VERTEX-DISTINGUISHING IE-TOTAL COLORINGS OF COMPLETE BIPARTITE GRAPHS $K_{m, n}(\boldsymbol{m}<\boldsymbol{n})^{1}$

Xiang'en Chen, Yuping Gao and Bing Yao
College of Mathematics and Information Science Northwest Normal University, Lanzhou 730070, P. R. China

e-mail: chenxe@nwnu.edu.cn

Abstract

Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let $C(u)$ be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if $C(u) \neq C(v)$ for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by $\chi_{v t}^{i e}(G)$, and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. VDIET colorings of complete bipartite graphs $K_{m, n}(m<n)$ are discussed in this paper. Particularly, the VDIET chromatic numbers of $K_{m, n}(1 \leq m \leq 7, m<n)$ as well as complete graphs K_{n} are obtained.

Keywords: complete bipartite graphs, IE-total coloring, vertex-distinguishing IE-total coloring, vertex-distinguishing IE-total chromatic number.

2010 Mathematics Subject Classification: 05C15.

For an edge coloring (proper or not) of a graph G and a vertex v of G, denote by $S(v)$ the set of colors used to color the edges incident to v.

A proper edge coloring of a graph G is said to be vertex-distinguishing if for any $u, v \in V(G), u \neq v, S(u) \neq S(v)$. In other words, $S(u) \neq S(v)$ whenever $u \neq v$. A graph G has a vertex-distinguishing proper edge coloring if and only if it has no more than one isolated vertex and no isolated edges. Such a graph will be referred to as a $v d e c$-graph. The minimum number of colors required

[^0]for a vertex-distinguishing proper edge coloring of a vdec-graph G is denoted by $\chi_{s}^{\prime}(G)$. Vertex-distinguishing proper edge coloring has been considered in several papers [1-5, 8-9].

A general edge coloring (not necessarily proper) of a graph G is said to be vertex-distinguishing if $S(u) \neq S(v)$ is required for any two distinct vertices u, v. The point-distinguishing chromatic index of a vdec-graph G, denoted by $\chi_{0}(G)$, refers to the minimum number of colors required for a vertex-distinguishing general edge coloring of G. This parameter was introduced by Harary and Plantholt in [7]. Although the structure of complete bipartite graph is simple, it seems that the problem of determining $\chi_{0}\left(K_{m, n}\right)$ is not easy, especially in the case $m=n$, as documented by papers of Horňák and Soták [10, 11], Zagaglia Salvi [13, 14] and Horřák and Zagaglia Salvi [12].

A total coloring of a graph G is an assignment of some colors to the vertices and edges of G. It is proper if the following three conditions are satisfied:

Condition (v): No two adjacent vertices receive the same color;
Condition (e): No two adjacent edges receive the same color;
Condition (i): No edge receives the same color as any one of its incident vertices.

For a total coloring (proper or not) f of G and a vertex v of G, denote by $C_{f}(v)$, or simply $C(v)$ if no confusion arise, the set of colors used to color the vertex v as well as the edges incident to v. Let $\bar{C}(v)$ be the complementary set of $C(v)$ in the set of all colors we used. Obviously $|C(v)| \leq d_{G}(v)+1$ and the equality holds if the total coloring is proper.

For a proper total coloring, if $C(u) \neq C(v)$ for any two distinct vertices u and v, then the coloring is called a vertex-distinguishing proper total coloring and the minimum number of colors required for a vertex-distinguishing proper total coloring is denoted by $\chi_{v t}(G)$. This concept was considered in [6, 15]. In [15], the following conjecture was given.

Conjecture 1. Suppose G is a simple graph and n_{d} is the number of vertices of degree $d, \delta \leq d \leq \Delta$. Let k be the minimum positive integer such that $\binom{k}{d+1} \geq n_{d}$ for all d such that $\delta \leq d \leq \Delta$. Then $\chi_{v t}(G)=k$ or $k+1$.

From [15] we know that the above conjecture is valid for complete graphs, complete bipartite graphs, paths and cycles, etc.

In this paper we propose a kind of vertex-distinguishing general total coloring called IE-total coloring. The relationship between this coloring and vertexdistinguishing proper total coloring is similar to the relationship between vertexdistinguishing general edge coloring and vertex-distinguishing proper edge coloring.

An IE-total coloring of a graph G is a total coloring of G such that the Condition (\mathbf{v}) is satisfied. If f is an IE-total coloring of graph G using k colors
and for any $u, v \in V(G), u \neq v$, we have $C(u) \neq C(v)$, then f is called a k-vertex-distinguishing IE-total coloring, or a k-VDIET coloring. The number $\min \{k: G$ has a k-VDIET coloring $\}$
is called the vertex-distinguishing IE-total chromatic number of a graph G and is denoted by $\chi_{v t}^{i e}(G)$.

The following proposition is obviously true.
Proposition 2. $\chi_{v t}^{i e}(G) \leq \chi_{v t}(G)$.
For a graph G, let n_{i} denote the number of vertices of degree $i, \delta \leq i \leq \Delta$. Let $\xi(G)=\min \left\{k \left\lvert\,\binom{ k}{1}+\binom{k}{2}+\binom{k}{3}+\cdots+\binom{k}{s+1} \geq n_{\delta}+n_{\delta+1}+\cdots+n_{s}\right., \delta \leq s \leq \Delta\right\}$. Obviously, $\chi_{v t}^{i e}(G) \geq \xi(G)$.

In the following we will consider the VDIET colorings of complete bipartite graphs $K_{m, n}(1 \leq m<n)$ and complete graphs K_{n}, then we will give three conjectures.

For a complete bipartite graph $K_{m, n}(1 \leq m<n), \xi\left(K_{m, n}\right)$ is the minimum positive integer l such that

$$
\begin{equation*}
\binom{l}{1}+\binom{l}{2}+\binom{l}{3}+\cdots+\binom{l}{m+1} \geq n \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\binom{l}{1}+\binom{l}{2}+\binom{l}{3}+\cdots+\binom{l}{n+1} \geq n+m . \tag{2}
\end{equation*}
$$

Proposition 3. (i) If $n=\sum_{i=1}^{m+1}\binom{m+2}{i}-m+1$, then $\xi\left(K_{m, n}\right)=m+2$;
(ii) If $\sum_{i=1}^{m+1}\binom{m+2}{i}-m+2 \leq n \leq \sum_{i=1}^{m+1}\binom{m+3}{i}-m$, then $\xi\left(K_{m, n}\right)=m+3$.

