G is a (proper) vertex coloring ϕ : V →

⋃
v∈V Lv

such that
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• ϕ(v) ∈ Lv for all v ∈ V ,

• ϕ(u) 6= ϕ(v) for all uv ∈ E.

If such a ϕ exists, G is said to be list colorable. A k-assignment is a collection of
lists such that |Lv| = k for all v ∈ V . If G is list colorable for all k-assignments, it
is said to be k-choosable. The choice number of G, also called the list chromatic

number of G, is the smallest natural number k for which G is k-choosable. We
denote it by χ

ℓ
(G) here1.

We also recall the following standard notation from the literature:

• ω(G) is the clique number (the largest number of mutually adjacent vertices
in G),

• χ(G) is the chromatic number (the smallest number of colors in a coloring
in which no two adjacent vertices have the same color),

• ∆(G) is the maximum vertex degree,

• col(G) is the coloring number2 (1 plus the largest minimum vertex degree
taken over all induced subgraphs of G).

In the theory of graph coloring, the following chain of inequalities is basic:

ω(G) ≤ χ(G) ≤ χ
ℓ
(G) ≤ col(G) ≤ ∆(G) + 1.(1)

Requiring equality at some points in (1) does not mean much structural restric-
tion. It is a substantial change, however, if equality is required for all induced
subgraphs of G, too. In this way, perfect graphs are defined in terms of the
equality χ = ω. Here we initiate analogous study in connection with χ

ℓ
= χ and

χ
ℓ
= ω.

Definition 1. We say that a graph G = (V,E) is

• choice-ω-perfect if χ
ℓ
(G′) = ω(G′) holds for all induced subgraphs G′ ⊆ G;

• choice-χ-perfect if χ
ℓ
(G′) = χ(G′) holds for all induced subgraphs G′ ⊆ G.

Problem 2. (i) Characterize choice-ω-perfect graphs.

(ii) Characterize choice-χ-perfect graphs.

1 A further standard notation is ch(G).
2 There are several equivalent definitions of col(G). If v1, . . . , vn is any ordering of the

vertices of G (where n = |V (G)|), let d−(vi) denote the number of vertices adjacent to vi in the
set {vj | 1 ≤ j < i}. Then col(G) = min

(

max1≤i≤n d−(vi) + 1
)

, where the minimum is taken
over all orderings of the vertex set. With another terminology, if G admits a vertex order such
that max1≤i≤n d−(vi) ≤ d, then it is called d-degenerate.
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At the current state of graph coloring theory, part (ii) of Problem 2 looks hope-
lessly difficult. It is not known whether all line graphs, or all claw-free graphs,
or all total graphs satisfy the equality χ

ℓ
= χ (see, e.g., [14] for the numerous

related references); and since these classes are induced-hereditary, in case of an
affirmative answer they would also be choice-χ-perfect. But perhaps part (i) will
be easier to solve, due to the structure of perfect graphs behind it.

Remark 3. Every choice-ω-perfect graph is perfect and also choice-χ-perfect.
Moreover, a perfect graph is choice-χ-perfect if and only if it is choice-ω-perfect.

1.1. Some known or ‘almost known’ results

Some theorems on list colorings of graphs, which were stated in the original papers
just in the form χ

ℓ
(G) = χ(G), can be directly translated to choice-perfectness,

due to the fact that the graph classes in question are induced-hereditary3. We
mention such results first. When the graphs involved in them are perfect, too,
then not only choice-χ-perfectness but also choice-ω-perfectness follows.

Theorem 4 (Rubin [4]). A connected bipartite graph is choice-χ-perfect, and

also choice-ω-perfect, if and only if the sequential removal of vertices of degree 1
yields a single vertex or an even cycle or a θ2,2,2s-graph, which means two vertices

joined by three internally disjoint paths of lengths 2, 2, and 2s, respectively (for
some integer s ≥ 1).

Theorem 5. Let G = L(H) be the line graph of a graph or multigraph H.

• (Galvin [6]). If H is a bipartite multigraph, then G is choice-ω-perfect.

• (Peterson, Woodall [13]). If H is a multigraph and G is perfect, then G is

choice-ω-perfect.

• (Woodall [20]). If H is a multicircuit, then G is choice-χ-perfect.

• (Juvan, Mohar, Thomas [12]). If H is a series-parallel graph, then G is

choice-χ-perfect.

