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Abstract

Let G be a simple graph. An IE-total coloring f of G is a coloring of the
vertices and edges of G so that no two adjacent vertices receive the same
color. Let C'(u) be the set of colors of vertex u and edges incident to w under
f. For an IE-total coloring f of G using k colors, if C(u) # C(v) for any
two different vertices u and v of G, then f is called a k-vertex-distinguishing
IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum
number of colors required for a VDIET coloring of G is denoted by x4 (G),
and is called vertex-distinguishing IE-total chromatic number or the VDIET
chromatic number of G for short. VDIET colorings of complete bipartite
graphs K, ,(m < n) are discussed in this paper. Particularly, the VDIET
chromatic numbers of K,, (1 < m < 7,m < n) as well as complete graphs
K,, are obtained.
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For an edge coloring (proper or not) of a graph G and a vertex v of G, denote by
S(v) the set of colors used to color the edges incident to v.

A proper edge coloring of a graph G is said to be vertez-distinguishing if for
any u,v € V(G),u # v, S(u) # S(v). In other words, S(u) # S(v) whenever
u # v. A graph G has a vertex-distinguishing proper edge coloring if and only
if it has no more than one isolated vertex and no isolated edges. Such a graph
will be referred to as a vdec-graph. The minimum number of colors required
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for a vertex-distinguishing proper edge coloring of a vdec-graph G is denoted by
X% (G). Vertex-distinguishing proper edge coloring has been considered in several
papers [1-5, 8-9].

A general edge coloring (not necessarily proper) of a graph G is said to be
vertez-distinguishing if S(u) # S(v) is required for any two distinct vertices u, v.
The point-distinguishing chromatic index of a vdec-graph G, denoted by xo(G),
refers to the minimum number of colors required for a vertex-distinguishing gen-
eral edge coloring of G. This parameter was introduced by Harary and Plantholt
in [7]. Although the structure of complete bipartite graph is simple, it seems that
the problem of determining xo(Kp, ) is not easy, especially in the case m = n,
as documented by papers of Horndk and Sotak [10, 11], Zagaglia Salvi [13, 14]
and Horndk and Zagaglia Salvi [12].

A total coloring of a graph G is an assignment of some colors to the vertices
and edges of G. It is proper if the following three conditions are satisfied:

Condition (v): No two adjacent vertices receive the same color;

Condition (e): No two adjacent edges receive the same color;

Condition (i): No edge receives the same color as any one of its incident
vertices.

For a total coloring (proper or not) f of G and a vertex v of G, denote by
C¢(v), or simply C(v) if no confusion arise, the set of colors used to color the
vertex v as well as the edges incident to v. Let C(v) be the complementary set
of C'(v) in the set of all colors we used. Obviously |C(v)| < dg(v) + 1 and the
equality holds if the total coloring is proper.

For a proper total coloring, if C(u) # C(v) for any two distinct vertices u
and v, then the coloring is called a vertex-distinguishing proper total coloring and
the minimum number of colors required for a vertex-distinguishing proper total
coloring is denoted by x,:(G). This concept was considered in [6, 15]. In [15],
the following conjecture was given.

Conjecture 1. Suppose G is a simple graph and ng is the number of vertices of
degree d, 6 < d < A. Let k be the minimum positive integer such that (dil) > ny
for all d such that 6§ <d < A. Then xw(G) =k or k+ 1.

From [15] we know that the above conjecture is valid for complete graphs, com-
plete bipartite graphs, paths and cycles, etc.

In this paper we propose a kind of vertex-distinguishing general total color-
ing called IE-total coloring. The relationship between this coloring and vertex-
distinguishing proper total coloring is similar to the relationship between vertex-
distinguishing general edge coloring and vertex-distinguishing proper edge color-
ing.

An IE-total coloring of a graph G is a total coloring of G such that the
Condition (v) is satisfied. If f is an IE-total coloring of graph G using k colors
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and for any u,v € V(G), u # v, we have C(u) # C(v), then f is called a
k-vertex-distinguishing IE-total coloring, or a k-VDIET coloring. The number

min{k : G has a k-VDIET coloring}
is called the vertex-distinguishing IE-total chromatic number of a graph G and is
denoted by xi%(G).
The following proposition is obviously true.

Proposition 2. x¥%(GQ) < xu(G).

For a graph G, let n; denote the number of vertices of degree i, § <1i < A. Let
§(G)=min {kI(§) + (5) + (5) + -+ (L)) Zns+mgpn +-- 4 na 0 <s <A}
Obviously, x%(G) > £(G).

In the following we will consider the VDIET colorings of complete bipartite
graphs K, ,(1 < m < n) and complete graphs K,, then we will give three
conjectures.

For a complete bipartite graph K, »(1 < m < n), {(Kp, ) is the minimum
positive integer [ such that

o)
o (O (e

m+1
Proposition 3. (i) Ifn= ) (m.ﬁ) —m+1, then {(Kpn) =m+2;

)

i=1
m—+1 9 m—+1

(ii) If 21 (mj ) —m+2<n< ) (mjg’) —m, then {(Kpn) =m + 3.
1= 1=

Proof. (i) When | =m + 1, (1) is not valid, because
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Therefore {(Ky,,n) > m + 2. Since
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so we have {(Kp,n) = m + 2.

m+1 m+1

(i) When > ("/*) =m+2<n< 3 (") —m, ie, 272 —m <n <
i=1 i=1

23 — (m+3) —2 —m = 2" - 2m — 5, we have

2 2 2
e I L T e R P (P
1 2 n+1

Therefore, (2) is not valid if [ = m + 2. So, {(Km,n) > m+3. When [ =m + 3,
(1) and (2) are right, so £(Ky,,) = m + 3. |

m+1 m4-1
Proposition 4. (i) If Z ( ) m<n< (kl) and k > m + 4, then

E(Kpmn) =k —1; =

m+1 m+1
() f S ) <n< S () —m and k> m+4, then E(Kpn) = k.
i=1 i=1

() (I (T )5
e G )| ()0 ) (i) e

(1) is not valid if | = k — 2. Therefore, (K, ) > k — 1. Because

)

Eo1) (k1YL (k1)

1 2 m+1) ="
A A S e A S T AL AU L A S
1 2 n+1) =" " \mt2 m+3 ny1) M

so (1) and (2) are valid if [ = k — 1. We have §(K,, ) =k — 1.

