Discussiones Mathematicae Graph Theory 33 (2013) 289–306 doi:10.7151/dmgt.1659

VERTEX-DISTINGUISHING IE-TOTAL COLORINGS OF COMPLETE BIPARTITE GRAPHS $K_{m,n}(m < n)^1$

XIANG'EN CHEN, YUPING GAO AND BING YAO

College of Mathematics and Information Science Northwest Normal University, Lanzhou 730070, P. R. China

e-mail: chenxe@nwnu.edu.cn

Abstract

Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if $C(u) \neq C(v)$ for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by $\chi_{vt}^{ie}(G)$, and is called vertex-distinguishing IE-total chromatic number of the VDIET chromatic number of G for short. VDIET colorings of complete bipartite graphs $K_{m,n}(m < n)$ are discussed in this paper. Particularly, the VDIET chromatic numbers of $K_{m,n}(1 \leq m \leq 7, m < n)$ as well as complete graphs K_n are obtained.

Keywords: complete bipartite graphs, IE-total coloring, vertex-distinguishing IE-total coloring, vertex-distinguishing IE-total chromatic number.

2010 Mathematics Subject Classification: 05C15.

For an edge coloring (proper or not) of a graph G and a vertex v of G, denote by S(v) the set of colors used to color the edges incident to v.

A proper edge coloring of a graph G is said to be *vertex-distinguishing* if for any $u, v \in V(G), u \neq v, S(u) \neq S(v)$. In other words, $S(u) \neq S(v)$ whenever $u \neq v$. A graph G has a vertex-distinguishing proper edge coloring if and only if it has no more than one isolated vertex and no isolated edges. Such a graph will be referred to as a *vdec*-graph. The minimum number of colors required

¹This research is supported by NNSFC (No.61163037, 61163054), the Scientific Research Project of Northwest Normal University (No. nwnu-kjcxgc-03-61), the Natural Foudation Project of Ningxia (No. NZ1154) and the Scientific Research Foundation Project of Ningxia University ((E):ndzr10-7)

for a vertex-distinguishing proper edge coloring of a *vdec*-graph G is denoted by $\chi'_s(G)$. Vertex-distinguishing proper edge coloring has been considered in several papers [1-5, 8-9].

A general edge coloring (not necessarily proper) of a graph G is said to be vertex-distinguishing if $S(u) \neq S(v)$ is required for any two distinct vertices u, v. The point-distinguishing chromatic index of a vdec-graph G, denoted by $\chi_0(G)$, refers to the minimum number of colors required for a vertex-distinguishing general edge coloring of G. This parameter was introduced by Harary and Plantholt in [7]. Although the structure of complete bipartite graph is simple, it seems that the problem of determining $\chi_0(K_{m,n})$ is not easy, especially in the case m = n, as documented by papers of Horňák and Soták [10, 11], Zagaglia Salvi [13, 14] and Horňák and Zagaglia Salvi [12].

A total coloring of a graph G is an assignment of some colors to the vertices and edges of G. It is *proper* if the following three conditions are satisfied:

Condition (v): No two adjacent vertices receive the same color;

Condition (e): No two adjacent edges receive the same color;

Condition (i): No edge receives the same color as any one of its incident vertices.

For a total coloring (proper or not) f of G and a vertex v of G, denote by $C_f(v)$, or simply C(v) if no confusion arise, the set of colors used to color the vertex v as well as the edges incident to v. Let $\overline{C}(v)$ be the complementary set of C(v) in the set of all colors we used. Obviously $|C(v)| \leq d_G(v) + 1$ and the equality holds if the total coloring is proper.

For a proper total coloring, if $C(u) \neq C(v)$ for any two distinct vertices uand v, then the coloring is called a *vertex-distinguishing proper total coloring* and the minimum number of colors required for a vertex-distinguishing proper total coloring is denoted by $\chi_{vt}(G)$. This concept was considered in [6, 15]. In [15], the following conjecture was given.

Conjecture 1. Suppose G is a simple graph and n_d is the number of vertices of degree d, $\delta \leq d \leq \Delta$. Let k be the minimum positive integer such that $\binom{k}{d+1} \geq n_d$ for all d such that $\delta \leq d \leq \Delta$. Then $\chi_{vt}(G) = k$ or k+1.

From [15] we know that the above conjecture is valid for complete graphs, complete bipartite graphs, paths and cycles, etc.

In this paper we propose a kind of vertex-distinguishing general total coloring called IE-total coloring. The relationship between this coloring and vertexdistinguishing proper total coloring is similar to the relationship between vertexdistinguishing general edge coloring and vertex-distinguishing proper edge coloring.

An IE-*total coloring* of a graph G is a total coloring of G such that the Condition (v) is satisfied. If f is an IE-total coloring of graph G using k colors

and for any $u, v \in V(G)$, $u \neq v$, we have $C(u) \neq C(v)$, then f is called a k-vertex-distinguishing IE-total coloring, or a k-VDIET coloring. The number

$\min\{k: G \text{ has a } k\text{-VDIET coloring}\}$

is called the *vertex-distinguishing* IE-*total chromatic number* of a graph G and is denoted by $\chi_{vt}^{ie}(G)$.

The following proposition is obviously true.

Proposition 2. $\chi_{vt}^{ie}(G) \leq \chi_{vt}(G)$.

For a graph G, let n_i denote the number of vertices of degree $i, \delta \leq i \leq \Delta$. Let $\xi(G) = \min\left\{k \mid \binom{k}{1} + \binom{k}{2} + \binom{k}{3} + \dots + \binom{k}{s+1} \geq n_{\delta} + n_{\delta+1} + \dots + n_s, \delta \leq s \leq \Delta\right\}$. Obviously, $\chi_{vt}^{ie}(G) \geq \xi(G)$.

In the following we will consider the VDIET colorings of complete bipartite graphs $K_{m,n}(1 \leq m < n)$ and complete graphs K_n , then we will give three conjectures.

For a complete bipartite graph $K_{m,n}(1 \le m < n)$, $\xi(K_{m,n})$ is the minimum positive integer l such that

(1)
$$\binom{l}{1} + \binom{l}{2} + \binom{l}{3} + \dots + \binom{l}{m+1} \ge n,$$

(2)
$$\binom{l}{1} + \binom{l}{2} + \binom{l}{3} + \dots + \binom{l}{n+1} \ge n+m.$$

Proposition 3. (i) If $n = \sum_{i=1}^{m+1} {m+2 \choose i} - m + 1$, then $\xi(K_{m,n}) = m + 2$;

(ii) If
$$\sum_{i=1}^{m+1} {m+2 \choose i} - m + 2 \le n \le \sum_{i=1}^{m+1} {m+3 \choose i} - m$$
, then $\xi(K_{m,n}) = m + 3$.

Proof. (i) When l = m + 1, (1) is not valid, because

$$\binom{m+1}{1} + \binom{m+1}{2} + \dots + \binom{m+1}{m+1} = 2^{m+1} - 1,$$

$$n = 2^{m+2} - 2 - m + 1 = 2^{m+2} - m - 1 > 2^{m+1} - 1.$$

Therefore $\xi(K_{m,n}) \ge m+2$. Since

$$\binom{m+2}{1} + \binom{m+2}{2} + \dots + \binom{m+2}{m+1} = 2^{m+2} - 2 \ge 2^{m+2} - m - 1 = n,$$
$$\binom{m+2}{1} + \binom{m+2}{2} + \dots + \binom{m+2}{n+1} = 2^{m+2} - 1 = m+n,$$

so we have $\xi(K_{m,n}) = m + 2$.

(ii) When $\sum_{i=1}^{m+1} {m+2 \choose i} - m + 2 \le n \le \sum_{i=1}^{m+1} {m+3 \choose i} - m$, i.e., $2^{m+2} - m \le n \le 2^{m+3} - (m+3) - 2 - m = 2^{m+3} - 2m - 5$, we have

$$\binom{m+2}{1} + \binom{m+2}{2} + \dots + \binom{m+2}{n+1} = 2^{m+2} - 1 \le m+n-1.$$

Therefore, (2) is not valid if l = m + 2. So, $\xi(K_{m,n}) \ge m + 3$. When l = m + 3, (1) and (2) are right, so $\xi(K_{m,n}) = m + 3$.

Proposition 4. (i) If
$$\sum_{i=1}^{m+1} {\binom{k-1}{i}} - m < n \le \sum_{i=1}^{m+1} {\binom{k-1}{i}}$$
 and $k \ge m+4$, then $\xi(K_{m,n}) = k - 1$;
(ii) If $\sum_{i=1}^{m+1} {\binom{k-1}{i}} < n \le \sum_{i=1}^{m+1} {\binom{k}{i}} - m$ and $k \ge m+4$, then $\xi(K_{m,n}) = k$.