Proof. (i) When $l=m+1$, (1) is not valid, because

$$
\begin{aligned}
& \binom{m+1}{1}+\binom{m+1}{2}+\cdots+\binom{m+1}{m+1}=2^{m+1}-1, \\
& n=2^{m+2}-2-m+1=2^{m+2}-m-1>2^{m+1}-1 .
\end{aligned}
$$

Therefore $\xi\left(K_{m, n}\right) \geq m+2$. Since

$$
\begin{gathered}
\binom{m+2}{1}+\binom{m+2}{2}+\cdots+\binom{m+2}{m+1}=2^{m+2}-2 \geq 2^{m+2}-m-1=n, \\
\binom{m+2}{1}+\binom{m+2}{2}+\cdots+\binom{m+2}{n+1}=2^{m+2}-1=m+n,
\end{gathered}
$$

so we have $\xi\left(K_{m, n}\right)=m+2$.
(ii) When $\sum_{i=1}^{m+1}\binom{m+2}{i}-m+2 \leq n \leq \sum_{i=1}^{m+1}\binom{m+3}{i}-m$, i.e., $2^{m+2}-m \leq n \leq$ $2^{m+3}-(m+3)-2-m=2^{m+3}-2 m-5$, we have

$$
\binom{m+2}{1}+\binom{m+2}{2}+\cdots+\binom{m+2}{n+1}=2^{m+2}-1 \leq m+n-1 .
$$

Therefore, (2) is not valid if $l=m+2$. So, $\xi\left(K_{m, n}\right) \geq m+3$. When $l=m+3$, (1) and (2) are right, so $\xi\left(K_{m, n}\right)=m+3$.

Proposition 4. (i) If $\sum_{i=1}^{m+1}\binom{k-1}{i}-m<n \leq \sum_{i=1}^{m+1}\binom{k-1}{i}$ and $k \geq m+4$, then $\xi\left(K_{m, n}\right)=k-1 ;$
(ii) If $\sum_{i=1}^{m+1}\binom{k-1}{i}<n \leq \sum_{i=1}^{m+1}\binom{k}{i}-m$ and $k \geq m+4$, then $\xi\left(K_{m, n}\right)=k$.

Proof. (i) As

$$
\begin{aligned}
& \binom{k-2}{1}+\binom{k-2}{2}+\cdots+\binom{k-2}{m+1} \leq\left[\binom{k-2}{0}+\binom{k-2}{1}\right]+\left[\binom{k-2}{1}+\binom{k-2}{2}\right] \\
& +\cdots+\left[\binom{k-2}{m}+\binom{k-2}{m+1}\right]-m=\binom{k-1}{1}+\binom{k-1}{2}+\cdots+\binom{k-1}{m+1}-m<n
\end{aligned}
$$

(1) is not valid if $l=k-2$. Therefore, $\xi\left(K_{m, n}\right) \geq k-1$. Because

$$
\binom{k-1}{1}+\binom{k-1}{2}+\cdots+\binom{k-1}{m+1} \geq n
$$

$\binom{k-1}{1}+\binom{k-1}{2}+\cdots+\binom{k-1}{n+1} \geq n+\binom{k-1}{m+2}+\binom{k-1}{m+3}+\cdots+\binom{k-1}{n+1}>m+n$,
so (1) and (2) are valid if $l=k-1$. We have $\xi\left(K_{m, n}\right)=k-1$.
(ii) When $\sum_{i=1}^{m+1}\binom{k-1}{i}<n \leq \sum_{i=1}^{m+1}\binom{k}{i}-m$, (1) is not valid if $l=k-1$, whereas (1) and (2) are valid if $l=k$. Therefore $\xi\left(K_{m, n}\right)=k$.

Theorem 5. Let $m \geq 1, n>2^{m+2}-m-2$. Then $\chi_{v t}^{i e}\left(K_{m, n}\right)=k$ when $\sum_{i=1}^{m+1}\binom{k-1}{i}-m<n \leq \sum_{i=1}^{m+1}\binom{k}{i}-m$.

Proof. As $n>2^{m+2}-m-2$, we have $k>m+2$ (otherwise, if $k \leq m+2$, then $n \leq \sum_{i=1}^{m+1}\binom{k}{i}-m \leq \sum_{i=1}^{m+1}\binom{m+2}{i}-m=2^{m+2}-2-m$, a contradiction $)$.

We prove that $K_{m, n}$ does not have a $(k-1)$-VDIET coloring. If not, suppose g is a VDIET coloring of $K_{m, n}$ using colors $1,2, \ldots, k-1$. Let $B_{0}=$ $\left\{g\left(u_{1}\right), g\left(u_{2}\right), \ldots, g\left(u_{m}\right)\right\}, B_{i}=\{1,2, \ldots, k-1\} \backslash C_{g}\left(u_{i}\right), i=1,2, \ldots, m$. Note that none of $B_{0}, B_{1}, B_{2}, \ldots, B_{m}$ is the color set of any vertex v_{j}. Let $T=\{j$: $\left.\left|C_{g}\left(v_{j}\right)\right|=1, j=1,2, \ldots, n\right\}$ and $t=|T|$. Then $B_{0} \cap\left\{g\left(v_{j}\right) \mid j \in T\right\}=\emptyset$. Without loss of generality, we assume that $C_{g}\left(v_{j}\right)=\{j\}, j=1,2, \ldots, t$, then we have $\left|C_{g}\left(v_{j}\right)\right| \geq 2, j=t+1, \ldots, n$ and $C_{g}\left(u_{i}\right) \supseteq\left\{1,2, \ldots, t, g\left(u_{i}\right)\right\}, i=1,2, \ldots, m$.

Case 1. $t \geq k-m-3$. For each $i \in\{1,2, \ldots, m\}$, we have $\left|C_{g}\left(u_{i}\right)\right| \geq t+1$ and $\left|B_{i}\right| \leq(k-1)-(t+1) \leq(k-1)-(k-m-3+1)=m+1$. Note that $\left|B_{0}\right| \leq m+1$ and none of $B_{0}, B_{1}, B_{2}, \ldots, B_{m}$ is the color set of any vertex v_{j}. Therefore there are at most $\binom{k-1}{1}+\binom{k-1}{2}+\cdots+\binom{k-1}{m+1}-m$ subsets of $\{1,2, \ldots, k-1\}$ with cardinality between 1 and $m+1$ which may become the color sets of vertices $v_{1}, v_{2}, \ldots, v_{n}$. This is a contradiction.