Theorem 6 (Gravier, Maffray [8]). If G is perfect, claw-free (i.e., contains no

induced K1,3), and has ω(G) ≤ 3, then G is choice-ω-perfect.

We describe some further choice-perfect classes, which can be deduced shortly
from known results.

A graph is chordal (also called triangulated) if it contains no induced cycles
longer than 3.

3 A graphical property P, or the class G of graphs satisfying P, is called induced-hereditary

if G ∈ G implies G′ ∈ G for all induced subgraphs G′ ⊂ G. For an overview on the theory of
hereditary graph properties we refer to the survey [2].
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Proposition 7. Every chordal graph is choice-χ-perfect and also choice-ω-perfect.

Proof. Every chordal graph G satisfies the equality ω(G) = col(G), and induced
subgraphs of chordal graphs are chordal. Hence, the assertion follows by inequal-
ity (1).

Given a graph F , another graph G is called F -free if G contains no induced

subgraphs isomorphic to F . Complete multipartite graphs belong to the perfect
class of P4-free graphs.

Theorem 8. A complete multipartite graph is choice-χ-perfect, and equivalently

it is choice-ω-perfect, if and only if it is K3,3-free and K2,4-free.

Proof. Both K3,3 and K2,4 have choice number 3, hence they have to be ex-
cluded. Then, if some vertex class of (an induced subgraph of) a complete mul-
tipartite graph G has more than three vertices, all the other classes must be
singletons. Selecting a color for a vertex in a singleton class and deleting the
color from all the other lists, the assertion follows by induction for such graphs.
Otherwise, if all classes have at least two vertices, then either G ∼= K2,2,...,2 or
G ∼= K3,2,...,2. The equality χ

ℓ
= χ = ω holds in both of them; this was proved

by Erdős, Rubin and Taylor in [4] for the former and by Gravier and Maffray in
[7] for the latter.

We close this part with an observation in which not all graphs are perfect.

Proposition 9. Every unicyclic graph is choice-χ-perfect. In particular, all cy-

cles and all graphs of maximum degree 2 are choice-χ-perfect.

Proof. Let G be unicyclic and G′ an induced subgraph of G. Theorem 4 settles
all cases with χ(G′) = 2. For χ(G′) = 3 the successive removal vertices of degree
1 keeps both χ and χ

ℓ
unchanged, and reduces G′ to an odd cycle. The latter

has χ
ℓ
= χ = 3 by inequality (1).

1.2. Powers of cycles

The kth power of a graph G = (V,E) is obtained from G by inserting an edge
between any two vertices u, v ∈ V that are at distance at most k apart. (Multiple
edges are replaced with single ones.) Powers of paths are interval graphs (and
hence they are chordal), therefore it is easy to see that they are choice-χ-perfect
and also choice-ω-perfect. For powers of cycles, however, the analogous problem
looks quite hard. The main result of this note is the solution for k = 2, i.e.
squares of cycles, which we state in the following theorem and prove in Section 2.

Theorem 10. The graph C2
n is choice-χ-perfect for all n ≥ 3.
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Corollary 11. The graph C2
n is choice-ω-perfect if and only if it is perfect; that

is, precisely if n ≤ 6.

Proof. For n < 6 we have C2
n
∼= Kn, moreover C2

6
∼= 3K2 ; these graphs are

perfect. On the other hand, C2
7
∼= C7, and for n ≥ 8 one of the induced cy-

cles v1v3v5v7 . . . v2⌊n+1

2
⌋−1

and v1v3v4v6v7 . . . v2⌊n+1

2
⌋−1

is odd, showing that these

graphs are not perfect.

The total graph T (G) of a graph G = (V,E) has vertex set V ∪E, and two of its
vertices are adjacent if the corresponding vertices/edges in G are adjacent or in-
cident. That is, G and its line graph L(G) are vertex-disjoint induced subgraphs
of T (G), and the bipartite subgraph between them represents vertex-edge inci-
dences. The following result was proved not only in [15] but also independently
and simultaneously in the published paper [11] by Juvan, Mohar and Škrekovski.

Corollary 12. The total graph T (C3k) of C3k is 3-choosable.

Proof. Assuming Cn = v1v2 . . . vn with edges ei = vivi+1 (where vn+1 = v1), we
see that T (Cn) is isomorphic to the square C2

2n of the cycle v1e1v2e2 . . . vnen.