Proof. (i) As

$$\binom{k-2}{1} + \binom{k-2}{2} + \dots + \binom{k-2}{m+1} \leq \left[\binom{k-2}{0} + \binom{k-2}{1}\right] + \left[\binom{k-2}{1} + \binom{k-2}{2}\right]$$
$$+ \dots + \left[\binom{k-2}{m} + \binom{k-2}{m+1}\right] - m = \binom{k-1}{1} + \binom{k-1}{2} + \dots + \binom{k-1}{m+1} - m < n,$$
$$(1) \text{ is not valid if } l = k - 2 \text{ Therefore } f(K - k) \geq k - 1 \text{ Because}$$

(1) is not valid if l = k - 2. Therefore, $\xi(K_{m,n}) \ge k - 1$. Because

$$\binom{k-1}{1} + \binom{k-1}{2} + \dots + \binom{k-1}{m+1} \ge n,$$

 $\binom{k-1}{1} + \binom{k-1}{2} + \dots + \binom{k-1}{n+1} \ge n + \binom{k-1}{m+2} + \binom{k-1}{m+3} + \dots + \binom{k-1}{n+1} > m+n,$ so (1) and (2) are valid if l = k - 1. We have $\xi(K_{m,n}) = k - 1$.

(ii) When $\sum_{i=1}^{m+1} {\binom{k-1}{i}} < n \le \sum_{i=1}^{m+1} {\binom{k}{i}} - m$, (1) is not valid if l = k - 1, whereas (1) and (2) are valid if l = k. Therefore $\xi(K_{m,n}) = k$.

Theorem 5. Let $m \ge 1$, $n > 2^{m+2} - m - 2$. Then $\chi_{vt}^{ie}(K_{m,n}) = k$ when $\sum_{i=1}^{m+1} {k-1 \choose i} - m < n \le \sum_{i=1}^{m+1} {k \choose i} - m$.

Proof. As $n > 2^{m+2} - m - 2$, we have k > m + 2 (otherwise, if $k \le m + 2$, then $n \le \sum_{i=1}^{m+1} {k \choose i} - m \le \sum_{i=1}^{m+1} {m+2 \choose i} - m = 2^{m+2} - 2 - m$, a contradiction).

292

We prove that $K_{m,n}$ does not have a (k-1)-VDIET coloring. If not, suppose g is a VDIET coloring of $K_{m,n}$ using colors $1, 2, \ldots, k-1$. Let $B_0 = \{g(u_1), g(u_2), \ldots, g(u_m)\}, B_i = \{1, 2, \ldots, k-1\} \setminus C_g(u_i), i = 1, 2, \ldots, m$. Note that none of $B_0, B_1, B_2, \ldots, B_m$ is the color set of any vertex v_j . Let $T = \{j : |C_g(v_j)| = 1, j = 1, 2, \ldots, n\}$ and t = |T|. Then $B_0 \cap \{g(v_j)|j \in T\} = \emptyset$. Without loss of generality, we assume that $C_g(v_j) = \{j\}, j = 1, 2, \ldots, t$, then we have $|C_g(v_j)| \ge 2, j = t+1, \ldots, n$ and $C_g(u_i) \supseteq \{1, 2, \ldots, t, g(u_i)\}, i = 1, 2, \ldots, m$.

Case 1. $t \ge k-m-3$. For each $i \in \{1, 2, ..., m\}$, we have $|C_g(u_i)| \ge t+1$ and $|B_i| \le (k-1) - (t+1) \le (k-1) - (k-m-3+1) = m+1$. Note that $|B_0| \le m+1$ and none of $B_0, B_1, B_2, ..., B_m$ is the color set of any vertex v_j . Therefore there are at most $\binom{k-1}{1} + \binom{k-1}{2} + \cdots + \binom{k-1}{m+1} - m$ subsets of $\{1, 2, ..., k-1\}$ with cardinality between 1 and m+1 which may become the color sets of vertices $v_1, v_2, ..., v_n$. This is a contradiction.

Case 2. $t \le k - m - 4$. In this case, there are at least (k-1) - (k - m - 4) = m + 3 subsets of $\{1, 2, \ldots, k - 1\}$ with cardinality 1 which are not the color sets of vertices v_1, v_2, \ldots, v_n . This is also a contradiction because $\binom{k-1}{1} + \binom{k-1}{2} + \cdots + \binom{k-1}{m+1} - (m+3) < \binom{k-1}{1} + \binom{k-1}{2} + \cdots + \binom{k-1}{m+1} - m < n$, and at most $\binom{k-1}{1} + \binom{k-1}{2} + \cdots + \binom{k-1}{m+1} - (m+3)$ subsets of $\{1, 2, \ldots, k - 1\}$ with cardinality between 1 and m + 1 cannot distinguish n vertices.

In the following we prove that $K_{m,n}$ has a k-VDIET coloring. Let $V(K_{m,n}) = \{u_1, u_2, ..., u_m, v_1, v_2, ..., v_n\}$ and $E(K_{m,n}) = \{u_i v_j : i = 1, 2, ..., m, j = 1, 2, ..., n\}$.

Put $D(u_i) = \{1, 2, \dots, k\} \setminus \{i\}, i = 1, 2, \dots, m - 1, D(u_m) = \{1, 2, \dots, k\},$ $D(v_j) = \{j, k\}, j = 1, 2, \dots, m - 1, D(v_j) = \{j\}, j = m, m + 1, \dots, k - 1.$

Now distribute other subsets of $\{1, 2, ..., k\}$ with cardinality between 2 and m + 1 to vertices $v_k, v_{k+1}, ..., v_n$. These n - k + 1 subsets are denoted by $D(v_k), D(v_{k+1}), ..., D(v_n)$, respectively.

Construct a mapping f from $V(K_{m,n}) \cup E(K_{m,n})$ to $\{1, 2, \ldots, k\}$ as follows: Put $f(u_i) = k, i = 1, 2, \ldots, m, f(v_j) = \min D(v_j), j = 1, 2, \ldots, n,$

 $f(u_i v_i) = k$ for $i = 1, 2, ..., m - 1, f(u_m v_m) = m$,

 $f(u_i v_j) = j, i = 1, 2, \dots, m, j = 1, 2, \dots, k - 1, i \neq j.$

For each $j = k, k+1, \ldots, n$, we recursively let $f(u_1v_j) = \min (D(u_1) \cap (D(v_j) \setminus \{f(v_j\})))$ or $f(u_1v_j) \in D(u_1) \cap D(v_j)$ when $D(u_1) \cap (D(v_j) \setminus \{f(v_j\}) = \emptyset$.

When $2 \le i \le m$, $f(u_i v_j) = \min (D(u_i) \cap (D(v_j) \setminus \{f(v_j), f(u_1 v_j), f(u_2 v_j) \dots, f(u_{i-1} v_j)\}))$ or $f(u_i v_j) \in D(u_i) \cap D(v_j)$ when $D(u_i) \cap (D(v_j) \setminus \{f(v_j), f(u_1 v_j), f(u_2 v_j), \dots, f(u_{i-1} v_j)\}) = \emptyset$.

It is not hard to see that $C_f(u_i) = D(u_i), i = 1, 2, ..., m; C_f(v_j) = D(v_j), j = 1, 2, ..., n$ and moreover $f(u_i) > f(v_j)$, therefore our coloring f is a vertex distinguishing IE-total coloring and then $\chi_{vt}^{ie}(K_{m,n}) \leq k$.

Theorem 6. Let $m \ge 2$, $\binom{m+2}{1} + \binom{m+2}{2} + \dots + \binom{m+2}{m+1} - 2m + 1 < n \le \binom{m+2}{1} + \binom{m+2}{2} + \dots + \binom{m+2}{m+1} - m$, *i.e.*, $2^{m+2} - 2m - 1 < n \le 2^{m+2} - m - 2$. Then $\chi_{vtt}^{ie}(K_{m,n}) = m + 3$.

Proof. When $2^{m+2}-2m-1 < n \le 2^{m+2}-m-2$, we have $\chi_{vt}^{ie}(K_{m,n}) \ge \xi(K_{m,n}) = m+2$. We first prove that $K_{m,n}$ does not have a (m+2)-VDIET coloring. Otherwise, suppose g is a VDIET coloring of $K_{m,n}$ using colors $1, 2, \ldots, m+2$.