Case 2. $t \leq k-m-4$. In this case, there are at least $(k-1)-(k-m-4)=$ $m+3$ subsets of $\{1,2, \ldots, k-1\}$ with cardinality 1 which are not the color sets of vertices $v_{1}, v_{2}, \ldots, v_{n}$. This is also a contradiction because $\binom{k-1}{1}+\binom{k-1}{2}+$ $\cdots+\binom{k-1}{m+1}-(m+3)<\binom{k-1}{1}+\binom{k-1}{2}+\cdots+\binom{k-1}{m+1}-m<n$, and at most $\binom{k-1}{1}+\binom{k-1}{2}+\cdots+\binom{k-1}{m+1}-(m+3)$ subsets of $\{1,2, \ldots, k-1\}$ with cardinality between 1 and $m+1$ cannot distinguish n vertices.

In the following we prove that $K_{m, n}$ has a k-VDIET coloring. Let $V\left(K_{m, n}\right)=$ $\left\{u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(K_{m, n}\right)=\left\{u_{i} v_{j}: i=1,2, \ldots, m, j=1,2, \ldots\right.$, $n\}$.

Put $D\left(u_{i}\right)=\{1,2, \ldots, k\} \backslash\{i\}, i=1,2, \ldots, m-1, D\left(u_{m}\right)=\{1,2, \ldots, k\}$, $D\left(v_{j}\right)=\{j, k\}, j=1,2, \ldots, m-1, D\left(v_{j}\right)=\{j\}, j=m, m+1, \ldots, k-1$.

Now distribute other subsets of $\{1,2, \ldots, k\}$ with cardinality between 2 and $m+1$ to vertices $v_{k}, v_{k+1}, \ldots, v_{n}$. These $n-k+1$ subsets are denoted by $D\left(v_{k}\right), D\left(v_{k+1}\right), \ldots, D\left(v_{n}\right)$, respectively.

Construct a mapping f from $V\left(K_{m, n}\right) \cup E\left(K_{m, n}\right)$ to $\{1,2, \ldots, k\}$ as follows: Put $f\left(u_{i}\right)=k, i=1,2, \ldots, m, f\left(v_{j}\right)=\min D\left(v_{j}\right), j=1,2, \ldots, n$,
$f\left(u_{i} v_{i}\right)=k$ for $i=1,2, \ldots, m-1, f\left(u_{m} v_{m}\right)=m$,
$f\left(u_{i} v_{j}\right)=j, i=1,2, \ldots, m, j=1,2, \ldots, k-1, i \neq j$.
For each $j=k, k+1, \ldots, n$, we recursively let $f\left(u_{1} v_{j}\right)=\min \left(D\left(u_{1}\right) \cap\left(D\left(v_{j}\right) \backslash\right.\right.$ $\left.\left\{f\left(v_{j}\right\}\right)\right)$ or $f\left(u_{1} v_{j}\right) \in D\left(u_{1}\right) \cap D\left(v_{j}\right)$ when $D\left(u_{1}\right) \cap\left(D\left(v_{j}\right) \backslash\left\{f\left(v_{j}\right\}\right)=\emptyset\right.$.

When $2 \leq i \leq m, f\left(u_{i} v_{j}\right)=\min \left(D\left(u_{i}\right) \cap\left(D\left(v_{j}\right) \backslash\left\{f\left(v_{j}\right), f\left(u_{1} v_{j}\right), f\left(u_{2} v_{j}\right) \ldots\right.\right.\right.$, $\left.\left.f\left(u_{i-1} v_{j}\right)\right\}\right)$) or $f\left(u_{i} v_{j}\right) \in D\left(u_{i}\right) \cap D\left(v_{j}\right)$ when $D\left(u_{i}\right) \cap\left(D\left(v_{j}\right) \backslash\left\{f\left(v_{j}\right), f\left(u_{1} v_{j}\right)\right.\right.$, $\left.\left.f\left(u_{2} v_{j}\right), \ldots, f\left(u_{i-1} v_{j}\right)\right\}\right)=\emptyset$.

It is not hard to see that $C_{f}\left(u_{i}\right)=D\left(u_{i}\right), i=1,2, \ldots, m ; C_{f}\left(v_{j}\right)=D\left(v_{j}\right), j=$ $1,2, \ldots, n$ and moreover $f\left(u_{i}\right)>f\left(v_{j}\right)$, therefore our coloring f is a vertex distinguishing IE-total coloring and then $\chi_{v t}^{i e}\left(K_{m, n}\right) \leq k$.

Theorem 6. Let $m \geq 2,\binom{m+2}{1}+\binom{m+2}{2}+\cdots+\binom{m+2}{m+1}-2 m+1<n \leq\binom{ m+2}{1}+$ $\binom{m+2}{2}+\cdots+\binom{m+2}{m+1}-m$, i.e., $2^{m+2}-2 m-1<n \leq 2^{m+2}-m-2$. Then $\chi_{v t}^{i e}\left(K_{m, n}\right)=m+3$.

Proof. When $2^{m+2}-2 m-1<n \leq 2^{m+2}-m-2$, we have $\chi_{v t}^{i e}\left(K_{m, n}\right) \geq \xi\left(K_{m, n}\right)=$ $m+2$. We first prove that $K_{m, n}$ does not have a $(m+2)$-VDIET coloring. Otherwise, suppose g is a VDIET coloring of $K_{m, n}$ using colors $1,2, \ldots, m+2$.

Let $B_{0}=\left\{g\left(u_{1}\right), g\left(u_{2}\right), \ldots, g\left(u_{m}\right)\right\}, B_{i}=\{1,2, \ldots, m+2\} \backslash C_{g}\left(u_{i}\right), i=$ $1,2, \ldots, m$. Note that $B_{0}, B_{1}, B_{2}, \ldots, B_{m}$ are distinct and at most one of them is an empty set. $B_{0}, B_{1}, B_{2}, \ldots, B_{m}$ are not the color sets of vertices $v_{1}, v_{2}, \ldots, v_{n}$. We give a fact as follows.

Observation 7. $\left|C_{g}\left(u_{i}\right)\right| \geq 2, i=1,2, \ldots, m$. Furthermore, there exists a vertex $v \in\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ with $\left|C_{g}(v)\right|=1$.