The past of the present paper. In the preliminary version of Hilton and John-
snon’s paper [10], several questions were raised which we answered in the unpub-
lished manuscript [15]. It remained a rough draft only, being sufficiently detailed
to make sure that its results cited in [10] are valid, but not polished for a wider
distribution. As its title indicates, it dealt with two aspects of list colorings: the
rather irregular behavior of Hall number and the equalities χ

ℓ
= χ and χ

ℓ
= ω.

Later we published its theorems and further related results on Hall number in
an elaborated way in the papers [16] and [17]. During the past one and a half
decades, however, the other part of [15] that dealt with choice-perfect graphs
remained unpublished.

2. Choice-perfectness of Squares of Cycles

In this section we prove Theorem 10. In order to create a more transparent
structure, we split the proof into subsections. We note that the proof techniques
for the different cases are quite different.

2.1. The small cases 3 ≤ n ≤ 5

In these cases C2
n
∼= Kn, and also every induced subgraph of C2

n is a complete
graph. Since every Km satisfies χ(Km) = χ

ℓ
(Km) = m, the graph C2

n is choice-
χ-perfect for every n ≤ 5.

Hence, in the rest of the proof we assume that n > 5.
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2.2. Triangle-free subgraphs

Let H be a triangle-free induced subgraph of C2
n. Since the four neighbors of

each vertex of C2
n induce P4, we obtain that if v ∈ V (H) then at most two

neighbors of v are present in H. In other words, H has maximum degree 2.
Thus, all components of H are paths and/or cycles. Actually, if there is a cycle
component (and not a triangle, by assumption) then H itself is a cycle, but this
is unimportant in the present proof.

If H contains a component which is an odd cycle, then χ(H) = 3. Since H
has maximum degree 2, we have χ

ℓ
(H) ≤ 3 by inequality (1). On the other hand,

if all components of H are even cycles and paths, then χ
ℓ
(H) = 2 by [4]. Hence,

χ
ℓ
= χ holds in either case and therefore choice-χ-perfectness follows.

2.3. Cycles divisible by 3

Here we consider the square of the graph C3k = v1v2 . . . v3k, and interpret sub-
scripts modulo 3k. That is, for any j > 0, vertex v3k+j is the same as vj .

We first prove χ
ℓ
(C2

3k) = 3. This will imply χ
ℓ
(H) = χ(H) for all H ⊆ C2

3k

containing at least one triangle, whereas the choice-χ-perfectness of triangle-
free induced subgraphs H ⊂ C2

3k holds by the previous subsection. Those two
complementary facts will imply that C2

3k is choice-χ-perfect. As we cited above,
in the context of total colorings the equality χ

ℓ
(C2

6k) = 3 appeared also in the
paper by Juvan et al. [11]. Their argument is different; although, digging one
level deeper, the two proofs have a common root in the results of Alon and Tarsi
[1] that we shall apply further in a later subsection.

Consider the k = n/3 triangles vivi+1vi+2 for i = 3j + 1 with j = 0, 1, . . . ,
k − 1. They cover the vertex set and omitting their edges from C2

3k we obtain
the Hamiltonian cycle v1v3kv2v4v3v5v7v6v8v10 . . . v3k−3v3k−1v1 composed by the
concatenation of the segments v3jv3j+2v3j+4 with j = 0, 1, . . . , k− 1 (where v0 =
v3k). Consequently, χ

ℓ
(C2

3k) = 3 follows by the ‘Cycle-Plus-Triangles Theorem’
of Fleischner and Stiebitz [5].

2.4. The graph itself for n = 3k + 1 and n = 3k + 2

If n > 6 is not a multiple of 3, it is easily seen that χ(C2
n) = 4. Indeed, trying to

construct a proper vertex 3-coloring that starts with ϕ(vi) = i for i = 1, 2, 3 we
obtain that ϕ3k−1 = 2, ϕ(v3k) = 3, and ϕ(v3k+1) = 1 should hold. For n = 3k+1
this creates the monochromatic edge v1v3k+1 in color 1; and for n = 3k + 2 it
forces ϕ(v3k+2) = 2 = ϕ(v2), that is an edge in color 2. In either case we obtain
χ(C2

n) = 4.
The proof will be done if we show that χ

ℓ
(C2

n) = 4 holds for all n > 5 (which
now means n ≥ 7). One of the several possibilities is to consider the subgraph
H = C2

n − v1 − v5. The vertex order v4, v6, v7, v8, . . . , vn−1, vn, v2, v3 has the
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property that every vertex is preceded by at most two of its neighbors. Hence,
χ

ℓ
(H) ≤ col(H) ≤ 3 holds by inequality (1).