Jr
(ii) When Z (k 1) <n< Z ( ) —m, (1) is not valid if I = k — 1, whereas

(1) and (2) are Vahd if | = k. Therefore E(Kmpn) = k. |

Theorem 5. Let m > 1, n > 2™*2 —m — 2. Then x5(Kmn) = k when
m+1 b1 m+1
) men () -

=1
Proof. Asn > 2"2 —m — 2, we have k > m + 2 (otherwise, if & < m + 2, then

m+1 i m+1 5
n< Y (5)-m< > (") —m=2""—2—m, a contradiction).
=1 =
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We prove that K,,, does not have a (k — 1)-VDIET coloring. If not, sup-
pose g is a VDIET coloring of K,,, using colors 1,2,...,k — 1. Let By =
{g(u1),9(u2),...,9(um)}, Bi = {1,2,...,k — 1} \ Cy(u;),i = 1,2,...,m. Note
that none of By, B1, By, ..., By, is the color set of any vertex v;. Let T' = {j :
|Cy(vj)| =1,7=1,2,...,n} and t = |T|. Then By {g(v;)|j € T} = 0. Without
loss of generality, we assume that Cy(v;) = {j},j = 1,2,...,t, then we have
|Cy(vj)| >2,5=t+1,...,nand Cy(u;) 2 {1,2,...,t,g(us)},i =1,2,...,m.

Casel. t > k—m—3. Foreach i € {1,2,...,m}, we have |Cy(u;)| > t+1 and
|Bi| < (k—1)—(t+1) < (k—1)—(k—m—3+1) = m+1. Note that |By| < m+1

and none of By, By, Bo, ..., By, is the color set of any vertex v;. Therefore there
are at most (kfl) + (kgl) + -+ (;:_11) — m subsets of {1,2,...,k — 1} with

cardinality between 1 and m + 1 which may become the color sets of vertices
v1,v2,...,Un. This is a contradiction.

Case 2. t < k—m —4. In this case, there are at least (k—1) —(k—m —4) =
m + 3 subsets of {1,2,...,k — 1} with cardinality 1 which are not the color sets

of vertices v1,vs,...,v,. This is also a contradiction because (kIl) + (kgl) +
F (py) = (m+3) < () + (%57 + -+ () —m < n, and at most
(k;l) + (kgl) NI (:1111) — (m+3) subsets of {1,2,...,k—1} with cardinality

between 1 and m + 1 cannot distinguish n vertices.

In the following we prove that K, ,, has a k-VDIET coloring. Let V (K, ) =
{ui,ug, ..., um,v1,02,..., 05} and E(Kp, n)={wv; : i =1,2,...,m,j =1,2,...,

Put D(u;) = {1,2,...,k}\ {i},i = 1,2,...,m — 1, D(uy) = {1,2,...,k},
D(vj) ={j,k},7=1,2,....m—1,D(vj) ={j},j=mm+1,... . k-1

Now distribute other subsets of {1,2,...,k} with cardinality between 2 and
m + 1 to vertices v, Vg41,...,Vn. These n — k 4+ 1 subsets are denoted by
D(vg), D(vg41), - .., D(vy), respectively.

Construct a mapping f from V (K, ) U E(Kpy) to {1,2,...,k} as follows:
Put f(u;) =k,i=1,2,...,m, f(vj) =minD(v;),j =1,2,...,n,

fluw)) =k fori=1,2,....,m—1, f(umvm) =m,

Fluo)) =ji=1,2,... mj=12.. . k—1,i#j.

For each j =k, k+1,...,n, we recursively let f(ujv;) = min (D(u1)N(D(v;)\
{£(;})) or f(urey) € D(ur) 1 D(v;) when D(ur) N (Dv) \ {£(v}) = 0.

When 2 < i < m, f(u;vj) = min (D(w)N(D(v;)\{f(v;), f(urv;), f(uavj) ...,
fui—1v))})) or f(uiv;) € D(u;) N D(v;) when D(u;) 0 (D(v;) \ {f(v)), f(u1v)),
f(UQUj)7 (R f(ui—lvj)}) =0.

It is not hard to see that C'y(u;) = D(u;),i = 1,2,...,m; Cy(vj) = D(vj),j =
1,2,...,n and moreover f(u;) > f(v;), therefore our coloring f is a vertex dis-
tinguishing IE-total coloring and then X% (K,,,) < k. |
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Theorem 6. Let m > 2, (m;ﬂ) + (m;2) 4t (zﬁ) —9m+l<n< (mi|—2) n

("3 4 () = m, e, 27 —2m —1 < n < 272 —m — 2. Then

Xot(Kmn) =m + 3.

Proof. When 2"+2—2m—1 < n < 22 —m—2 we have X% (Kyn) > &(Kpmn) =
m + 2. We first prove that K,,, does not have a (m + 2)-VDIET coloring.
Otherwise, suppose g is a VDIET coloring of K, , using colors 1,2,...,m + 2.

Let By = {g(u1),9(u2),...,9(um)}, Bi = {1,2,...,m + 2} \ Cy(u;),i =
1,2,...,m. Note that By, B1, Bo, ..., B, are distinct and at most one of them is
an empty set. By, By, Bo, ..., By, are not the color sets of vertices vy, va,..., V.
We give a fact as follows.

Observation 7. |Cy(u;)| > 2,i=1,2,...,m. Furthermore, there exists a vertex
v € {v1,v2,...,0,} with |Cy(v)| = 1.