Let $B_0 = \{g(u_1), g(u_2), \ldots, g(u_m)\}, B_i = \{1, 2, \ldots, m+2\} \setminus C_g(u_i), i = 1, 2, \ldots, m$. Note that $B_0, B_1, B_2, \ldots, B_m$ are distinct and at most one of them is an empty set. $B_0, B_1, B_2, \ldots, B_m$ are not the color sets of vertices v_1, v_2, \ldots, v_n . We give a fact as follows.

Observation 7. $|C_g(u_i)| \ge 2, i = 1, 2, ..., m$. Furthermore, there exists a vertex $v \in \{v_1, v_2, ..., v_n\}$ with $|C_q(v)| = 1$.

Proof. Suppose that there exists a vertex $u_i \in \{u_1, u_2, \ldots, u_m\}$ with $C_g(u_i) = \{\alpha\}, \alpha \in \{1, 2, \ldots, m+2\}$. Then $\alpha \in C_g(v_j), j = 1, 2, \ldots, n$. However, $2^{m+1} - 1 < 2^{m+2} - 2m - 1 < n$, i.e., the subsets of $\{1, 2, \ldots, m+2\}$ which contain α cannot distinguish n vertices, this is a contradiction. Therefore, $|C_g(u_i)| \ge 2, i = 1, 2, \ldots, m$.

Suppose $|C_g(v_j)| \ge 2, j = 1, 2, ..., n$, i.e., all 1-subsets of $\{1, 2, ..., m+2\}$ are not the color sets of vertices $u_1, u_2, ..., u_m, v_1, v_2, ..., v_n$. Therefore, there are at most $2^{m+2}-1-(m+2) < 2^{m+2}-1-m < m+n$ nonempty subsets of $\{1, 2, ..., m+2\}$ which may become the color sets of vertices $u_1, u_2, ..., u_m, v_1, v_2, ..., v_n$. This is a contradiction.

Using the above observation, without loss of generality, we assume $C_g(v_1) = \{1\}$, Then $1 \in C_g(u_i), i = 1, 2, ..., m, g(u_i) \neq 1, i = 1, 2, ..., m$.

It is obvious that $B_0, B_1, B_2, \ldots, B_m$ are not the color sets of any vertex $u_i, i = 1, 2, \ldots, m$. Therefore, there are at most $2^{m+2} - 1 - m < m + n$ nonempty subsets of $\{1, 2, \ldots, m+2\}$ which may become the color sets of vertices $u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n$. This is a contradiction.

So, $\chi_{vt}^{ie}(K_{m,n}) \ge m+3.$

In the following we prove that $K_{m,n}$ has a (m+3)-VDIET coloring when $2^{m+2} - 2m - 1 < n \leq 2^{m+2} - m - 2$.

By Theorem 5, we can give $K_{m,t}$ a (m+3)-VDIET coloring f using colors $1, 2, \ldots, m+3$, where $2^{m+2}-2-m < t \leq 2^{m+3}-2m-5$. Now delete the vertices $v_{n+1}, v_{n+2}, \ldots, v_t$ and their colors, delete the edges $u_i v_j, i = 1, 2, \ldots, m, j = n + 1, n+2, \ldots, t$ and their colors. It is not hard to see that under the resulting coloring the color sets of $u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n$ do not change, so we get a (m+3)-VDIET coloring g of $K_{m,n}$ using colors $1, 2, \ldots, m+3$.

Theorem 8. Let s be the minimum positive integer such that $2^s - 1 \ge 3m$. When $2^r - 2m - 1 < n \le 2^{r+1} - 2m - 1$, we have $\chi_{vt}^{ie}(K_{m,n}) = r + 1$, where r = m + 1, m, m - 1 and $r \ge s$.

Proof.
$$\xi(K_{m,n}) = \begin{cases} r, & \text{when } 2^r - 2m - 1 < n \le 2^r - m - 1; \\ r+1, & \text{when } 2^r - m - 1 < n \le 2^{r+1} - 2m - 1 \end{cases}$$

When $2^r - 2m - 1 < n \leq 2^r - m - 1$, it is obvious that $\chi_{vt}^{ie}(K_{m,n}) \geq r$. We prove that $K_{m,n}$ does not have an *r*-VDIET coloring when r = m + 1, m, m - 1. If not, let *g* be an *r*-VDIET coloring of $K_{m,n}$ using colors $1, 2, \ldots, r$. First we give four claims as follows.

Claim 9. $|C(v_j)| \ge 2, j = 1, 2, \dots, n.$

Proof. Suppose the claim is not true, without loss of generality, we assume $C(v_1) = \{1\}$. Then $1 \in C(u_i), i = 1, 2, ..., m$. Let $B_0 = \{g(u_1), g(u_2), ..., g(u_m)\}$, $B_i = \{1, 2, ..., r\} \setminus C(u_i), i = 1, 2, ..., m$. Note that $1 \notin B_0, 1 \notin B_i, i = 1, 2, ..., m$, we have $B_0, B_1, B_2, ..., B_m$ are distinct and not the color sets of vertices $u_1, u_2, ..., u_m$. Moreover, none of $B_0, B_1, B_2, ..., B_m$ is the color set of any vertex $v_j, j = 1, 2, ..., n$, (because $C(u_i) \cap C(v_j) = \emptyset, i = 1, 2, ..., m, j = 1, 2, ..., n$, and two adjacent vertices must have different colors). At most one of $B_0, B_1, B_2, ..., B_m$ is an empty set, so there are at most $2^r - 1 - m$ nonempty subsets of $\{1, 2, ..., r\}$ which are available for the vertices $u_1, u_2, ..., u_m, v_1, v_2, ..., v_n$. However, $2^r - 1 - m < m + n$, i.e., these subsets cannot distinguish m + n vertices, this is a contradiction.

Claim 10. $|C(u_i)| \ge 2, i = 1, 2, \dots, m.$

Proof. Suppose the claim is not true. Without loss of generality we assume $C(u_1) = \{1\}$. Then $1 \in C(v_j), j = 1, 2, ..., n$. Thus, $\overline{C}(v_1), \overline{C}(v_2), ..., \overline{C}(v_n)$ are not available for vertices $v_1, v_2, ..., v_n$. Moreover, $\overline{C}(v_1), \overline{C}(v_2), ..., \overline{C}(v_n)$ cannot be the color sets of vertices $u_1, u_2, ..., u_m$ because $C(u_i) \cap C(v_j) \neq \emptyset$. At most one of $\overline{C}(v_1), \overline{C}(v_2), ..., \overline{C}(v_n)$ is an empty set, so there are at most $2^r - 1 - (n-1)$ nonempty subsets of $\{1, 2, ..., r\}$ which can be the color sets of vertices $u_1, u_2, ..., u_m, v_1, v_2, ..., v_n$. However, $2^r - 1 - (n-1) \leq 2^r - 1 - m < m + n$, these subsets cannot distinguish m + n vertices, this is a contradiction.

Claim 11. $C(u_1) \cap C(u_2) \cap \cdots \cap C(u_m) = \emptyset$.

Proof. Suppose $1 \in C(u_i), i = 1, 2, ..., m$. Then the m + 1 distinct subsets $\{1\}, \overline{C}(u_1), \overline{C}(u_2), \ldots, \overline{C}(u_m)$ are not available for any vertex, and at most one of them is an empty set. Then there are at most $2^r - 1 - m$ subsets of $\{1, 2, \ldots, r\}$ which can be the color sets of vertices $u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n$. However, $2^r - 1 - m < m + n$, so these subsets cannot distinguish m + n vertices, this is a contradiction.

Claim 12. $C(v_1) \cap C(v_2) \cap \cdots \cap C(v_n) = \emptyset$.

Proof. Suppose $1 \in C(v_j), j = 1, 2, ..., n$. Then the n + 1 distinct subsets $\{1\}, \overline{C}(v_1), \overline{C}(v_2), ..., \overline{C}(v_n)$ are not available for any vertex, and at most one of them is an empty set. The remaining $2^r - 1 - n$ subsets of $\{1, 2, ..., r\}$ cannot distinguish m + n vertices because $2^r - 1 - n \leq 2^r - 1 - m < m + n$, this is a contradiction.

Now we consider two cases.

Case 1. r = m, m + 1. By Claims 9 and 10, all 1-subsets of $\{1, 2, \ldots, r\}$ cannot be the color sets of any vertex. So there are at most $2^r - 1 - r \leq 2^r - m - 1 < m + n$ subsets of $\{1, 2, \ldots, r\}$ which are available for vertices $u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n$. This is a contradiction.