Let {Lvi | 1 ≤ i ≤ n} be any list assignment with lists of size 4 on the
vertices of C2

n. If v1 and v5 admit a common color, say c ∈ Lv1 ∩ Lv5 , we color
v1 and v5 with c, and remove c from the lists of all neighbors of v1 and v5. On
the other hand, if Lv1 ∩ Lv5 = ∅, then there exists a color c ∈ Lv1 \ (Lv3 ∪ Lv5)
or c ∈ Lv5 \ (Lv3 ∪ Lv1). We color one of v1 and v5 with c, choose any color
from the list of the other one, and remove these two colors from the lists of the
neighbors of v1 and v5. In either case, the removal of colors leaves H with at
least three colors in each list, because we never assign more than one color from
Lv3 to {v1, v5}. Thus, C

2
n is colorable from the lists Lvi (i = 1, . . . , n).

Remark 13. The removal of {v1, v5} is a particular case of the ‘List Reduction
Lemma’ proved by Voigt and the present author in [18]. It ensures that if X ⊂ V
is a set such that the edges meeting X form a 2-choosable graph, then from any
lists of size k one can choose colors for the vertices of X in such a way that,
for each v ∈ V \X, at most one color of Lv occurs on the neighbors of v in X.
Hence, if χ

ℓ
(G−X) < k, then χ

ℓ
(G) ≤ k. An alternative way to prove the upper

bound χ
ℓ
(C2

n) ≤ 4 for n > 5 is to observe that C2
n is 4-regular, and then apply

the list coloring analogue of Brooks’s theorem [4, 19] by which χ
ℓ
(G) ≤ ∆(G)

holds for every connected graph G other than an odd cycle or a complete graph.
Moreover, if n is even, then a stronger result is valid. Translating a theorem
of Juvan, Mohar and Škrekovski [11, Lemma 2.1] from the total graph of Cn/2

to the square of Cn, it follows that C2
n is list colorable whenever the vertices

v1, v3, . . . , vn−1 have lists of size 3 and v2, v4, . . . , vn have lists of size 4.

The preceding comment leads to the question—or better to say, to the group of
questions—how many lists can be shorter than χ

ℓ
under various side conditions,

in such a way that they still admit a list coloring. An extreme case is the class
of odd cycles where all lists can be allowed to have size 2, assuming that not all
are the same.

2.5. Proper induced subgraphs for n = 3k + 1

We assume that Cn = v1v2 . . . v3k+1 and consider the subgraph H = C2
n − v3k+1.

Now H is a chain of triangles vivi+1vi+2 (i = 1, . . . , k− 2) closed to a ‘cycle’ with
the edge v3kv1.

Let us orient the edges of H as follows: vi → vi+1 (i = 1, . . . , 3k − 1),
vi → vi+2 (i = 1, . . . , 3k − 2), v3k → v1. We denote by ~H the digraph obtained.
We are going to compare the numbers of even and odd directed paths from v3k
to vi in ~H (i = 1, . . . , 3k ; the last case i = 3k means a directed cycle, that is
oriented cyclically). By induction on i, the following facts can be observed:
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• For all i ≡ 1 (mod 3) there is precisely one more odd path from v3k to vi
than the number of even paths.

• For all i ≡ 2 (mod 3) there is precisely one more even path from v3k to vi
than the number of odd paths.

• For all i ≡ 0 (mod 3) the number of even and odd paths from v3k to vi is
exactly the same.

Indeed, there is just one odd path v3k → v1, just one even path v3k → v2, and
for i > 2 the vertex vi can be reached directly either from vi−2 or from vi−1 while
the parity of each path switches to opposite in one step. For subscripts divisible
by 3, the ‘one more odd path’ at vi−2 and the ‘one more even path’ at vi−1 cancel
each other, yielding equal number for odd and even paths; and every other vi
is preceded by two neighbors one of which counts the same number for odd and
even paths while the 1 surplus at the other neighbor switches to the opposite
parity of path length. (The exact numbers can be expressed from the Fibonacci
sequence as ⌊fi/2⌋ and ⌈fi/2⌉, where f1 = f2 = 1 and fi = fi−2+ fi−1 for i > 2.)