Proof. Suppose that there exists a vertex $u_{i} \in\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ with $C_{g}\left(u_{i}\right)=$ $\{\alpha\}, \alpha \in\{1,2, \ldots, m+2\}$. Then $\alpha \in C_{g}\left(v_{j}\right), j=1,2, \ldots, n$. However, $2^{m+1}-$ $1<2^{m+2}-2 m-1<n$, i.e., the subsets of $\{1,2, \ldots, m+2\}$ which contain α cannot distinguish n vertices, this is a contradiction. Therefore, $\left|C_{g}\left(u_{i}\right)\right| \geq 2, i=$ $1,2, \ldots, m$.

Suppose $\left|C_{g}\left(v_{j}\right)\right| \geq 2, j=1,2, \ldots, n$, i.e., all 1-subsets of $\{1,2, \ldots, m+2\}$ are not the color sets of vertices $u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}$. Therefore, there are at most $2^{m+2}-1-(m+2)<2^{m+2}-1-m<m+n$ nonempty subsets of $\{1,2, \ldots, m+$ $2\}$ which may become the color sets of vertices $u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}$. This is a contradiction.

Using the above observation, without loss of generality, we assume $C_{g}\left(v_{1}\right)=\{1\}$, Then $1 \in C_{g}\left(u_{i}\right), i=1,2, \ldots, m, g\left(u_{i}\right) \neq 1, i=1,2, \ldots, m$.

It is obvious that $B_{0}, B_{1}, B_{2}, \ldots, B_{m}$ are not the color sets of any vertex $u_{i}, i=1,2, \ldots, m$. Therefore, there are at most $2^{m+2}-1-m<m+n$ nonempty subsets of $\{1,2, \ldots, m+2\}$ which may become the color sets of vertices u_{1}, u_{2}, \ldots, $u_{m}, v_{1}, v_{2}, \ldots, v_{n}$. This is a contradiction.

So, $\chi_{v t}^{i e}\left(K_{m, n}\right) \geq m+3$.
In the following we prove that $K_{m, n}$ has a $(m+3)$-VDIET coloring when $2^{m+2}-2 m-1<n \leq 2^{m+2}-m-2$.

By Theorem 5 , we can give $K_{m, t}$ a $(m+3)$-VDIET coloring f using colors $1,2, \ldots, m+3$, where $2^{m+2}-2-m<t \leq 2^{m+3}-2 m-5$. Now delete the vertices $v_{n+1}, v_{n+2}, \ldots, v_{t}$ and their colors, delete the edges $u_{i} v_{j}, i=1,2, \ldots, m, j=n+$ $1, n+2, \ldots, t$ and their colors. It is not hard to see that under the resulting coloring the color sets of $u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}$ do not change, so we get a $(m+3)$-VDIET coloring g of $K_{m, n}$ using colors $1,2, \ldots, m+3$.

Theorem 8. Let s be the minimum positive integer such that $2^{s}-1 \geq 3 m$. When $2^{r}-2 m-1<n \leq 2^{r+1}-2 m-1$, we have $\chi_{v t}^{i e}\left(K_{m, n}\right)=r+1$, where $r=m+1, m, m-1$ and $r \geq s$.

Proof. $\xi\left(K_{m, n}\right)= \begin{cases}r, & \text { when } 2^{r}-2 m-1<n \leq 2^{r}-m-1 ; \\ r+1, & \text { when } 2^{r}-m-1<n \leq 2^{r+1}-2 m-1 .\end{cases}$
When $2^{r}-2 m-1<n \leq 2^{r}-m-1$, it is obvious that $\chi_{v t}^{i e}\left(K_{m, n}\right) \geq r$. We prove that $K_{m, n}$ does not have an r-VDIET coloring when $r=m+1, m, m-1$. If not, let g be an r-VDIET coloring of $K_{m, n}$ using colors $1,2, \ldots, r$. First we give four claims as follows.
Claim 9. $\left|C\left(v_{j}\right)\right| \geq 2, j=1,2, \ldots, n$.
Proof. Suppose the claim is not true, without loss of generality, we assume $C\left(v_{1}\right)=\{1\}$. Then $1 \in C\left(u_{i}\right), i=1,2, \ldots, m$. Let $B_{0}=\left\{g\left(u_{1}\right), g\left(u_{2}\right), \ldots, g\left(u_{m}\right)\right\}$, $B_{i}=\{1,2, \ldots, r\} \backslash C\left(u_{i}\right), i=1,2, \ldots, m$. Note that $1 \notin B_{0}, 1 \notin B_{i}, i=$ $1,2, \ldots, m$, we have $B_{0}, B_{1}, B_{2}, \ldots, B_{m}$ are distinct and not the color sets of vertices $u_{1}, u_{2}, \ldots, u_{m}$. Moreover, none of $B_{0}, B_{1}, B_{2}, \ldots, B_{m}$ is the color set of any vertex $v_{j}, j=1,2, \ldots, n$, (because $C\left(u_{i}\right) \cap C\left(v_{j}\right)=\emptyset, i=1,2, \ldots, m, j=$ $1,2, \ldots, n$, and two adjacent vertices must have different colors). At most one of $B_{0}, B_{1}, B_{2}, \ldots, B_{m}$ is an empty set, so there are at most $2^{r}-1-m$ nonempty subsets of $\{1,2, \ldots, r\}$ which are available for the vertices $u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}$. However, $2^{r}-1-m<m+n$, i.e., these subsets cannot distinguish $m+n$ vertices, this is a contradiction.

Claim 10. $\left|C\left(u_{i}\right)\right| \geq 2, i=1,2, \ldots, m$.
Proof. Suppose the claim is not true. Without loss of generality we assume $C\left(u_{1}\right)=\{1\}$. Then $1 \in C\left(v_{j}\right), j=1,2, \ldots, n$. Thus, $\bar{C}\left(v_{1}\right), \bar{C}\left(v_{2}\right), \ldots, \bar{C}\left(v_{n}\right)$ are not available for vertices $v_{1}, v_{2}, \ldots, v_{n}$. Moreover, $\bar{C}\left(v_{1}\right), \bar{C}\left(v_{2}\right), \ldots, \bar{C}\left(v_{n}\right)$ cannot be the color sets of vertices $u_{1}, u_{2}, \ldots, u_{m}$ because $C\left(u_{i}\right) \cap C\left(v_{j}\right) \neq \emptyset$. At most one of $\bar{C}\left(v_{1}\right), \bar{C}\left(v_{2}\right), \ldots, \bar{C}\left(v_{n}\right)$ is an empty set, so there are at most $2^{r}-1-(n-1)$ nonempty subsets of $\{1,2, \ldots, r\}$ which can be the color sets of vertices $u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}$. However, $2^{r}-1-(n-1) \leq 2^{r}-1-m<m+n$, these subsets cannot distinguish $m+n$ vertices, this is a contradiction.