Proof. Suppose that there exists a vertex u; € {ur,ug,...,un} with Cy(u;) =
{a},a € {1,2,...,m +2}. Then a € Cy(vj),j = 1,2,...,n. However, 271 —
1 < 2m*2 _2m — 1 < n, ie., the subsets of {1,2,...,m + 2} which contain «
cannot distinguish n vertices, this is a contradiction. Therefore, |Cy(u;)| > 2,i =
1,2,...,m.

Suppose |Cy(vj)| > 2,5 =1,2,...,n, ie., all I-subsets of {1,2,...,m+2} are
not the color sets of vertices uq,uo, ..., Um, V1,02, ...,v,. Therefore, there are at
most 2712 —1—(m+2) < 22 —1—m < m+n nonempty subsets of {1,2,...,m+
2} which may become the color sets of vertices u1, ug, . .., Um, v1, V2, ..., v,. This
is a contradiction. 0

Using the above observation, without loss of generality, we assume Cy(v1) = {1},
Then 1 € Cy(u;),i=1,2,...,m, g(u;) #1,i=1,2,...,m.

It is obvious that By, By, Bo,..., B,, are not the color sets of any vertex
ui,i = 1,2,...,m. Therefore, there are at most 22 — 1 —m < m +n nonempty
subsets of {1,2,...,m+2} which may become the color sets of vertices uy, ua, ...,
U, V1, V2, . ..,V,. This is a contradiction.

So, X% (Kmn) > m+ 3.

In the following we prove that K, , has a (m + 3)-VDIET coloring when
22 _2m —1<n<2mt2 —m — 2

By Theorem 5, we can give K,,; a (m + 3)-VDIET coloring f using colors
1,2,...,m+3, where 212 -2 —m < t < 2™T3 _2m — 5. Now delete the vertices
Un41,Un42,--.,0 and their colors, delete the edges u;vj,t =1,2,...,m,j =n +
1,n 4+ 2,...,t and their colors. It is not hard to see that under the resulting
coloring the color sets of uy,us, ..., Um, V1, v9,...,v, do not change, so we get a
(m + 3)-VDIET coloring g of K, , using colors 1,2,...,m + 3. [
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Theorem 8. Let s be the minimum positive integer such that 2° —1 > 3m.
When 2" —2m — 1 < n < 2"71 —2m — 1, we have x5(Kmn) = 7+ 1, where
r=m+1,mm—1andr > s.

7, when 2" —2m —-1<n<2" —m—1;
Proof. £(Kmnn) = { r+1, when2' —m—1<n <2t —2m—1.

When 2" —2m — 1 < n < 2" —m — 1, it is obvious that xﬁﬁ(Kmn) > r. We
prove that K, , does not have an r-VDIET coloring when » = m + 1, m,m — 1.
If not, let g be an »-VDIET coloring of K, , using colors 1,2,...,r. First we
give four claims as follows.

Claim 9. |C(vj)| > 2,7 =1,2,...,n.

Proof. Suppose the claim is not true, without loss of generality, we assume
C(v1) ={1}. Thenl € C(w;),i =1,2,...,m. Let By = {g(u1), g(u2),...,g(um)},
B; = {1,2,...,7} \ C(u;),i = 1,2,...,m. Note that 1 ¢ By,1 &€ B;,i =
1,2,...,m, we have By, By, Bo,...,B,, are distinct and not the color sets of
vertices uq, U, ..., Uy. Moreover, none of By, By, Bo, ..., B, is the color set of
any vertex v;,j = 1,2,...,n, (because C(u;) N C(vj) = 0,0 = 1,2,...,m,j =
1,2,...,n, and two adjacent vertices must have different colors). At most one of
By, B, B, ..., By, is an empty set, so there are at most 2" —1 —m nonempty sub-
setsof {1,2,...,r} which are available for the vertices ui, ug, ..., Um, V1,2, ..., Up.
However, 2" —1—m < m+n, i.e., these subsets cannot distinguish m-+n vertices,
this is a contradiction. 0

Claim 10. |C(w;)| > 2,i=1,2,...,m.

Proof. Suppose the claim is not true. Without loss of generality we assume
C(u1) = {1}. Then 1 € C(v;),5 = 1,2,...,n. Thus, C(v1),C(va),...,C(vy)
are not available for vertices v1,vs,...,v,. Moreover, C(v1),C(v2),...,C(v,)
cannot be the color sets of vertices ui,ug, ..., un because C(u;) N C(v;) # 0.
At most one of C(v1),C(v2),...,C(v,) is an empty set, so there are at most
2" — 1 — (n — 1) nonempty subsets of {1,2,...,r} which can be the color sets of
vertices Uy, ug, . .., U, V1, V2, - - ., Up. However, 2"—1—(n—1) < 2"—1—m < m+n,
these subsets cannot distinguish m + n vertices, this is a contradiction. 0

Claim 11. C(u1) N C(uz) N---NC(up,) = 0.

Proof. Suppose 1 € C(u;),i = 1,2,...,m. Then the m + 1 distinct subsets

{1},C(u1),C(us),...,C(uy) are not available for any vertex, and at most one of
them is an empty set. Then there are at most 2" — 1 — m subsets of {1,2,...,7}
which can be the color sets of vertices ui,us, ..., Um,v1,v2,...,v,. However,

2" — 1 —m < m + n, so these subsets cannot distinguish m + n vertices, this is a
contradiction. O



296 X. CHEN, Y. GAO AND B. Yao

Claim 12. C(v1) NC(va) N---NC(vy,) = 0.

Proof. Suppose 1 € C(v;),7 = 1,2,...,n. Then the n + 1 distinct subsets

{1},C(v1),C(v2),...,C(v,) are not available for any vertex, and at most one of
them is an empty set. The remaining 2" — 1 — n subsets of {1,2,...,7} cannot
distinguish m + n vertices because 2" — 1 —n < 2" —1—-m < m + n, this is a
contradiction. 0O

Now we consider two cases.

Case 1. r = m,m + 1. By Claims 9 and 10, all 1-subsets of {1,2,...,r}
cannot be the color sets of any vertex. So there are at most 2" — 1 — r <
2" —m — 1 < m + n subsets of {1,2,...,7} which are available for vertices
UL, Uy« « vy Uy, V1, V2, . . ., Upy. This is a contradiction.