Case 2. r = m-1. By Claims 9 and 10, all the 1-subsets $\{1\}, \{2\}, \ldots, \{m-1\}$ cannot be the color sets of any vertex. The remaining $2^{m-1} - 1 - (m-1) = 2^{m-1} - m$ subsets of $\{1, 2, \ldots, m-1\}$ cannot distinguish m + n vertices when $2^{m-1} - 2m < n \le 2^{m-1} - m - 1$, this is a contradiction, so $K_{m,n}$ does not have an (m-1)-VDIET coloring when $2^{m-1} - 2m < n \le 2^{m-1} - m - 1$.

Now we consider the case $n = 2^{m-1} - 2m$. Let $t = |\{g(u_1), g(u_2), \ldots, g(u_m)\}|$. Without loss of generality we assume $\{g(u_1), g(u_2), \ldots, g(u_m)\} = \{1, 2, \ldots, t\}$. By Claims 11 and 12 we know that $2 \le t \le r-2$, thus if $r \le 3$, this is a contradiction. So $r \ge 4$. None of 2-subsets of $\{1, 2, \ldots, t\}$ is available for v_1, v_2, \ldots, v_n .

If $\{1,2\} \notin \{C(u_1), C(u_2), \ldots, C(u_m)\}$, then at most $2^{m-1} - 1 - m < m + n$ subsets of $\{1, 2, \ldots, m-1\}$ are available for vertices $u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n$, this is a contradiction.

Therefore, $\{1,2\} \in \{C(u_1), C(u_2), \ldots, C(u_m)\}$. Without loss of generality, assume $C(u_1) = \{1,2\}$. By Claim 12, there are at least two colors among v_1, v_2, \ldots, v_n , say t + 1, t + 2. Then $\{t + 1, t + 2\} \notin \{C(u_1), C(u_2), \ldots, C(u_m)\}$. If $\{t + 1, t + 2\} \notin \{C(v_1), C(v_2), \ldots, C(v_n)\}$, then at most $2^{m-1} - 1 - m < m + n$ subsets of $\{1, 2, \ldots, m - 1\}$ are available for vertices $u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n$, this is a contradiction. Thus $\{t + 1, t + 2\} \in \{C(v_1), C(v_2), \ldots, C(v_n)\}$. Then $t + 1 \in C(u_i)$ or $t + 2 \in C(u_i), i = 1, 2, \ldots, m$. However, $C(u_1) = \{1, 2\}$, this is a contradiction.

So, $K_{m,n}$ does not have an *r*-VDIET coloring when $2^{m-1} - 2m \le n \le 2^{m-1} - m - 1$ and r = m + 1, m, m - 1.

In the following we give an (r + 1)-VDIET coloring of $K_{m,n}$ using colors $1, 2, \ldots, r, r + 1$, where r = m - 1, m, m + 1.

Let $V(K_{m,n}) = \{u_1, u_2, \dots, u_m, v_1, v_2, \dots, v_n\}$ and $E(K_{m,n}) = \{u_i v_j : i = 1, 2, \dots, m; j = 1, 2, \dots, n\}.$

Put $D(u_i) = \{1, 2, \dots, r+1\} \setminus \{i\}, i = 1, 2, \dots, m-1, D(u_m) = \{1, 2, \dots, r+1\}; D(v_j) = \{j, r+1\}, j = 1, 2, \dots, m-1.$

296

When r = m + 1, put $D(v_{r-1}) = \{r - 1\}, D(v_r) = \{r\}$. When r = m, put $D(v_r) = \{r\}$.

Now distribute other subsets of $\{1, 2, \ldots, r+1\}$ with cardinality between 2 and r to vertices $v_{r+1}, v_{r+2}, \ldots, v_n$. These n-r subsets are denoted by $D(v_{r+1}), D(v_{r+2}), \ldots, D(v_n)$, respectively.

Construct a mapping f from $V(K_{m,n}) \cup E(K_{m,n})$ to $\{1, 2, ..., r+1\}$ as follows: Put $f(u_i) = r + 1, i = 1, 2, ..., m, f(v_j) = \min D(v_j), j = 1, 2, ..., n, f(u_i v_i) = r + 1$ for $i = 1, 2, ..., m - 1, f(u_i v_j) = j, i = 1, 2, ..., m, j = 1, 2, ..., m - 1, i \neq j, f(u_i v_j) = j, i = 1, 2, ..., m, j = m, ..., r$ (if r = m or m + 1).

For each j = r + 1, r + 2, ..., n, we recursively let $f(u_1v_j) = \min(D(u_1) \cap (D(v_j) \setminus \{f(v_j)\}))$ or $f(u_1v_j) \in D(u_1) \cap D(v_j)$ when $D(u_1) \cap (D(v_j) \setminus \{f(v_j)\}) = \emptyset$.

When $2 \le i \le m$, $f(u_i v_j) = \min (D(u_i) \cap (D(v_j) \setminus \{f(v_j), f(u_1 v_j), f(u_2 v_j), \dots, f(u_{i-1} v_j)\}))$ or $f(u_i v_j) \in D(u_i) \cap D(v_j)$ when $D(u_i) \cap (D(v_j) \setminus \{f(v_j), f(u_1 v_j), f(u_2 v_j), \dots, f(u_{i-1} v_j)\}) = \emptyset$.

It is not hard to see that $C_f(u_i) = D(u_i), i = 1, 2, ..., m; C_f(v_j) = D(v_j), j = 1, 2, ..., n$ and moreover $f(u_i) > f(v_j)$, therefore our coloring f is a vertex distinguishing IE-total coloring and then $\chi_{vt}^{ie}(K_{m,n}) \leq r+1, r=m-1, m, m+1$.

So $\chi_{vt}^{ie}(K_{m,n}) = r+1, r = m-1, m, m+1.$

Theorem 13.
$$\chi_{vt}^{ie}(K_{1,n}) = \begin{cases} 2, & when \ n = 1; \\ 3, & when \ n = 2; \\ k, & when \ \binom{k-1}{1} + \binom{k-1}{2} - 1 < n \le \binom{k}{1} + \binom{k}{2} - 1, \\ & k \ge 3. \end{cases}$$

Proof. It is easy to prove the theorem in the case n = 1, 2. By Theorem 5, this theorem is valid when $\binom{k-1}{1} + \binom{k-1}{2} - 1 < n \le \binom{k}{1} + \binom{k}{2} - 1, k \ge 3$.

Theorem 14.
$$\chi_{vt}^{ie}(K_{2,n}) = \begin{cases} 3, & when \ n = 2, 3; \\ 4, & when \ n = 4, 5, \dots, 11; \\ 5, & when \ n = 12; \\ k, & when \ \binom{k-1}{1} + \binom{k-1}{2} + \binom{k-1}{3} - 2 < n \\ & \leq \binom{k}{1} + \binom{k}{2} + \binom{k}{3} - 2, k \ge 5. \end{cases}$$

Proof. By Theorem 5, 6, 8 respectively we know the theorem is valid in each case when $n \ge 4$. Now we consider the case n = 2, 3. It is obvious that $\chi_{vt}^{ie}(K_{2,n}) \ge \xi(K_{2,n}) = 3$ when n = 2, 3. Let $V(K_{2,n}) = \{u_1, u_2, v_1, v_2, \ldots, v_n\}$ and $E(K_{2,n}) = \{u_i v_j : 1 \le i \le 2, 1 \le j \le n\}$. We give a 3-VDIET coloring of $K_{2,n}$ using colors 1, 2, 3 when n = 2, 3.

Let u_1, u_2 receive color 1, v_1 and its incident edges receive color 2. We assign color 3, 3, 1 to v_2, u_1v_2, u_2v_2 , respectively. And when n = 3, we assign color 2, 3, 2 to v_3, u_1v_3, u_2v_3 , respectively. Then under the above coloring, we have $C(u_1) = \{1, 2, 3\}, C(u_2) = \{1, 2\}, C(u_2), C(u_2) = \{1, 2\}, C(u_2), C(u_2$ $C(v_1) = \{2\}, C(v_2) = \{1,3\}$ and $C(v_3) = \{2,3\}$ (when n = 3). Thus the above coloring is a VDIET coloring of $K_{2,n}(n=2,3)$ using 3 colors.

$$\textbf{Theorem 15. } \chi_{vt}^{ie}(K_{3,n}) = \begin{cases} 4, & when \ 3 \le n \le 9; \\ 5, & when \ 10 \le n \le 25; \\ 6, & when \ n = 26, 27; \\ k, & when \ \binom{k-1}{1} + \dots + \binom{k-1}{4} - 3 < n \\ & \le \binom{k}{1} + \dots + \binom{k}{4} - 3, k \ge 6. \end{cases}$$

Proof. By Theorem 5, 6, 8 respectively we know the theorem is valid in each case when $n \ge 10$. Now we consider the case $3 \le n \le 9$.