Claim 11. $C\left(u_{1}\right) \cap C\left(u_{2}\right) \cap \cdots \cap C\left(u_{m}\right)=\emptyset$.
Proof. Suppose $1 \in C\left(u_{i}\right), i=1,2, \ldots, m$. Then the $m+1$ distinct subsets $\{1\}, \bar{C}\left(u_{1}\right), \bar{C}\left(u_{2}\right), \ldots, \bar{C}\left(u_{m}\right)$ are not available for any vertex, and at most one of them is an empty set. Then there are at most $2^{r}-1-m$ subsets of $\{1,2, \ldots, r\}$ which can be the color sets of vertices $u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}$. However, $2^{r}-1-m<m+n$, so these subsets cannot distinguish $m+n$ vertices, this is a contradiction.

Claim 12. $C\left(v_{1}\right) \cap C\left(v_{2}\right) \cap \cdots \cap C\left(v_{n}\right)=\emptyset$.
Proof. Suppose $1 \in C\left(v_{j}\right), j=1,2, \ldots, n$. Then the $n+1$ distinct subsets $\{1\}, \bar{C}\left(v_{1}\right), \bar{C}\left(v_{2}\right), \ldots, \bar{C}\left(v_{n}\right)$ are not available for any vertex, and at most one of them is an empty set. The remaining $2^{r}-1-n$ subsets of $\{1,2, \ldots, r\}$ cannot distinguish $m+n$ vertices because $2^{r}-1-n \leq 2^{r}-1-m<m+n$, this is a contradiction.

Now we consider two cases.
Case 1. $r=m, m+1$. By Claims 9 and 10 , all 1 -subsets of $\{1,2, \ldots, r\}$ cannot be the color sets of any vertex. So there are at most $2^{r}-1-r \leq$ $2^{r}-m-1<m+n$ subsets of $\{1,2, \ldots, r\}$ which are available for vertices $u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}$. This is a contradiction.

Case 2. $r=m-1$. By Claims 9 and 10 , all the 1 -subsets $\{1\},\{2\}, \ldots,\{m-1\}$ cannot be the color sets of any vertex. The remaining $2^{m-1}-1-(m-1)=$ $2^{m-1}-m$ subsets of $\{1,2, \ldots, m-1\}$ cannot distinguish $m+n$ vertices when $2^{m-1}-2 m<n \leq 2^{m-1}-m-1$, this is a contradiction, so $K_{m, n}$ does not have an $(m-1)$-VDIET coloring when $2^{m-1}-2 m<n \leq 2^{m-1}-m-1$.

Now we consider the case $n=2^{m-1}-2 m$. Let $t=\left|\left\{g\left(u_{1}\right), g\left(u_{2}\right), \ldots, g\left(u_{m}\right)\right\}\right|$. Without loss of generality we assume $\left\{g\left(u_{1}\right), g\left(u_{2}\right), \ldots, g\left(u_{m}\right)\right\}=\{1,2, \ldots, t\}$. By Claims 11 and 12 we know that $2 \leq t \leq r-2$, thus if $r \leq 3$, this is a contradiction. So $r \geq 4$. None of 2 -subsets of $\{1,2, \ldots, t\}$ is available for $v_{1}, v_{2}, \ldots, v_{n}$.

If $\{1,2\} \notin\left\{C\left(u_{1}\right), C\left(u_{2}\right), \ldots, C\left(u_{m}\right)\right\}$, then at most $2^{m-1}-1-m<m+n$ subsets of $\{1,2, \ldots, m-1\}$ are available for vertices $u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}$, this is a contradiction.

Therefore, $\{1,2\} \in\left\{C\left(u_{1}\right), C\left(u_{2}\right), \ldots, C\left(u_{m}\right)\right\}$. Without loss of generality, assume $C\left(u_{1}\right)=\{1,2\}$. By Claim 12, there are at least two colors among $v_{1}, v_{2}, \ldots, v_{n}$, say $t+1, t+2$. Then $\{t+1, t+2\} \notin\left\{C\left(u_{1}\right), C\left(u_{2}\right), \ldots, C\left(u_{m}\right)\right\}$. If $\{t+1, t+2\} \notin\left\{C\left(v_{1}\right), C\left(v_{2}\right), \ldots, C\left(v_{n}\right)\right\}$, then at most $2^{m-1}-1-m<m+n$ subsets of $\{1,2, \ldots, m-1\}$ are available for vertices $u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}$, this is a contradiction. Thus $\{t+1, t+2\} \in\left\{C\left(v_{1}\right), C\left(v_{2}\right), \ldots, C\left(v_{n}\right)\right\}$. Then $t+1 \in C\left(u_{i}\right)$ or $t+2 \in C\left(u_{i}\right), i=1,2, \ldots, m$. However, $C\left(u_{1}\right)=\{1,2\}$, this is a contradiction.

So, $K_{m, n}$ does not have an r-VDIET coloring when $2^{m-1}-2 m \leq n \leq 2^{m-1}-$ $m-1$ and $r=m+1, m, m-1$.

In the following we give an $(r+1)$-VDIET coloring of $K_{m, n}$ using colors $1,2, \ldots, r, r+1$, where $r=m-1, m, m+1$.

Let $V\left(K_{m, n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(K_{m, n}\right)=\left\{u_{i} v_{j}: i=\right.$ $1,2, \ldots, m ; j=1,2, \ldots, n\}$.

Put $D\left(u_{i}\right)=\{1,2, \ldots, r+1\} \backslash\{i\}, i=1,2, \ldots, m-1, D\left(u_{m}\right)=\{1,2, \ldots, r+$ $1\} ; D\left(v_{j}\right)=\{j, r+1\}, j=1,2, \ldots, m-1$.