Case2. r = m—1. By Claims 9 and 10, all the 1-subsets {1}, {2},...,{m—1}
cannot be the color sets of any vertex. The remaining 2™~ ! —1— (m — 1) =
2m=1 _ m subsets of {1,2,...,m — 1} cannot distinguish m + n vertices when
2m=l _9m < n < 2™ 1 —m — 1, this is a contradiction, so K, does not have
an (m — 1)-VDIET coloring when 2™~ ! —2m <n <2m~! —m — 1.

Now we consider the case n = 2™t —2m. Let t = [{g(u1), g(u2), - .., g(um)}|.
Without loss of generality we assume {g(u1),g(u2),...,g9(um)} = {1,2,...,t}.
By Claims 11 and 12 we know that 2 <t <r — 2, thus if < 3, this is a contra-

diction. So r > 4. None of 2-subsets of {1,2,...,t} is available for vy, ve, ..., vy.
If {1,2} & {C(u1),C(uz),...,C(tn)}, then at most 2™~ —1 —m <m+n
subsets of {1,2,...,m — 1} are available for vertices uy, ua, ..., Un,v1,v2,. .., Un,

this is a contradiction.

Therefore, {1,2} € {C(u1),C(u2),...,C(um)}. Without loss of general-
ity, assume C(u1) = {1,2}. By Claim 12, there are at least two colors among
V1,02, ...,Vp, say t + 1,t + 2. Then {t + 1,t + 2} & {C(u1),C(u2),...,C(um)}.
If {t+1,t+2} € {C(v1),C(v2),...,C(vy)}, then at most 21 —1—m <m+n
subsets of {1,2,...,m — 1} are available for vertices uy, ua, ..., Un,v1,v2,. .., Un,
this is a contradiction. Thus {t + 1,t + 2} € {C(v1),C(v2),...,C(vy)}. Then
t+1€C(u)ort+2eCu), i=1,2,...,m. However, C(u1) = {1,2}, this is
a contradiction.

So, Ky, does not have an 7-VDIET coloring when 2m=l_om <n<oml_
m—landr=m+4+1,mm—1.

In the following we give an (r 4+ 1)-VDIET coloring of K, , using colors
1,2,...,7,7+ 1, where r =m —1,m,m + 1.

Let V(Kmn) = {u1,u2, ..., Un,v1,02,...,0,} and E(Ky, ) = {uvj 1 i =
1,2,...,m;j5=1,2,...,n}

Put D(w;) ={1,2,...,r+1}\{i},i=1,2,...,m—1, D(uy,) ={1,2,...,7+
1}; D(vj) ={j,r+1},j=1,2,...,m—1.



VERTEX-DISTINGUISHING IE-TOTAL COLORINGS OF COMPLETE ... 297

When r = m + 1, put D(v,—1) = {r — 1},D(v,) = {r}. When r = m, put
D(v,) = {r}.

Now distribute other subsets of {1,2,...,r 4+ 1} with cardinality between
2 and r to vertices vyy1,Urt2,...,Un. These n — r subsets are denoted by
D(vr41), D(vr42), - .., D(vy,), respectively.

Construct a mapping f from V (Ky, ) UE(Kp, ) to {1,2,...,7+1} as follows:
Put f(u;)) =r+1,i=1,2,...,m, f(v;) =minD(v;),5 = 1,2,...,n, f(uv;) =
r+lfori=1,2,....m—1, flwv;)=41=1,2,...,m,j=1,2,....m—1,i #j,
fluv;) =5,i=1,2,....m,j =m,...,r (if r =mor m+1).

For each j = r+ 1,7 + 2,...,n, we recursively let f(ujv;) = min (D(ul) N
(D)D) or fluro) € (D) when D)D)\ (1)) =0

When 2 < i < m, f(u;v;) = min (D( D(vj)\\{f(vj), f(urvj), f(ugvj),...,
Hunao ) or Foumn & Do) Do) when Dlu LA\ Ao F o
f(UQUj), e f(uz_lv])}) = (Z)

It is not hard to see that Cr(u;) = D(u;),1 = 1,2,...,m;C¢(vj) = D(v;),j =

1,2,...,n and moreover f(u;) > f(v;), therefore our coloring f is a vertex dis-
tinguishing IE-total coloring and then x%(Kp,) <7+ 1,7 =m —1,m,m+ 1.
So X (Kmn) =7+ 1,r=m—1,mm+ 1. |

2, when n =1;

3, when n =2;

k. owhen ("7 + (51 —1<n< (D) +(5) -1,
k> 3.

Theorem 13. x% (K1) =

Proof. 1t is easy to prove the theorem in the case n = 1,2. By Theorem 5, this
theorem is valid when (kIl) + (kgl) —1l<n< (]1“) + (’;) -1,k > 3. [ |

3, when n=2,3;
4, when n=4,5,...,11;
Theorem 14. Y¢(Ky,) =< 5, when n=12;
ke when (1) 4+ (551) + (1) —2<n
<)+ G+ () -2k>5

Proof. By Theorem 5, 6, 8 respectively we know the theorem is valid in each case
when n > 4. Now we consider the case n = 2,3. It is obvious that x!5(K2,) >
§(K2y,) =3 whenn =2,3. Let V(Ky,) = {ul,u2,v1,v2, ..., Up} and E(Ky,) =
{uwj :1 <1 <2,1 <5 <n}. We give a 3-VDIET coloring of K», using colors
1,2, 3 when n = 2,3.