 $3, 1 \leq j \leq n$. We prove $K_{3,n}$ does not have a 3-VDIET coloring when n = 3, 4. If not, let g be a 3-VDIET coloring of $K_{3,n}$ using colors 1, 2, 3. Then $|C(u_i)| \geq 1$ 2, i = 1, 2, 3. (Otherwise we assume $C(u_1) = \{1\}$. Then $1 \in C(v_j), j = 1, 2, ..., n$. Thus $\overline{C}(v_1), \overline{C}(v_2), \ldots, \overline{C}(v_n)$ are not available for any vertex and at most one of them is an empty set. Therefore there are at most $2^3 - 1 - 2 = 5$ nonempty subsets of $\{1, 2, 3\}$ which can be the color sets of vertices $u_1, u_2, u_3, v_1, v_2, \ldots, v_n$. Five subsets cannot distinguish n + 3 vertices when n = 3, 4, this is a contradiction). Furthermore, $|C(v_j)| \ge 2, j = 1, 2, \dots, n$. (Otherwise we assume $C(v_1) = \{1\}$. Then $1 \in C(u_i), i = 1, 2, 3$. Thus $\overline{C}(u_1), \overline{C}(u_2), \overline{C}(u_3)$ are not available for any vertex and at most one of them is an empty set. Therefore there are at most $2^3 - 1 - 2 = 5$ nonempty subsets of $\{1, 2, 3\}$ which can be the color sets of vertices $u_1, u_2, u_3, v_1, v_2, \ldots, v_n$. Five subsets cannot distinguish n+3 vertices when n = 3, 4, this is a contradiction.) So three 1-subsets of $\{1, 2, 3\}$ are not available for any vertx, the remaining 4 nonempty subsets of $\{1, 2, 3\}$ cannot distinguish n+3 vertices when n=3,4, this is a contradiction. Therefore, $\chi_{vt}^{ie}(K_{3,n}) \geq 4$ when n = 3, 4.

In the following we give a 4-VDIET coloring of $K_{3,n}$ using colors 1, 2, 3, 4 when $3 \le n \le 9$.

Let u_1, u_2, u_3 receive color 4. Suppose $S_1 = (\{3\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,3\}, \{1,4\}, \{1,4\}, \{2,3\}, \{1,4\}, \{1,4\}, \{2,3\}, \{1,4\},$ $\{2,4\},\{3,4\},\{1,2,3\},\{1,2,4\}$ and let $D(v_i)$ be the *i*-th term of $S_1, i = 1, 2, \ldots, n$. Let v_1 and its incident edges receive color 3, let v_2, u_3v_2 receive color 1 and u_1v_2, u_2v_2 receive color 2.

For $D(v_j) = \{a, b\}, 3 \le j \le n, a < b$, we assign a to u_1v_j and v_j , assign b to u_2v_i and u_3v_i .

For $D(v_i) = \{a, b, c\}, a < b < c$, we assign a, b, c to u_1v_j, u_2v_j, u_3v_j respectively and assign b to v_i .

298

Then $C(u_1) = \{1, 2, 3, 4\}, C(u_2) = \{2, 3, 4\}, C(u_3) = \{1, 3, 4\}$ and $C(v_j) = D(v_j), j = 1, 2, ..., n$ with respect to the above coloring. Thus the above coloring is a VDIET coloring of $K_{3,n}(3 \le n \le 9)$ using 4 colors.

Theorem 16.
$$\chi_{vt}^{ie}(K_{4,n}) = \begin{cases} 4, & when \ 4 \le n \le 7; \\ 5, & when \ 8 \le n \le 23; \\ 6, & when \ 24 \le n \le 55; \\ 7, & when \ 56 \le n \le 58; \\ k, & when \ \binom{k-1}{1} + \dots + \binom{k-1}{5} - 4 < n \\ & \le \binom{k}{1} + \dots + \binom{k}{5} - 4, k \ge 7. \end{cases}$$

Proof. It is easy to verify the theorem is valid in each case when $n \ge 8$ by Theorem 5, 6, 8 respectively. Now we consider the case $4 \le n \le 7$.

It is obvious $\chi_{vt}^{ie}(K_{4,n}) \geq \xi(K_{4,n}) = 4$, when $4 \leq n \leq 7$.

In the following we give a 4-VDIET coloring of $K_{4,n}$ using colors 1, 2, 3, 4 when $4 \le n \le 7$. Let $V(K_{4,n}) = \{u_1, u_2, u_3, u_4, v_1, v_2, \dots, v_n\}$ and $E(K_{4,n}) = \{u_i v_j : i = 1, 2, 3, 4; j = 1, 2, \dots, n\}.$

Let u_1, u_2, u_3, u_4 receive color 4. Suppose $S_2 = (\{1, 4\}, \{2, 4\}, \{3, 4\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\})$ and let $D(v_i)$ be the *i*-th term of S_2 , i = 1, 2, ..., n. Let v_i receive the minimum number of $D(v_i)$, i = 1, 2, ..., n.

For $D(v_j) = \{j, 4\}, j = 1, 2, 3$, we assign color 4 to $u_j v_j$ and color j to $u_i v_j, i = 1, 2, 3, 4, i \neq j$.

For $D(v_j) = \{a, b\}, 4 \leq j \leq n, a < b$, we assign color b to all edges $u_i v_j$ if $i \neq b$ and color a to its remaining incident edge $u_b v_j$.

For $D(v_j) = \{1, 2, 3\}$, we assign color 2 to $u_i v_j$ if $i \neq 2$ and assign color 3 to $u_2 v_j$.

Then $C(u_i) = \{1, 2, 3, 4\} \setminus \{i\}, i = 1, 2, 3, C(u_4) = \{1, 2, 3, 4\}$ and $C(v_j) = D(v_j), j = 1, 2, ..., n$ with respect to the above coloring. Thus the above coloring is a 4-VDIET coloring of $K_{4,n}, 4 \le n \le 7$.

$$\textbf{Theorem 17. } \chi_{vt}^{ie}(K_{5,n}) = \begin{cases} 5, & when \ 6 \le n \le 21; \\ 6, & when \ 22 \le n \le 53; \\ 7, & when \ 54 \le n \le 117; \\ 8, & when \ 118 \le n \le 121; \\ k, & when \ \binom{k-1}{1} + \dots + \binom{k-1}{6} - 5 < n \\ & \le \binom{k}{1} + \dots + \binom{k}{6} - 5, k \ge 8. \end{cases}$$

Proof. By Theorem 5, 6, 8 respectively we know the theorem is valid in each case.

$$\mathbf{Theorem 18.} \ \chi_{vt}^{ie}(K_{6,n}) = \begin{cases} 5, & when \ 6 \le n \le 19; \\ 6, & when \ 20 \le n \le 51; \\ 7, & when \ 52 \le n \le 115; \\ 8, & when \ 116 \le n \le 243; \\ 9, & when \ 244 \le n \le 248; \\ k, & when \ \binom{k-1}{1} + \dots + \binom{k-1}{7} - 6 < n \\ & \le \binom{k}{1} + \dots + \binom{k}{7} - 6, k \ge 9. \end{cases}$$

Proof. By Theorem 5, 6, 8 respectively we know the theorem is valid in each case when $n \ge 20$. Now we consider the case $6 \le n \le 19$.

 $\xi(K_{6,n}) = \begin{cases} 4, & \text{when } 6 \le n \le 9; \\ 5, & \text{when } 10 \le n \le 19. \end{cases}$

Let $V(K_{6,n}) = \{u_1, u_2, \ldots, u_6, v_1, v_2, \ldots, v_n\}$ and $E(K_{6,n}) = \{u_i v_j : 1 \le i \le 6, 1 \le j \le n\}$. We prove $K_{6,n}$ does not have a 4-VDIET coloring when $6 \le n \le 9$. If not, suppose g is a 4-VDIET coloring of $K_{6,n}$ ($6 \le n \le 9$) using colors 1, 2, 3, 4. Then $|C(u_i)| \ge 2, i = 1, 2, \ldots, 6$. (Otherwise we assume $C(u_1) = \{1\}$. Then $1 \in C(v_j), j = 1, 2, \ldots, n$. Thus $\overline{C}(v_1), \overline{C}(v_2), \ldots, \overline{C}(v_n)$ are not available for any vertex and at most one of them is an empty set. Therefore there are at most $2^4 - 1 - 5 = 10$ nonempty subsets of $\{1, 2, 3, 4\}$ which can be the color sets of vertices $u_1, u_2, \ldots, u_6, v_1, v_2, \ldots, v_n$. These subsets cannot distinguish n + 6 vertices when $6 \le n \le 9$, this is a contradiction.)