When $r=m+1$, put $D\left(v_{r-1}\right)=\{r-1\}, D\left(v_{r}\right)=\{r\}$. When $r=m$, put $D\left(v_{r}\right)=\{r\}$.

Now distribute other subsets of $\{1,2, \ldots, r+1\}$ with cardinality between 2 and r to vertices $v_{r+1}, v_{r+2}, \ldots, v_{n}$. These $n-r$ subsets are denoted by $D\left(v_{r+1}\right), D\left(v_{r+2}\right), \ldots, D\left(v_{n}\right)$, respectively.

Construct a mapping f from $V\left(K_{m, n}\right) \cup E\left(K_{m, n}\right)$ to $\{1,2, \ldots, r+1\}$ as follows: Put $f\left(u_{i}\right)=r+1, i=1,2, \ldots, m, f\left(v_{j}\right)=\min D\left(v_{j}\right), j=1,2, \ldots, n, f\left(u_{i} v_{i}\right)=$ $r+1$ for $i=1,2, \ldots, m-1, f\left(u_{i} v_{j}\right)=j, i=1,2, \ldots, m, j=1,2, \ldots, m-1, i \neq j$, $f\left(u_{i} v_{j}\right)=j, i=1,2, \ldots, m, j=m, \ldots, r$ (if $r=m$ or $m+1$).

For each $j=r+1, r+2, \ldots, n$, we recursively let $f\left(u_{1} v_{j}\right)=\min \left(D\left(u_{1}\right) \cap\right.$ $\left.\left(D\left(v_{j}\right) \backslash\left\{f\left(v_{j}\right)\right\}\right)\right)$ or $f\left(u_{1} v_{j}\right) \in D\left(u_{1}\right) \cap D\left(v_{j}\right)$ when $D\left(u_{1}\right) \cap\left(D\left(v_{j}\right) \backslash\left\{f\left(v_{j}\right)\right\}\right)=\emptyset$.

When $2 \leq i \leq m, f\left(u_{i} v_{j}\right)=\min \left(D\left(u_{i}\right) \cap\left(D\left(v_{j}\right) \backslash\left\{f\left(v_{j}\right), f\left(u_{1} v_{j}\right), f\left(u_{2} v_{j}\right), \ldots\right.\right.\right.$, $\left.\left.f\left(u_{i-1} v_{j}\right)\right\}\right)$) or $f\left(u_{i} v_{j}\right) \in D\left(u_{i}\right) \cap D\left(v_{j}\right)$ when $D\left(u_{i}\right) \cap\left(D\left(v_{j}\right) \backslash\left\{f\left(v_{j}\right), f\left(u_{1} v_{j}\right)\right.\right.$, $\left.\left.f\left(u_{2} v_{j}\right), \ldots, f\left(u_{i-1} v_{j}\right)\right\}\right)=\emptyset$.

It is not hard to see that $C_{f}\left(u_{i}\right)=D\left(u_{i}\right), i=1,2, \ldots, m ; C_{f}\left(v_{j}\right)=D\left(v_{j}\right), j=$ $1,2, \ldots, n$ and moreover $f\left(u_{i}\right)>f\left(v_{j}\right)$, therefore our coloring f is a vertex distinguishing IE-total coloring and then $\chi_{v t}^{i e}\left(K_{m, n}\right) \leq r+1, r=m-1, m, m+1$.

$$
\text { So } \chi_{v t}^{i e}\left(K_{m, n}\right)=r+1, r=m-1, m, m+1 \text {. }
$$

Theorem 13. $\chi_{v t}^{i e}\left(K_{1, n}\right)=\left\{\begin{array}{cc}2, & \text { when } n=1 ; \\ 3, & \text { when } n=2 ; \\ k, & \text { when }\binom{k-1}{1}+\binom{k-1}{2}-1<n \leq\binom{ k}{1}+\binom{k}{2}-1, \\ k \geq 3 .\end{array}\right.$
Proof. It is easy to prove the theorem in the case $n=1,2$. By Theorem 5, this theorem is valid when $\binom{k-1}{1}+\binom{k-1}{2}-1<n \leq\binom{ k}{1}+\binom{k}{2}-1, k \geq 3$.

Proof. By Theorem 5, 6, 8 respectively we know the theorem is valid in each case when $n \geq 4$. Now we consider the case $n=2,3$. It is obvious that $\chi_{v t}^{i e}\left(K_{2, n}\right) \geq$ $\xi\left(K_{2, n}\right)=3$ when $n=2,3$. Let $V\left(K_{2, n}\right)=\left\{u_{1}, u_{2}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(K_{2, n}\right)=$ $\left\{u_{i} v_{j}: 1 \leq i \leq 2,1 \leq j \leq n\right\}$. We give a 3 -VDIET coloring of $K_{2, n}$ using colors $1,2,3$ when $n=2,3$.

Let u_{1}, u_{2} receive color $1, v_{1}$ and its incident edges receive color 2 . We assign color $3,3,1$ to $v_{2}, u_{1} v_{2}, u_{2} v_{2}$, respectively. And when $n=3$, we assign color 2,3 , 2 to $v_{3}, u_{1} v_{3}, u_{2} v_{3}$, respectively.

Then under the above coloring, we have $C\left(u_{1}\right)=\{1,2,3\}, C\left(u_{2}\right)=\{1,2\}$, $C\left(v_{1}\right)=\{2\}, C\left(v_{2}\right)=\{1,3\}$ and $C\left(v_{3}\right)=\{2,3\}$ (when $n=3$). Thus the above coloring is a VDIET coloring of $K_{2, n}(n=2,3)$ using 3 colors.