Let w1, ug receive color 1, v; and its incident edges receive color 2. We assign
color 3, 3, 1 to v, u1v9, ugve, respectively. And when n = 3, we assign color 2, 3,
2 to v3, uivs, ugvs, respectively.
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Then under the above coloring, we have C(u;) = {1,2,3}, C(u2) = {1,2},
C(v1) = {2}, C(v2) = {1,3} and C(v3) = {2,3} (when n = 3). Thus the

above coloring is a VDIET coloring of K, (n = 2,3) using 3 colors. [
4, when 3 <n <9;
5, when 10 < n < 25;
Theorem 15. x5(K3,) =< 6, when n = 26,27;
k—1 k-1
k, when(1)+'-‘+(4)—3<n

<® @) -shze

Proof. By Theorem 5, 6, 8 respectively we know the theorem is valid in each
case when n > 10. Now we consider the case 3 <n <9.
3, whenn =3,4;

§(Ksn) = { 4, when 5<n<9.

Let V(K3,) = {u1,u2,us,vi,v2,...,0,} and E(K3,) = {uv; 1 1 <@ <
3,1 <j <n}. We prove K3, does not have a 3-VDIET coloring when n = 3,4.
If not, let g be a 3-VDIET coloring of K3, using colors 1,2,3. Then |C(u;)| >
2,1 =1,2,3. (Otherwise we assume C(u;) = {1}. Then1 € C(v;),j =1,2,...,n.

Thus C(v1),C(vs),...,C(v,) are not available for any vertex and at most one of
them is an empty set. Therefore there are at most 23 —1—2 = 5 nonempty subsets
of {1,2,3} which can be the color sets of vertices wui,uz,us,v1,v2,...,v,. Five

subsets cannot distinguish n + 3 vertices when n = 3,4, this is a contradiction).
Furthermore, |C(v;)| > 2,7 = 1,2,...,n. (Otherwise we assume C(v1) = {1}.
Then 1 € C(u;),i = 1,2,3. Thus C(uy),C(uz), C(u3) are not available for any
vertex and at most one of them is an empty set. Therefore there are at most
23 — 1 — 2 = 5 nonempty subsets of {1,2,3} which can be the color sets of
vertices ui,ug,us,v1,v2,...,U,. Five subsets cannot distinguish n + 3 vertices
when n = 3,4, this is a contradiction.) So three 1l-subsets of {1,2,3} are not
available for any vertx, the remaining 4 nonempty subsets of {1,2,3} cannot
distinguish n + 3 vertices when n = 3,4, this is a contradiction. Therefore,
X%(Ksy,) > 4 when n = 3, 4.

In the following we give a 4-VDIET coloring of K3, using colors 1,2,3,4
when 3 <n <9.

Let uy,u2,us receive color 4. Suppose S; = ({3},{1,2},{1,3},{1,4},{2,3},
{2,4},{3,4},{1,2,3},{1,2,4}) and let D(v;) be the i-th term of S1,7 =1,2,...,n.
Let v; and its incident edges receive color 3, let va,usve receive color 1 and
U1V, UgVo Teceive color 2.

For D(v;) = {a,b}, 3 <j <mn, a <b, we assign a to ujv; and vj, assign b to
ugv; and uzv;.

For D(vj) = {a,b,c}, a < b < ¢, we assign a,b,c to u1v;, ugvj, ugv; respec-
tively and assign b to v;.
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Then C(u1) = {1,2,3,4}, C(u2) = {2,3,4}, C(uz) = {1,3,4} and C(v;) =

D(vj),5 =1,2,...,n with respect to the above coloring. Thus the above coloring
is a VDIET coloring of K3 ,(3 <n <9) using 4 colors. |
4, when 4 <n<T;
5, when 8 < n < 23;
) 6, when 24 <n < 55;
ie _ ) — — ’
Theorem 16. x5 (K4,) = 7. when 56 < n < 58;
k, when ("N +-+ (") —4<n
BB akzm

Proof. It is easy to verify the theorem is valid in each case when n > 8 by
Theorem 5, 6, 8 respectively. Now we consider the case 4 <n < 7.

It is obvious x5 (Ky,) > €(Kypn) =4, when 4 <n < 7.

In the following we give a 4-VDIET coloring of K,, using colors 1,2,3,4
when 4 < n < 7. Let V(Kyy,) = {u1,ug,us, ug,v1,v2,...,0,} and E(Ky,) =
{wwj :i=1,2,3,4:5=1,2,...,n}.

Let uy,ug,us, uq receive color 4. Suppose So = ({1,4},{2,4},{3,4}, {1, 2},
{1,3},{2,3},{1,2,3}) and let D(v;) be the i-th term of Sy, i = 1,2,...,n. Let
v; receive the minimum number of D(v;), i =1,2,...,n.

For D(vj) = {j,4}, j = 1,2,3, we assign color 4 to u;jv; and color j to
wvy, i =1,2,3,4,i # j.

For D(vj) = {a,b}, 4 < j < n, a < b, we assign color b to all edges u;v; if
i # b and color a to its remaining incident edge upv;.

For D(v;) = {1,2, 3}, we assign color 2 to u;v; if i # 2 and assign color 3 to
UQUj.

Then C(u;) = {1,2,3,4} \ {i},i = 1,2,3, C(ua) = {1,2,3,4} and C(v;) =

D(vj),5 =1,2,...,n with respect to the above coloring. Thus the above coloring
is a 4-VDIET coloring of K4 ,,4 <n <T. [ |
5, when 6 <n < 21;
6, when 22 <n < 53;
) 7, when 54 <n < 117,
ie _ ) — — ’
Theorem 17. Xii(Ksn) = g yyhen 118 < n < 121;
k, when (kfl) + -+ (kgl) —5<n
<M+ (B -5k>s

Proof. By Theorem 5, 6, 8 respectively we know the theorem is valid in each
case. ]
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when 6 < n < 19;

when 20 <n < 51;

when 52 < n < 115;

when 116 < n < 243;

when 244 < n < 248;

when (kzl) + -+ (k;l) —6<n
<)+t () —6k>09.

Theorem 18. x% (K¢ ) =

;O 00 O G

Proof. By Theorem 5, 6, 8 respectively we know the theorem is valid in each
case when n > 20. Now we consider the case 6 < n < 19.
4, when6<n<9;

§(Kon) = { 5, when 10 < n < 19.