Furthermore, $|C(v_j)| \geq 2, j = 1, 2, ..., n$. (Otherwise we assume $C(v_1) = \{1\}$, then $1 \in C(u_i), i = 1, 2, ..., 6$. Thus $\overline{C}(u_1), \overline{C}(u_2), ..., \overline{C}(u_6)$ are not available for any vertex and at most one of them is an empty set. Therefore there are at most $2^4 - 1 - 5 = 10$ nonempty subsets of $\{1, 2, 3, 4\}$ which can be the color sets of vertices $u_1, u_2, ..., u_6, v_1, v_2, ..., v_n$. These subsets cannot distinguish n + 6 vertices when $6 \leq n \leq 9$, this is a contradiction.) So four 1-subsets of $\{1, 2, 3, 4\}$ cannot distinguish n + 6 vertices when $6 \leq n \leq 9$, this is a contradiction. Therefore, $\chi_{vt}^{ie}(K_{6,n}) \geq 5$ when $6 \leq n \leq 9$.

In the following we give a 5-VDIET coloring of $K_{6,n}$ using colors 1, 2, 3, 4, 5 when $6 \le n \le 19$.

Let u_1, u_2, \ldots, u_6 receive color 5. Suppose $S_3 = (\{1, 5\}, \{2, 5\}, \{3, 5\}, \{4, 5\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{1, 3, 5\}, \{1, 4, 5\}, \{2, 3, 4\}, \{2, 3, 5\}, \{2, 4, 5\}, \{3, 4, 5\}, \{1, 2, 3, 4\})$ and let $D(v_i)$ be the *i*-th term of S_3 , $i = 1, 2, \ldots, n$. Let $D(u_i) = \{1, 2, 3, 4, 5\} \setminus \{i\}, i = 1, 2, 3, 4, D(u_5) = \{1, 2, 3, 4, 5\}$ and $D(u_6) = \{1, 2, 5\}$.

Let $u_i v_i (i = 1, 2, 3, 4), u_6 v_3$ and $u_6 v_4$ receive color 5. Let v_j and the other incident edges of v_j receive color j, j = 1, 2, 3, 4.

For $D(v_j) = \{a, b\}, 5 \le j \le n, a < b$, we assign b to $u_i v_j$ if $b \in D(u_i)$, assign a to v_j and its remaining incident edges.

For $D(v_j) = \{a, b, c\}, \{b, c\} \neq \{3, 4\}, a < b < c$, we assign b to $u_i v_j$ if $b \in D(u_i)$, assign c to $u_i v_j$ if $b \notin D(u_i)$, and assign a to v_j .

For $D(v_j) = \{a, 3, 4\}$, a = 1, 2, we assign a to $u_i v_j$ if $a \in D(u_i)$, assign 3 to $u_i v_j$ if $a \notin D(u_i)$, and assign 4 to v_j .

For $D(v_j) = \{1, 2, 3, 4\}$, we assign 3 to $u_i v_j$ if $3 \in D(u_i)$, assign 4 to $u_3 v_j$, assign 2 to $u_6 v_j$, and assign 1 to v_j .

Then $C(u_i) = D(u_i), 1 \le i \le 6$ and $C(v_j) = D(v_j), 1 \le j \le n$ with respect to the above coloring. Thus the above coloring is a 5-VDIET coloring of $K_{6,n}, 6 \le n \le 19$.

$$\mathbf{Theorem 19.} \ \chi_{vt}^{ie}(K_{7,n}) = \begin{cases} 5, & when \ 7 \le n \le 17; \\ 6, & when \ 18 \le n \le 49; \\ 7, & when \ 50 \le n \le 113; \\ 8, & when \ 114 \le n \le 241; \\ 9, & when \ 242 \le n \le 497; \\ 10, & when \ 498 \le n \le 503; \\ k, & when \ \binom{k-1}{1} + \dots + \binom{k-1}{8} - 7 < n \\ & \le \binom{k}{1} + \dots + \binom{k}{8} - 7, k \ge 10. \end{cases}$$

Proof. By Theorem 5, 6, 8 respectively we know the theorem is valid in each case when $n \ge 50$. Now we consider the case $n \le 49$.

$$\xi(K_{7,n}) = \begin{cases} 4, & \text{when } n = 7, 8; \\ 5, & \text{when } 9 \le n \le 24; \\ 6, & \text{when } 25 \le n \le 49. \end{cases}$$

Let $V(K_{7,n}) = \{u_1, u_2, \dots, u_7, v_1, v_2, \dots, v_n\}$ and $E(K_{7,n}) = \{u_i v_j : 1 \le i \le 1\}$

 $7, 1 \le j \le n \}.$

We prove $K_{7,n}$ does not have a 4-VDIET coloring when n = 7, 8. If not, suppose g is a 4-VDIET coloring of $K_{7,n}(n = 7, 8)$ using colors 1, 2, 3, 4. Then $|C(u_i)| \ge 2, i = 1, 2, ..., 7$. Otherwise we assume $C(u_1) = \{1\}$. Then $1 \in C(v_j), j = 1, 2, ..., n, n = 7, 8$. Thus $\overline{C}(v_1), \overline{C}(v_2), ..., \overline{C}(v_n)$ are not available for any vertex and at most one of them is an empty set. Therefore there are at most $2^4 - 1 - 6 = 9$ nonempty subsets of $\{1, 2, 3, 4\}$ which can be the color sets of vertices $u_1, u_2, ..., u_7, v_1, v_2, ..., v_n$. These subsets cannot distinguish 14 or 15 vertices, this is a contradiction.

Furthermore, $|C(v_j)| \geq 2, j = 1, 2, ..., n, n = 7, 8$. Otherwise we assume $C(v_1) = \{1\}$. Then $1 \in C(u_i), i = 1, 2, ..., 7$. Thus $\overline{C}(u_1), \overline{C}(u_2), ..., \overline{C}(u_7)$ are not available for any vertex and at most one of them is an empty set. Therefore there are at most $2^4 - 1 - 6 = 9$ nonempty subsets of $\{1, 2, 3, 4\}$ which can be the color sets of vertices $u_1, u_2, ..., u_7, v_1, v_2, ..., v_n$. These subsets cannot distinguish 14 or 15 vertices, this is also a contradiction.) So four 1-subsets of $\{1, 2, 3, 4\}$ are not available for any vertex, the remaining 11 nonempty subsets of

 $\{1, 2, 3, 4\}$ cannot distinguish 14 or 15 vertices, this is a contradiction. Therefore, $\chi_{vt}^{ie}(K_{7,n}) \geq 5$ when n = 7, 8.

In the following we give a 5-VDIET coloring of $K_{7,n}$ using colors 1, 2, 3, 4, 5 when $7 \le n \le 17$.

Let u_1, u_2, \ldots, u_7 receive color 5. Suppose $S_4 = (\{1, 5\}, \{2, 5\}, \{3, 5\}, \{4, 5\}, \{1, 2\}, \{1, 4\}, \{2, 3\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}, \{1, 3, 4\}, \{1, 4, 5\}, \{2, 3, 4\}, \{2, 3, 5\}, \{3, 4, 5\}, \{1, 2, 3, 4\})$ and let $D(v_i)$ be the *i*-th term of $S_4, i = 1, 2, \ldots, n$. Let $D(u_i) = \{1, 2, 3, 4, 5\} \setminus \{i\}, i = 1, 2, 3, 4, D(u_5) = \{1, 3, 5\}, D(u_6) = \{2, 4, 5\}$ and $D(u_7) = \{1, 2, 3, 4, 5\}$.

Let u_1v_1 and u_6v_1 receive color 5, v_1 and its other incident edges receive color 1. Let u_2v_2 and u_5v_2 receive color 5, v_2 and its other incident edges receive color 2. Let u_3v_3 and u_6v_3 receive color 5, v_3 and its other incident edges receive color 3. Let u_4v_4 and u_5v_4 receive color 5, v_4 and its other incident edges receive color 4.

For $D(v_j) = \{a, b\}, 5 \leq j \leq n, a < b$, we assign b to $u_i v_j$ if $b \in D(u_i)$, assign a to v_j and its remaining incident edges.