Theorem 15. $\chi_{v t}^{i e}\left(K_{3, n}\right)= \begin{cases}4, & \text { when } 3 \leq n \leq 9 ; \\ 5, & \text { when } 10 \leq n \leq 25 ; \\ 6, & \text { when } n=26,27 ; \\ k, & \text { when }\binom{k-1}{1}+\cdots+\binom{k-1}{4}-3<n \\ \leq\binom{ k}{1}+\cdots+\binom{k}{4}-3, k \geq 6 .\end{cases}$
Proof. By Theorem 5, 6, 8 respectively we know the theorem is valid in each case when $n \geq 10$. Now we consider the case $3 \leq n \leq 9$.
$\xi\left(K_{3, n}\right)= \begin{cases}3, & \text { when } n=3,4 ; \\ 4, & \text { when } 5 \leq n \leq 9 .\end{cases}$
Let $V\left(K_{3, n}\right)=\left\{u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(K_{3, n}\right)=\left\{u_{i} v_{j}: 1 \leq i \leq\right.$ $3,1 \leq j \leq n\}$. We prove $K_{3, n}$ does not have a 3 -VDIET coloring when $n=3,4$. If not, let g be a 3 -VDIET coloring of $K_{3, n}$ using colors $1,2,3$. Then $\left|C\left(u_{i}\right)\right| \geq$ $2, i=1,2,3$. (Otherwise we assume $C\left(u_{1}\right)=\{1\}$. Then $1 \in C\left(v_{j}\right), j=1,2, \ldots, n$. Thus $\bar{C}\left(v_{1}\right), \bar{C}\left(v_{2}\right), \ldots, \bar{C}\left(v_{n}\right)$ are not available for any vertex and at most one of them is an empty set. Therefore there are at most $2^{3}-1-2=5$ nonempty subsets of $\{1,2,3\}$ which can be the color sets of vertices $u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, \ldots, v_{n}$. Five subsets cannot distinguish $n+3$ vertices when $n=3,4$, this is a contradiction). Furthermore, $\left|C\left(v_{j}\right)\right| \geq 2, j=1,2, \ldots, n$. (Otherwise we assume $C\left(v_{1}\right)=\{1\}$. Then $1 \in C\left(u_{i}\right), i=1,2,3$. Thus $\bar{C}\left(u_{1}\right), \bar{C}\left(u_{2}\right), \bar{C}\left(u_{3}\right)$ are not available for any vertex and at most one of them is an empty set. Therefore there are at most $2^{3}-1-2=5$ nonempty subsets of $\{1,2,3\}$ which can be the color sets of vertices $u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, \ldots, v_{n}$. Five subsets cannot distinguish $n+3$ vertices when $n=3,4$, this is a contradiction.) So three 1 -subsets of $\{1,2,3\}$ are not available for any vertx, the remaining 4 nonempty subsets of $\{1,2,3\}$ cannot distinguish $n+3$ vertices when $n=3,4$, this is a contradiction. Therefore, $\chi_{v t}^{i e}\left(K_{3, n}\right) \geq 4$ when $n=3,4$.

In the following we give a 4 -VDIET coloring of $K_{3, n}$ using colors 1, $2,3,4$ when $3 \leq n \leq 9$.

Let u_{1}, u_{2}, u_{3} receive color 4 . Suppose $\mathcal{S}_{1}=(\{3\},\{1,2\},\{1,3\},\{1,4\},\{2,3\}$, $\{2,4\},\{3,4\},\{1,2,3\},\{1,2,4\})$ and let $D\left(v_{i}\right)$ be the i-th term of $\mathcal{S}_{1}, i=1,2, \ldots, n$. Let v_{1} and its incident edges receive color 3 , let $v_{2}, u_{3} v_{2}$ receive color 1 and $u_{1} v_{2}, u_{2} v_{2}$ receive color 2 .

For $D\left(v_{j}\right)=\{a, b\}, 3 \leq j \leq n, a<b$, we assign a to $u_{1} v_{j}$ and v_{j}, assign b to $u_{2} v_{j}$ and $u_{3} v_{j}$.

For $D\left(v_{j}\right)=\{a, b, c\}, a<b<c$, we assign a, b, c to $u_{1} v_{j}, u_{2} v_{j}, u_{3} v_{j}$ respectively and assign b to v_{j}.

Then $C\left(u_{1}\right)=\{1,2,3,4\}, C\left(u_{2}\right)=\{2,3,4\}, C\left(u_{3}\right)=\{1,3,4\}$ and $C\left(v_{j}\right)=$ $D\left(v_{j}\right), j=1,2, \ldots, n$ with respect to the above coloring. Thus the above coloring is a VDIET coloring of $K_{3, n}(3 \leq n \leq 9)$ using 4 colors.

Theorem 16. $\chi_{v t}^{i e}\left(K_{4, n}\right)=$

$$
\left\{\begin{array}{l}
4, \quad \text { when } 4 \leq n \leq 7 \\
5, \quad \text { when } 8 \leq n \leq 23 \\
6, \quad \text { when } 24 \leq n \leq 55 \\
7, \quad \text { when } 56 \leq n \leq 58 \\
k, \quad \text { when }\binom{k-1}{1}+\cdots+\binom{k-1}{5}-4<n \\
\leq\binom{ k}{1}+\cdots+\binom{k}{5}-4, k \geq 7
\end{array}\right.
$$

Proof. It is easy to verify the theorem is valid in each case when $n \geq 8$ by Theorem $5,6,8$ respectively. Now we consider the case $4 \leq n \leq 7$.

It is obvious $\chi_{v t}^{i e}\left(K_{4, n}\right) \geq \xi\left(K_{4, n}\right)=4$, when $4 \leq n \leq 7$.
In the following we give a 4 -VDIET coloring of $K_{4, n}$ using colors $1,2,3,4$ when $4 \leq n \leq 7$. Let $V\left(K_{4, n}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(K_{4, n}\right)=$ $\left\{u_{i} v_{j}: i=1,2,3,4 ; j=1,2, \ldots, n\right\}$.

Let $u_{1}, u_{2}, u_{3}, u_{4}$ receive color 4 . Suppose $\mathcal{S}_{2}=(\{1,4\},\{2,4\},\{3,4\},\{1,2\}$, $\{1,3\},\{2,3\},\{1,2,3\})$ and let $D\left(v_{i}\right)$ be the i-th term of $\mathcal{S}_{2}, i=1,2, \ldots, n$. Let v_{i} receive the minimum number of $D\left(v_{i}\right), i=1,2, \ldots, n$.

For $D\left(v_{j}\right)=\{j, 4\}, j=1,2,3$, we assign color 4 to $u_{j} v_{j}$ and color j to $u_{i} v_{j}, i=1,2,3,4, i \neq j$.

For $D\left(v_{j}\right)=\{a, b\}, 4 \leq j \leq n, a<b$, we assign color b to all edges $u_{i} v_{j}$ if $i \neq b$ and color a to its remaining incident edge $u_{b} v_{j}$.

For $D\left(v_{j}\right)=\{1,2,3\}$, we assign color 2 to $u_{i} v_{j}$ if $i \neq 2$ and assign color 3 to $u_{2} v_{j}$.