Let V(K¢n) = {u1,u2,...,u6,v1,02,...,0,} and E(Kgp) = {uv; : 1 < <
6,1 <j <n}. We prove K¢, does not have a 4-VDIET coloring when 6 <n < 9.
If not, suppose g is a 4-VDIET coloring of K¢, (6 < n < 9) using colors 1, 2,
3, 4. Then |C(u;)| > 2,i = 1,2,...,6. (Otherwise we assume C(u;) = {1}.
Then 1 € C(v;),j = 1,2,...,n. Thus C(v1),C(v2),...,C(v,) are not available
for any vertex and at most one of them is an empty set. Therefore there are at
most 2% — 1 — 5 = 10 nonempty subsets of {1,2,3,4} which can be the color sets
of vertices uy,us,...,ug, v1,v2,...,U,. These subsets cannot distinguish n + 6
vertices when 6 < n < 9, this is a contradiction.)

Furthermore, |C(v;)] > 2,7 = 1,2,...,n. (Otherwise we assume C(v1) =
{1}, then 1 € C(u;),i = 1,2,...,6. Thus C(uy),C(u2),...,C(ug) are not avail-
able for any vertex and at most one of them is an empty set. Therefore there
are at most 2* — 1 — 5 = 10 nonempty subsets of {1,2,3,4} which can be the
color sets of vertices ui,us,...,us,v1,v2,...,0,. These subsets cannot distin-
guish n + 6 vertices when 6 < n < 9, this is a contradiction.) So four 1-subsets
of {1,2,3,4} are not available for any vertex, the remaining 11 nonempty sub-
sets of {1,2,3,4} cannot distinguish n + 6 vertices when 6 < n < 9, this is a
contradiction. Therefore, x‘¢(Kg,,) > 5 when 6 < n < 9.

In the following we give a 5-VDIET coloring of Kg, using colors 1,2,3,4,5
when 6 < n < 19.

Let ui,ug,...,us receive color 5. Suppose Sz = ({1,5},{2,5},{3,5},{4,5},
{1,2},{1,3},{1,4},{2,3},{2,4},{1,2,3},{1,2,4},{1, 3,4},{1, 3,5},{1,4,5}, {2,
3,4},{2,3,5},{2,4,5},{3,4,5},{1,2,3,4}) and let D(v;) be the i-th term of Ss,
i=1,2,...,n. Let D(u;) ={1,2,3,4,5} \ {¢},: =1,2,3,4, D(us) = {1,2,3,4,5}
and D(ug) ={1,2,5}.

Let u;vi(i = 1,2,3,4),ugv3 and ugvs receive color 5. Let v; and the other
incident edges of v; receive color j,j = 1,2,3,4.

For D(vj) = {a,b}, 5 < j <n, a <b, we assign b to u;v; if b € D(u;), assign
a to v; and its remaining incident edges.
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For D(vj) = {a,b,c}, {b,c} # {3,4}, a < b < ¢, we assign b to w;v; if b € D(u;),
assign ¢ to w;v; if b & D(u;), and assign a to v;.

For D(vj) = {a,3,4}, a = 1,2, we assign a to u;v; if a € D(u;), assign 3 to
wivj if a & D(u;), and assign 4 to v;.

For D(v;) = {1,2,3,4}, we assign 3 to u;v; if 3 € D(u;), assign 4 to usv;,
assign 2 to ugvj, and assign 1 to v;.

Then C(u;) = D(u;),1 <i <6 and C(v;) = D(vj),1 < j < n with respect to
the above coloring. Thus the above coloring is a 5-VDIET coloring of Kg,,6 <

n < 19. u
(5, when 7T<n<1T;
6, when 18 < n < 49;
7,  when 50 < n < 113;
. 8, when 114 < n < 241;
Theorem 19. Xiﬁ([ﬁ") - 9 when 242 < n < 497,

10, when 498 < n < 503;

k, when (k;l) +-+ (kgl) —7<n

<@+t () -7 k=10

Proof. By Theorem 5, 6, 8 respectively we know the theorem is valid in each
case when n > 50. Now we consider the case n < 49.
4, whenn=1717,8;
E(K7n) =4 5, when 9 <n <24
6, when 25 <n < 49.

Let V(K7,) = {u1,ug,...,ur,v1,02,...,0,} and E(K7y) = {uv; : 1 <i <
7,1 <j<n}.

We prove K7, does not have a 4-VDIET coloring when n = 7,8. If not,
suppose g is a 4-VDIET coloring of K7 ,(n = 7,8) using colors 1,2,3,4. Then
|C(ui)| > 2,4 = 1,2,...,7. Otherwise we assume C(u;) = {1}. Then 1 €
C(vj),7 = 1,2,...,n,n = 7,8. Thus C(v1),C(v2),...,C(v,) are not available
for any vertex and at most one of them is an empty set. Therefore there are at
most 2* — 1 — 6 = 9 nonempty subsets of {1,2,3,4} which can be the color sets
of vertices u1,uo, ..., u7, v1,v2,...,v,. These subsets cannot distinguish 14 or 15
vertices, this is a contradiction.

Furthermore, |C(v;)| > 2,5 = 1,2,...,n,n = 7,8. Otherwise we assume
C(v1) = {1}. Then 1 € C(u;),i = 1,2,...,7. Thus C(u1),C(ug),...,C(uz) are
not available for any vertex and at most one of them is an empty set. Therefore
there are at most 2* — 1 — 6 = 9 nonempty subsets of {1,2,3,4} which can
be the color sets of vertices wuq,uo,...,ur,v1,ve,...,v,. These subsets cannot
distinguish 14 or 15 vertices, this is also a contradiction.) So four 1l-subsets of
{1,2,3,4} are not available for any vertex, the remaining 11 nonempty subsets of
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{1,2,3,4} cannot distinguish 14 or 15 vertices, this is a contradiction. Therefore,
X%(Kz,) > 5 when n=17,8.

In the following we give a 5-VDIET coloring of K7, using colors 1,2,3,4,5
when 7 <n < 17.