Applying the third case for i = 3k, and taking into account that ~H − v3kv1
contains no directed cycles, we see that the number of even and odd directed
cycles in ~H is the same.

With the terminology of [1], by an Eulerian subgraph of a digraph we mean
a subgraph such that each vertex has the same in- and out-degree. Note that
connectivity is not assumed here.

If an Eulerian subgraph of ~H does not contain the edge v3kv1, then v1 must
have out-degree 0 in it; this implies that v2, too, has out-degree 0; and so on, we
obtain that the subgraph is edgeless, and there is precisely one subgraph of this
kind.

On the other hand, if an Eulerian subgraph contains the edge v3kv1, then
v1 must have out-degree 1. This means the deletion of one edge, v1v2 or v1v3.
Should we delete v1v2, vertex v2 must have out-degree 0. Should we keep v1v2 and
delete v1v3, vertex v2 must have out-degree 1. In either case, v3 has in-degree
at most 1, which yields its out-degree to be 0 or 1. This property propagates
through all vertices and we obtain that in every Eulerian subgraph of ~H, each
vertex has in- and out-degree 0 or 1. It follows that these subgraphs containing
the edge v3kv1 are precisely the directed cycles of ~H. Thus, counting also the
edgeless subgraph, the number of Eulerian subgraphs of ~H with an even number
of edges is precisely one larger than the number of those with an odd number of
edges.

In [1], Alon and Tarsi proved the following theorem: If ~G is an orientation of
a graph G such that the numbers of even and odd Eulerian subgraphs in ~G are
not equal, then G is list colorable for every list assignment in which the list Lv of
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each vertex v is larger than the out-degree of v in ~G. By the observations above,
this theorem can be applied to ~H, which has maximum out-degree 2. Thus, we
obtain that χ

ℓ
(H) ≤ 3 holds.

Consequently, we have χ
ℓ
= χ = 3 for all proper induced subgraphs containing

at least one triangle. We have also seen that the equality χ
ℓ
= χ holds for all

triangle-free induced subgraphs. Thus, choice-χ-perfectness follows for n = 3k+1.

2.6. The case of n = 3k + 2

In this case it is not true that all proper induced subgraphs are 3-colorable. In-
deed, if we remove vertex v3k+2 and edge v1v3k+1, we obtain a uniquely 3-colorable
graph in which the 3-coloring requires to have the set {v3i+1 | 1 ≤ i ≤ k}
monochromatic. Thus, putting back the edge v1v3k+1 we obtain that χ(C2

3k+2
−

v3k+2) = 4 holds while the graph is of course 4-choosable.

As above, we also have χ
ℓ
(H) = χ(H) for all triangle-free induced subgraphs

H ⊂ C2
3k+2

. Hence, the proof will be done if we prove that every subgraph
obtained by deleting two vertices is 3-choosable.

Suppose that one of the deleted vertices is v4. Observe that deleting further
any one of the vertices v1, v2, v3, v5, v6, v7 we obtain a 2-degenerate graph. For
example, omitting v1 or v2, the degree of vertex v3 decreases to 2 and then in
the sequence v3, v4, v5, . . . each vertex is followed by at most two of its neighbors.
Similarly, the sequence v4, v5, v6, . . . has the same property if v3 is removed. Since
every 2-degenerate graph is 3-choosable by (1), the proof is done in these cases.

Suppose that v4 is deleted with some further vertex vj , where 8 ≤ j ≤ 3k+2.
Then the graph H obtained consists of two chains of triangles connected by the
two disjoint edges v3v5 and vj−1vj+1. (For j = 3k+2, the latter edge is v3k+1v1.)
To simplify work with subscripts we assume that the two chains are induced by
V ′ := {va, va+1, . . . , vb} and V ′′ := {vc, vc+1, . . . , vd}. Here a = 5, b = j − 1,
c = j + 1, and d = 3k + 5; the latter means the same as d = 3. (Possibly also
c = 3k + 3 holds, which means c = 1.)

Consider any 3-assignment on the vertices ofH. We first investigate colorings
of the subgraph H ′ induced by V ′. Assume that the list of va and vb is La =
{a1, a2, a3} and Lb = {b1, b2, b3}, respectively. We construct the bipartite graph
B′ on the vertex set La ∪ Lb in which aibj is an edge if and only if H ′ admits a
list coloring with ϕ(va) = ai and ϕ(vb) = bj . Both sequences va, va+1, . . . , vb and
vb, vb−1, . . . , va have the property that each vertex is preceded by at most two of
its neighbors. Hence, the vertices of H ′ can be colored from their lists in either
of these orders. It follows that B′ has no isolated vertices.