For $D(v_j) = \{a, b, c\}, \{a, b, c\} \neq \{1, 2, 4\}, a < b < c$, we assign b to $u_i v_j$ if $b \in D(u_i)$, assign c to $u_i v_j$ if $b \notin D(u_i)$, and assign a to v_j .

For $D(v_j) = \{1, 2, 4\}$, we assign 1 to $u_i v_j$ if $1 \in D(u_i)$, assign 2 to $u_i v_j$ if $1 \notin D(u_i)$, and assign 4 to v_j .

For $D(v_j) = \{1, 2, 3, 4\}$, we assign 2 to $u_i v_j$ if $2 \in D(u_i)$, assign 4, 3, 1 to $u_2 v_j$, $u_5 v_j$ and v_j respectively.

Then $C(u_i) = D(u_i), 1 \le i \le 7$ and $C(v_j) = D(v_j), j = 1, 2, ..., n$ with respect to the above coloring. Thus the above coloring is a 5-VDIET coloring of $K_{7,n}, 7 \le n \le 17$.

We prove $K_{7,n}$ does not have a 5-VDIET coloring when $18 \le n \le 24$. If not, suppose g is a 5-VDIET coloring of $K_{7,n}(18 \le n \le 24)$ using colors 1, 2, 3, 4, 5. First we give four claims as follows.

Claim 20. $|C(u_i)| \ge 2, i = 1, 2, \dots, 7.$

Proof. Suppose the claim is not true, without loss of generality we assume $C(u_1) = \{1\}$. Then $1 \in C(v_j), j = 1, 2, ..., n, 18 \le n \le 24$. Thus $\overline{C}(v_1), \overline{C}(v_2), ..., \overline{C}(v_n)$ are not available for any vertex and at most one of them is an empty set. Therefore there are at most $2^5 - 1 - 17 = 14$ nonempty subsets of $\{1, 2, 3, 4, 5\}$ which can be the color sets of vertices $u_1, u_2, ..., u_7, v_1, v_2, ..., v_n$. These subsets cannot distinguish n + 7 vertices when $18 \le n \le 24$, this is a contradiction.

Claim 21. $|C(v_j)| \ge 2, j = 1, 2, \dots, n, 18 \le n \le 24.$

Proof. Suppose the claim is not true, without loss of generality we assume $C(v_1) = \{1\}$. Then $1 \in C(u_i), i = 1, 2, ..., 7$. Thus $\overline{C}(u_1), \overline{C}(u_2), ..., \overline{C}(u_7), \{g(u_1), g(u_2), \ldots, g(u_7)\}$ are not available for any vertex and at most one of them

is an empty set. Therefore there are at most $2^5 - 1 - 7 = 24$ nonempty subsets of $\{1, 2, 3, 4, 5\}$ which can be the color sets of vertices $u_1, u_2, \ldots, u_7, v_1, v_2, \ldots, v_n$. These subsets cannot distinguish n + 7 vertices when $18 \le n \le 24$, this is also a contradiction.

Claim 22. $C(u_1) \cap C(u_2) \cap \cdots \cap C(u_7) = \emptyset$.

Claim 23. $C(v_1) \cap C(v_2) \cap \cdots \cap C(v_n) = \emptyset$, $18 \le n \le 24$.

The proofs of Claim 22 and Claim 23 are analogous to the proofs of Claim 11 and Claim 12 in Theorem 8, respectively.

By Claims 20 and 21, five 1-subsets of $\{1, 2, 3, 4, 5\}$ are not available for any vertex. The remaining 26 nonempty subsets of $\{1, 2, 3, 4, 5\}$ cannot distinguish n+7 vertices when $20 \le n \le 24$, this is a contradiction. So we assume n=18,19in the following.

Let $t = |\{g(u_1), g(u_2), \dots, g(u_7)\}|$, and $\{g(u_1), g(u_2), \dots, g(u_7)\} = \{1, 2, \dots, t\},\$ by Claim 22 and Claim 23, we know that t = 2 or t = 3.

Case 1. t = 2, $\{f(u_1), f(u_2), \dots, f(u_7)\} = \{1, 2\}$. Of course $\{1, 2\} \notin \{C(v_1), \dots, f(v_7)\} = \{1, 2\}$. $C(v_2), \ldots, C(v_n)$. If $\{1, 2\} \in \{C(u_1), C(u_2), \ldots, C(u_7)\}$, then $1 \in C(v_j)$ or $2 \in C(v_j), j = 1, 2, ..., n$. Thus $\{3, 4\}, \{3, 5\}, \{4, 5\}, \{3, 4, 5\}$ cannot be the color sets of any vertices. Moreover, five 1-subsets are not available for any vertex. Then at most $2^5 - 1 - 5 - 4 = 22$ nonempty subsets of $\{1, 2, 3, 4, 5\}$ are available for the vertices $u_1, u_2, \ldots, u_7, v_1, v_2, \ldots, v_n$. This is a contradiction because 22 subsets cannot distinguish 25 (when n = 18) or 26 (when n = 19) vertices. So $\{1, 2\}$ is not available for any vertex.

If $|C(u_i)| \geq 3, i = 1, 2, \ldots, 7$, then $\overline{C}(u_1), \overline{C}(u_2), \ldots, \overline{C}(u_7)$ cannot be the color sets of any vertices because there are 5 colors in all. At most one of $\overline{C}(u_1), \overline{C}(u_2), \ldots, \overline{C}(u_7)$ is an empty set, so there are at most $2^5 - 1 - 6 - 1 = 24$ nonempty subsets of $\{1, 2, 3, 4, 5\}$ are available for the vertices $u_1, u_2, \ldots, u_7, v_1, v_2$, \ldots, v_n . This is a contradiction because 24 subsets cannot distinguish 25 (when n = 18) or 26 (when n = 19) vertices.

Therefore, there exists a vertex u_{i_0} with $|C(u_{i_0})| = 2$. Since $\{1,2\}$ is not available for any vertex, so without loss of generality, we assume $C(u_{i_0}) = \{1, 3\}$, then $1 \in C(v_i)$ or $3 \in C(v_i), j = 1, 2, \dots, n$. Thus $\{4, 5\}$ is not available for any vertex. Furthermore, $\{1,2\}$ and five 1-subsets are not available for any vertex. There are at most $2^{5} - 1 - 5 - 2 = 24$ nonempty subsets of $\{1, 2, 3, 4, 5\}$ are available for the vertices $u_1, u_2, \ldots, u_7, v_1, v_2, \ldots, v_n$. This is a contradiction because 24 subsets cannot distinguish 25 (when n = 18) or 26 (when n = 19) vertices.

So $K_{7,n}(n = 18, 19)$ does not have a 5-VDIET coloring in this case.

Case 2. t = 3, $\{f(u_1), f(u_2), \dots, f(u_7)\} = \{1, 2, 3\}$. By Claim 23, $|\{f(v_1), f(v_2), \dots, f(v_7)\} = \{1, 2, 3\}$. $|f(v_2), \ldots, f(v_n)| \ge 2$, so $\{f(v_1), f(v_2), \ldots, f(v_n)\} = \{4, 5\}$. Then $\{4, 5\}$ is not the color set of any vertex u_i , i = 1, 2, ..., 7. If $\{4, 5\} \in \{C(v_1), C(v_2), ..., C(v_n)\}$, then $4 \in C(u_i)$ or $5 \in C(u_i)$, i = 1, 2, ..., 7. Thus $\{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}$ cannot be the color sets of any vertex. Moreover, five 1-subsets are not available for any vertex. Then at most $2^5 - 1 - 5 - 4 = 22$ nonempty subsets of $\{1, 2, 3, 4, 5\}$ are available for the vertices $u_1, u_2, ..., u_7, v_1, v_2, ..., v_n$. This is a contradiction because 22 subsets cannot distinguish 25 (when n = 18) or 26 (when n = 19) vertices. So $\{4, 5\}$ is not available for any vertex.

If $|C(v_j)| \geq 3, j = 1, 2, ..., n$, then $\overline{C}(v_1), \overline{C}(v_2), ..., \overline{C}(v_n)$ cannot be the color sets of any vertex because there are 5 colors in all. At most one of them is an empty set, so at most $2^5 - 1 - (n-1) \leq 14$ nonempty subsets of $\{1, 2, 3, 4, 5\}$ are available for the vertices $u_1, u_2, ..., u_7, v_1, v_2, ..., v_n$. This is a contradiction because these subsets cannot distinguish 25 (when n = 18) or 26 (when n = 19) vertices.