Let ui,ug,...,us receive color 5. Suppose Sy = ({1,5},{2,5},{3,5},{4,5},
{1,2},{1,4},{2,3},{3,4},{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,4,5},{2, 3,4},
{2,3,5},{3,4,5},{1,2,3,4}) and let D(v;) be the i-th term of Sy,i =1,2,...,n.
Let D(u;) = {1,2,3,4,5} \ {i},i = 1,2,3,4, D(us) = {1,3,5}, D(ug) = {2,4,5}
and D(ur) ={1,2,3,4,5}.

Let uyv; and ugv; receive color 5, v; and its other incident edges receive color 1.
Let ugve and usvg receive color 5, ve and its other incident edges receive color 2.
Let usvs and ugvs receive color 5, v and its other incident edges receive color 3.
Let uqvq and usv4 receive color 5, v4 and its other incident edges receive color 4.

For D(v;) = {a,b},5 < j <mn, a <b, we assign b to u;v; if b € D(u;), assign
a to vj and its remaining incident edges.

For D(v;) = {a,b,c},{a,b,c} # {1,2,4}, a < b < ¢, we assign b to w;v; if
b € D(u;), assign ¢ to uv; if b ¢ D(u;), and assign a to vj.

For D(v;) = {1,2,4}, we assign 1 to u;v; if 1 € D(u;), assign 2 to w;v; if
1 ¢ D(u;), and assign 4 to v.

For D(v;) = {1,2,3,4}, we assign 2 to uv; if 2 € D(u;), assign 4, 3, 1 to
ugvj, usv; and v; respectively.

Then C(w;) = D(u;),1 < i < 7 and C(vj) = D(vj),j = 1,2,...,n with
respect to the above coloring. Thus the above coloring is a 5-VDIET coloring of
Kr7,,7<n<17.

We prove K7, does not have a 5-VDIET coloring when 18 < n < 24. If not,
suppose g is a 5-VDIET coloring of K7,,(18 < n < 24) using colors 1,2,3,4,5.
First we give four claims as follows.

Claim 20. |C(u;)| >2,i=1,2,...,7.

Proof. Suppose the claim is not true, without loss of generality we assume
C(u1) ={1}. Thenl € C(v;),j =1,2,...,n,18 <n < 24. Thus C(v1),C(va),...,
C(v,) are not available for any vertex and at most one of them is an empty set.
Therefore there are at most 25 — 1 — 17 = 14 nonempty subsets of {1,2,3,4, 5}
which can be the color sets of vertices u1,us, ..., ur,v1,vo,...,v,. These subsets

cannot distinguish n + 7 vertices when 18 < n < 24, this is a contradiction.
Claim 21. [C(vj)| > 2,7 =1,2,...,n,18 <n < 24.

Proof. Suppose the claim is not true, without loss of generality we assume
C(v1) = {1}. Then 1 € C(w;),i = 1,2,...,7. Thus C(u1),C(u2),...,C(ur),
{g9(u1),g(u2),...,g(ur)} are not available for any vertex and at most one of them
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is an empty set. Therefore there are at most 2° — 1 — 7 = 24 nonempty subsets of

{1,2,3,4,5} which can be the color sets of vertices uj,ug, ..., uz, v1,v2,...,0,.
These subsets cannot distinguish n + 7 vertices when 18 < n < 24, this is also a
contradiction. 0

Claim 22. C(u1) NC(uz) N---NC(uz) = 0.
Claim 23. C(v1)NC(v2)N---NC(vy) = 0,18 <n < 24.

The proofs of Claim 22 and Claim 23 are analogous to the proofs of Claim 11
and Claim 12 in Theorem 8, respectively.

By Claims 20 and 21, five 1-subsets of {1,2,3,4,5} are not available for any
vertex. The remaining 26 nonempty subsets of {1,2,3,4,5} cannot distinguish
n—+ 7 vertices when 20 < n < 24, this is a contradiction. So we assume n = 18,19
in the following.

Let t={g(u1), g(us), .., g(u)}], and {g(ur), g(us), ..., glur)} ={1,2, ., 1},
by Claim 22 and Claim 23, we know that ¢t = 2 or ¢ = 3.

Case 1. t =2, {f(u1), f(uz2),..., f(ur)} = {1,2}. Of course {1,2} & {C(v1),
C(v2),...,C(vy)}. If {1,2} € {C(u1),C(ug),..., C(uy)}, then 1 € C(v;) or
2€C(vy),j=1,2,...,n. Thus {3,4},{3,5},{4,5}, {3,4,5} cannot be the color
sets of any vertices. Moreover, five 1-subsets are not available for any vertex.
Then at most 25 — 1 — 5 — 4 = 22 nonempty subsets of {1,2,3,4,5} are available
for the vertices ui,uo,...,u7,v1,0s,...,v,. This is a contradiction because 22
subsets cannot distinguish 25 (when n = 18) or 26 (when n = 19) vertices. So
{1,2} is not available for any vertex.

If |C(u;)| > 3,4 = 1,2,...,7, then C(uy),C(uz),...,C(ur) cannot be the
color sets of any vertices because there are 5 colors in all. At most one of
C(u1),C(ug),...,C(ur) is an empty set, so there are at most 2° —1—6 —1 = 24
nonempty subsets of {1, 2, 3,4, 5} are available for the vertices u, ug, . .., u7, v1, v2,

., Up. This is a contradiction because 24 subsets cannot distinguish 25 (when
n = 18) or 26 (when n = 19) vertices.

Therefore, there exists a vertex u;, with |C(u;,)| = 2. Since {1,2} is not
available for any vertex, so without loss of generality, we assume C(u;,) = {1, 3},
then 1 € C(vj) or 3 € C(v;),j = 1,2,...,n. Thus {4,5} is not available for
any vertex. Furthermore, {1,2} and five 1-subsets are not available for any
vertex. There are at most 2° — 1 — 5 — 2 = 24 nonempty subsets of {1,2,3,4,5}
are available for the vertices uq,us,...,u7,v1,v9,...,0,. This is a contradiction
because 24 subsets cannot distinguish 25 (when n = 18) or 26 (when n = 19)
vertices.