Then, either B′ has three mutually disjoint edges, or some vertex of Lb has
degree at least two in B′. The latter can be seen by taking a maximum matching
M ⊂ B′ and then choosing an edge e that covers a vertex of La not contained
in the edges of M (assuming that |M | ≤ 2). The degree of the vertex e ∩ Lb is
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greater than one in B′.
In the same way, we can construct the bipartite graph B′′ on the vertex set

Lc ∪Ld, whose edges represent the possible ordered pairs (ϕ(vc), ϕ(vd)) of colors
in the list colorings of H ′′. Also here, either B′′ contains three disjoint edges or
some vertex of Ld has degree at least two in B′′.

Suppose that B′ contains a matching M of three edges. Then take any
list coloring ϕ′′ of H ′′. From the three edges of M , select one aibj such that
bj 6= ϕ′′(vc) and ai 6= ϕ′′(vd). By the definition of B′, there exists a list coloring
ϕ′ of H ′ such that ϕ(va) = ai and ϕ(vb) = bj . Then (ϕ′, ϕ′′) is a list coloring of
H. Analogously, a list coloring of H can be obtained if B′′ has a matching of size
three.

If both B′ and B′′ have matching number at most two, we begin with a vertex
of degree greater than one in Lb. We may assume (by renumbering of colors if
necessary) that a1b1 and a2b1 are edges of B′. Since also some vertex of Ld has
degree greater than one, there is an edge cidj of B′′ such that ci 6= b1. Then one
of a1 and a2 is surely different from dj . Assuming that a1 6= dj , we can take list
colorings ϕ′ of H ′ and ϕ′′ of H ′′ such that ϕ′(va) = a1, ϕ

′(vb) = b1, ϕ
′′(vc) = ci,

ϕ′′(vd) = dj . Then (ϕ′, ϕ′′) is a list coloring of H.

Hence, the proof of the theorem is completed.

3. Some Further Aspects of ‘Perfectness’

If µ and ξ are any quantitative characteristics defined for all graphs (or for the
members of a reasonably rich graph class), such that µ(G) ≤ ξ(G) is valid for all
graphs G, then it is natural to raise the problem of characterizing those G for
which µ(G′) = ξ(G′) holds for every induced subgraph G′ ⊆ G. The theory of
perfect graphs is the success story concerning µ = ω and ξ = χ.

As a game version of χ
ℓ
= χ, it would be interesting to study the relation

between game chromatic number and its list coloring analogue introduced by
Borowiecki et al. in [3]. Similar questions arise in connection with pairs of graph
coloring invariants µ and ξ provided that µ(G) = ξ(G) hereditarily holds for an
infinite family of graphs G.

We note, however, that some pairs of functions do not really seem to offer
comparisons of much interest. An example is the so-called Hall number, which is
interesting on its own right as a lower bound on χ

ℓ
. Let G = (V,E) be a graph,

together with lists Lv of allowed colors for its vertices v ∈ V . For any X ⊆ V
and any color c ∈

⋃
v∈V Lv we consider the independence number α(X, c) of the

subgraph of G induced by the set {v ∈ X | c ∈ Lv}. A necessary condition for
the list colorability of G is that

∑
c
α(X, c) ≥ |X| for all X ⊆ V(2)
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should hold. The Hall number of G, denoted by h(G), is defined as the smallest
positive integer k such that G is list colorable whenever (2) is satisfied and |Lv| ≥
k holds for all v ∈ V .

The term ‘Hall number’ originates from the fact that if G is a complete graph
then (2) is equivalent to the classical Hall Condition. This implies h(Kn) = 1
for all n ≥ 1, therefore the Hall number can be much smaller than χ

ℓ
, even on

choice-ω-perfect graphs. The characterization theorem by Hilton and Johnson in
[9] states that h(G) = 1 holds if and only if each block of G is a complete graph.
In particular, h(C2k) = 2 = χ

ℓ
(C2k) holds for all even cycles, but h(G) = 1 <

2 = χ
ℓ
(G) for all G $ C2k with at least one edge. Hence, the equality χ

ℓ
= h is

very far from being hereditary.
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