Therefore, there exists a vertex v_{j_0} with $|C(v_{j_0})| = 2$. Since $\{4, 5\}$ is not available for any vertex, so without loss of generality, we assume $C(v_{j_0}) = \{1, 4\}$. Then $1 \in C(u_i)$ or $4 \in C(u_i), i = 1, 2, ..., 7$. Thus $\{2, 3\}$ is not available for any vertex. Moreover, $\{4, 5\}$ and five 1-subsets are not available for any vertex. There are at most $2^5 - 1 - 5 - 2 = 24$ nonempty subsets are available for the vertices $u_1, u_2, \ldots, u_7, v_1, v_2, \ldots, v_n$. This is a contradiction because 24 subsets cannot distinguish 25 (when n = 18) or 26 (when n = 19) vertices.

So $K_{7,n}$ (n = 18, 19) does not have a 5-VDIET coloring.

Therefore, $\chi_{vt}^{ie}(K_{7,n}) \ge 6$ when $18 \le n \le 49$.

In the following we give a 6-VDIET coloring of $K_{7,n}$ using colors 1, 2, 3, 4, 5, 6 when $18 \le n \le 49$.

Arrange all 49 subsets of $\{1, 2, 3, 4, 5, 6\}$ except for $\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{4, 5\}, \{2, 3, 4, 5, 6\}, \{1, 3, 4, 5, 6\}, \{1, 2, 4, 5, 6\}, \{1, 2, 3, 5, 6\}, \{1, 2, 3, 4, 6\}, \{1, 2, 3, 4, 5, 6\}, \{1, 2, 3, 6\}$ into a sequence S_5 such that the first 5 terms are $\{1, 6\}, \{2, 6\}, \{3, 6\}, \{4, 6\}, \{5, 6\}$ respectively. Let $D(v_j)$ be the *j*-th term of $S_5, j = 1, 2, \ldots, n$. Let $D(u_i) = \{1, 2, 3, 4, 5, 6\} \setminus \{i\}, i = 1, 2, 3, 4, 5, D(u_6) = \{1, 2, 3, 4, 5, 6\}, D(u_7) = \{1, 2, 3, 6\}.$

Let u_1, u_2, \ldots, u_7 receive color 6. Let v_j receive color $j, j = 1, 2, \ldots, 5$. Let $u_i v_i$ receive color 6, $i = 1, 2, \ldots, 5$. Let $u_i v_j$ receive color $j, i = 1, 2, \ldots, 6, j = 1, 2, \ldots, 5, i \neq j$. Let $u_7 v_1, u_7 v_2, u_7 v_3, u_7 v_4$ and $u_7 v_5$ receive colors 1, 2, 3, 6 and 6 respectively.

For $D(v_j) = \{a, b\}, 6 \le j \le n, a < b$, we assign b to $u_i v_j$ if $b \in D(u_i)$, assign a to v_j and its remaining incident edges.

For $D(v_j) = \{a, 4, 5\}, 1 \le a \le 3$, we assign 5 to v_j , a to $u_i v_j$ if $a \in D(u_i)$, assign 4 to $u_i v_j$ otherwise.

For $D(v_j) = \{a, b, c\}, a < b < c, \{b, c\} \neq \{4, 5\}$, we assign a to v_j , b to $u_i v_j$ if $b \in D(u_i)$, assign c to $u_i v_j$ otherwise.

For $D(v_j) = \{a, b, c, d\}$, a < b < c < d, we assign a to v_j , b to $u_i v_j$ if

 $b \in D(u_i), i \neq 6$, assign c to $u_i v_j$ if $b \notin D(u_i), c \in D(u_i), i \neq 6$, and assign d to the remaining incident edges of v_j .

For $D(v_j) = \{1, 2, 3, 4, 5\}$, we assign 1 to v_j , assign 2, 3, 4, 5 to u_3v_j , u_4v_j , u_5v_j , u_6v_j respectively and assign 3 to the remaining incident edges of v_j .

Then $C(u_i) = D(u_i), 1 \le i \le 7$ and $C(v_j) = D(v_j), j = 1, 2, ..., n$ with respect to the above coloring. Thus the above coloring is a 6-VDIET coloring of $K_{7,n}, 24 \le n \le 49$.

Theorem 24. Let K_n be the complete graph of order $n(n \ge 3)$. Then $\chi_{vt}^{ie}(K_n) = n$.

Proof. As any two vertices in K_n must receive different colors under an arbitrary VDIET coloring, therefore $\chi_{vt}^{ie}(K_n) \ge n$. Of course we may be able to show that $\chi_{vt}^{ie}(K_n) = n$ by giving a VDIET coloring of K_n using n colors $1, 2, \ldots, n$ as follows. Assign colors $1, 2, \ldots, n$ to vertices v_1, v_2, \ldots, v_n of K_n respectively and then let all edges receive the same color 1.

From the results obtained in this paper, we know that for any graph G discussed in this paper except $K_n (n \ge 6)$, we have $\chi_{vt}^{ie}(G) = \xi(G)$ or $\xi(G) + 1$. So we propose the following conjectures.

Conjecture 25. For a simple graph G, if its (proper vertex coloring) chromatic number $\chi(G) \leq 4$, then we have $\chi_{vt}^{ie}(G) = \xi(G)$ or $\xi(G) + 1$.

Conjecture 26. For a simple graph G, we have $\chi_{vt}^{ie}(G) \leq \max\{\xi(G)+1, \chi(G)\}$.

Conjecture 27. Let s be the minimum positive integer such that $2^s - 1 \ge 3m$. When $2^r - 2m - 1 < n \le 2^{r+1} - 2m - 1$, we have $\chi_{vt}^{ie}(K_{m,n}) = r + 1$, where $r = s, s + 1, \ldots, m - 2, s \le m - 2$.

Acknowledgement

The authors would like to thank the referees for their valuable comments and helpful suggestions.

References

- P.N. Balister, B. Bollobás and R.H. Shelp, Vertex distinguishing colorings of graphs with Δ(G) = 2, Discrete Math. 252 (2002) 17–29. doi:10.1016/S0012-365X(01)00287-4
- P.N. Balister, O.M. Riordan and R.H. Schelp, Vertex distinguishing edge colorings of graphs, J. Graph Theory 42 (2003) 95–109. doi:10.1002/jgt.10076

- C. Bazgan, A. Harkat-Benhamdine, H. Li and M. Woźniak, On the vertexdistinguishing proper edge-colorings of graphs, J. Combin. Theory (B) 75 (1999) 288-301. doi:10.1006/jctb.1998.1884
- [4] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge-colorings, J. Graph Theory 26 (1997) 73–82.
 doi:10.1002/(SICI)1097-0118(199710)26:2(73::AID-JGT2)3.0.CO;2-C
- [5] J. Černý, M. Horňák and R. Soták, Observability of a graph, Math. Slovaca 46 (1996) 21–31.
- [6] X. Chen, Asymptotic behaviour of the vertex-distinguishing total chromatic numbers of n-cube, J. Northwest Univ. 41(5) (2005) 1–3.
- [7] F. Harary and M. Plantholt, *The point-distinguishing chromatic index*, in: F. Harary, J.S. Maybee (Eds.), Graphs and Application, New York (1985) 147–162.
- [8] M. Horňák and R. Soták, Observability of complete multipartite graphs with equipotent parts, Ars Combin. 41 (1995) 289–301.
- [9] M. Horňák and R. Soták, Asymptotic behaviour of the observability of Q_n , Discrete Math. **176** (1997) 139–148. doi:10.1016/S0012-365X(96)00292-0
- [10] M. Horňák and R. Soták, The fifth jump of the point-distinguishing chromatic index of $K_{n.n}$, Ars Combin. **42** (1996) 233–242.
- [11] M. Horňák and R. Soták, Localization jumps of the point-distinguishing chromatic index of K_{n,n}, Discuss. Math. Graph Theory 17 (1997) 243-251. doi:10.7151/dmgt.1051
- [12] M. Horňák and N. Zagaglia Salvi, On the point-distinguishing chromatic index of complete bipartite graphs, Ars Combin. 80 (2006) 75–85.
- [13] N. Zagaglia Salvi, On the point-distinguishing chromatic index of $K_{n,n}$, Ars Combin. **25B** (1988) 93–104.
- [14] N. Zagaglia Salvi, On the value of the point-distinguishing chromatic index of $K_{n,n}$, Ars Combin. **29B** (1990) 235–244.
- [15] Z. Zhang, P. Qiu, B. Xu, J. Li, X.Chen and B.Yao, Vertex-distinguishing total colorings of graphs, Ars Combin. 87 (2008) 33–45.

Received 11 October 2010 Revised 11 July 2011 Accepted 5 March 2012