So K7, (n = 18,19) does not have a 5-VDIET coloring in this case.

Case 2. t =3, {f(w), f(u2),..., f(ur)} ={1,2,3}. By Claim 23, |{f(v1),
f(va),..., f(vp)} = 2, 50 {f(v1), f(v2),..., f(vn)} = {4,5}. Then {4,5} is not
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the color set of any vertex w;, i = 1,2,...,7. If {4,5} € {C(v1),C(v2),...,C(vyn)},
then 4 € C(u;) or 5 € Clu;),i = 1,2,...,7. Thus {1,2},{1,3},{2,3},{1,2,3}
cannot be the color sets of any vertex. Moreover, five 1-subsets are not available
for any vertex. Then at most 2° —1—5—4 = 22 nonempty subsets of {1,2, 3,4, 5}
are available for the vertices wq,uo, ..., u7,v1,v9,...,v,. This is a contradiction
because 22 subsets cannot distinguish 25 (when n = 18) or 26 (when n = 19)
vertices. So {4,5} is not available for any vertex.

If |C(v;)] > 3,j = 1,2,...,n, then C(v1),C(vs),...,C(v,) cannot be the
color sets of any vertex because there are 5 colors in all. At most one of them is
an empty set, so at most 2° — 1 — (n — 1) < 14 nonempty subsets of {1,2,3,4,5}
are available for the vertices wy,us,...,u7,v1,v9,...,v,. This is a contradiction
because these subsets cannot distinguish 25 (when n = 18) or 26 (when n = 19)
vertices.

Therefore, there exists a vertex vj, with |C(vj))| = 2. Since {4,5} is not
available for any vertex, so without loss of generality, we assume C(v;,) = {1,4}.
Then 1 € C(u;) or 4 € C(u;),i = 1,2,...,7. Thus {2,3} is not available for
any vertex. Moreover, {4,5} and five 1-subsets are not available for any vertex.
There are at most 2° — 1 — 5 — 2 = 24 nonempty subsets are available for the
vertices ui,uo,...,u7,v1,0,...,0,. This is a contradiction because 24 subsets
cannot distinguish 25 (when n = 18) or 26 (when n = 19) vertices.

So K7, (n =18,19) does not have a 5-VDIET coloring.

Therefore, X% (K7,) > 6 when 18 < n < 49.

In the following we give a 6-VDIET coloring of K7, using colors 1,2, 3,4,5,6
when 18 < n < 49.

Arrange all 49 subsets of {1,2,3,4,5,6} except for 0, {1}, {2}, {3}, {4}, {5},
{6}, {4,5}, {2,3,4,5,6}, {1,3,4,5,6}, {1,2,4,5,6}, {1,2,3,5,6}, {1,2,3,4,6},
{1,2,3,4,5,6},{1,2,3,6} into a sequence Ss such that the first 5 terms are
{1,6},{2,6},{3,6},{4,6},{5,6} respectively. Let D(v;) be the j-th term of
Ss,j=1,2,....,n. Let D(u;) = {1,2,3,4,5,6}\ {i},i = 1,2,3,4,5, D(ug) =
{1,2,3,4,5,6}, D(ur) = {1,2,3,6}.

Let uq,ug,...,u7 receive color 6. Let v; receive color j,j = 1,2,...,5. Let
u;v; receive color 6, ¢ = 1,2,...,5. Let u;vj receive color j, i = 1,2,...,6,j =
1,2,...,5,i # j. Let uyvy, urve, uzvs, urvs and u7vs receive colors 1, 2, 3, 6 and

6 respectively.

For D(v;) = {a,b}, 6 < j <n, a <b, we assign b to uv; if b € D(u;), assign
a to v; and its remaining incident edges.

For D(vj) = {a,4,5}, 1 < a < 3, we assign 5 to vj, a to w;v; if a € D(u;),
assign 4 to u;v; otherwise.

For D(v;) = {a,b,c}, a < b < ¢, {b,c} # {4,5}, we assign a to v;, b to u;v; if
b € D(u;), assign ¢ to u;v; otherwise.

For D(vj) = {a,b,c,d}, a < b < ¢ < d, we assign a to vj, b to uv; if
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b e D(u;),i # 6, assign ¢ to wv; if b & D(u;),c € D(u;),7 # 6, and assign d to
the remaining incident edges of v;.

For D(v;) = {1,2,3,4,5}, we assign 1 to vj, assign 2, 3, 4, 5 to uzv;, usv;, usvj,
ugv; respectively and assign 3 to the remaining incident edges of v;.

Then C(w;) = D(u;),1 < i < 7 and C(vj) = D(vj),j = 1,2,...,n with
respect to the above coloring. Thus the above coloring is a 6-VDIET coloring of
K7p,,24 <n <49, |

Theorem 24. Let K,, be the complete graph of order n(n > 3). Then x'5(K,) =
n.

Proof. As any two vertices in K, must receive different colors under an arbitrary
VDIET coloring, therefore x%(K,) > n. Of course we may be able to show that
X (K,) = n by giving a VDIET coloring of K,, using n colors 1,2,...,n as
follows. Assign colors 1,2,...,n to vertices vi,vo,...,v, of K, respectively and
then let all edges receive the same color 1. [

From the results obtained in this paper, we know that for any graph G discussed
in this paper except K,(n > 6), we have x%(G) = £(G) or £(G) + 1. So we
propose the following conjectures.

Conjecture 25. For a simple graph G, if its (proper vertex coloring) chromatic
number x(G) < 4, then we have X'%(G) = £(G) or £(G) + 1.

Conjecture 26. For a simple graph G, we have x$(G) < max{£(G)+1, x(G)}.

Conjecture 27. Let s be the minimum positive integer such that 2° —1 > 3m.
When 2" —2m — 1 < n < 2"71 — 2m — 1, we have x5(Kmn) = 7+ 1, where
r=s,s5+1,....m—2,s<m—2.
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