Then $C\left(u_{i}\right)=\{1,2,3,4\} \backslash\{i\}, i=1,2,3, C\left(u_{4}\right)=\{1,2,3,4\}$ and $C\left(v_{j}\right)=$ $D\left(v_{j}\right), j=1,2, \ldots, n$ with respect to the above coloring. Thus the above coloring is a 4 -VDIET coloring of $K_{4, n}, 4 \leq n \leq 7$.

Theorem 17. $\chi_{v t}^{i e}\left(K_{5, n}\right)= \begin{cases}5, & \text { when } 6 \leq n \leq 21 ; \\ 6, & \text { when } 22 \leq n \leq 53 ; \\ 7, & \text { when } 54 \leq n \leq 117 ; \\ 8, & \text { when } 118 \leq n \leq 121 ; \\ k, & \text { when }\binom{k-1}{1}+\cdots+\binom{k-1}{6}-5<n \\ \leq\binom{ k}{1}+\cdots+\binom{k}{6}-5, k \geq 8 .\end{cases}$
Proof. By Theorem 5, 6, 8 respectively we know the theorem is valid in each case.

Theorem 18. $\chi_{v t}^{i e}\left(K_{6, n}\right)=$

$$
\begin{cases}5, & \text { when } 6 \leq n \leq 19 \\ 6, & \text { when } 20 \leq n \leq 51 \\ 7, & \text { when } 52 \leq n \leq 115 \\ 8, & \text { when } 116 \leq n \leq 243 \\ 9, & \text { when } 244 \leq n \leq 248 \\ k, & \text { when }\binom{k-1}{1}+\cdots+\binom{k-1}{7}-6<n \\ & \leq\binom{ k}{1}+\cdots+\binom{k}{7}-6, k \geq 9\end{cases}
$$

Proof. By Theorem 5, 6, 8 respectively we know the theorem is valid in each case when $n \geq 20$. Now we consider the case $6 \leq n \leq 19$.
$\xi\left(K_{6, n}\right)=\left\{\begin{array}{l}4, \quad \text { when } 6 \leq n \leq 9 ; \\ 5, \quad \text { when } 10 \leq n \leq 19 .\end{array}\right.$
Let $V\left(K_{6, n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{6}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(K_{6, n}\right)=\left\{u_{i} v_{j}: 1 \leq i \leq\right.$ $6,1 \leq j \leq n\}$. We prove $K_{6, n}$ does not have a 4 -VDIET coloring when $6 \leq n \leq 9$. If not, suppose g is a 4 -VDIET coloring of $K_{6, n}(6 \leq n \leq 9)$ using colors 1,2 , 3, 4. Then $\left|C\left(u_{i}\right)\right| \geq 2, i=1,2, \ldots, 6$. (Otherwise we assume $C\left(u_{1}\right)=\{1\}$. Then $1 \in C\left(v_{j}\right), j=1,2, \ldots, n$. Thus $\bar{C}\left(v_{1}\right), \bar{C}\left(v_{2}\right), \ldots, \bar{C}\left(v_{n}\right)$ are not available for any vertex and at most one of them is an empty set. Therefore there are at most $2^{4}-1-5=10$ nonempty subsets of $\{1,2,3,4\}$ which can be the color sets of vertices $u_{1}, u_{2}, \ldots, u_{6}, v_{1}, v_{2}, \ldots, v_{n}$. These subsets cannot distinguish $n+6$ vertices when $6 \leq n \leq 9$, this is a contradiction.)

Furthermore, $\left|C\left(v_{j}\right)\right| \geq 2, j=1,2, \ldots, n$. (Otherwise we assume $C\left(v_{1}\right)=$ $\{1\}$, then $1 \in C\left(u_{i}\right), i=1,2, \ldots, 6$. Thus $\bar{C}\left(u_{1}\right), \bar{C}\left(u_{2}\right), \ldots, \bar{C}\left(u_{6}\right)$ are not available for any vertex and at most one of them is an empty set. Therefore there are at most $2^{4}-1-5=10$ nonempty subsets of $\{1,2,3,4\}$ which can be the color sets of vertices $u_{1}, u_{2}, \ldots, u_{6}, v_{1}, v_{2}, \ldots, v_{n}$. These subsets cannot distinguish $n+6$ vertices when $6 \leq n \leq 9$, this is a contradiction.) So four 1 -subsets of $\{1,2,3,4\}$ are not available for any vertex, the remaining 11 nonempty subsets of $\{1,2,3,4\}$ cannot distinguish $n+6$ vertices when $6 \leq n \leq 9$, this is a contradiction. Therefore, $\chi_{v t}^{i e}\left(K_{6, n}\right) \geq 5$ when $6 \leq n \leq 9$.

In the following we give a 5 -VDIET coloring of $K_{6, n}$ using colors $1,2,3,4,5$ when $6 \leq n \leq 19$.

Let $u_{1}, u_{2}, \ldots, u_{6}$ receive color 5 . Suppose $\mathcal{S}_{3}=(\{1,5\},\{2,5\},\{3,5\},\{4,5\}$, $\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{1,2,3\},\{1,2,4\},\{1,3,4\},\{1,3,5\},\{1,4,5\},\{2$, $3,4\},\{2,3,5\},\{2,4,5\},\{3,4,5\},\{1,2,3,4\})$ and let $D\left(v_{i}\right)$ be the i-th term of \mathcal{S}_{3}, $i=1,2, \ldots, n$. Let $D\left(u_{i}\right)=\{1,2,3,4,5\} \backslash\{i\}, i=1,2,3,4, D\left(u_{5}\right)=\{1,2,3,4,5\}$ and $D\left(u_{6}\right)=\{1,2,5\}$.

Let $u_{i} v_{i}(i=1,2,3,4), u_{6} v_{3}$ and $u_{6} v_{4}$ receive color 5 . Let v_{j} and the other incident edges of v_{j} receive color $j, j=1,2,3,4$.

For $D\left(v_{j}\right)=\{a, b\}, 5 \leq j \leq n, a<b$, we assign b to $u_{i} v_{j}$ if $b \in D\left(u_{i}\right)$, assign a to v_{j} and its remaining incident edges.

For $D\left(v_{j}\right)=\{a, b, c\},\{b, c\} \neq\{3,4\}, a<b<c$, we assign b to $u_{i} v_{j}$ if $b \in D\left(u_{i}\right)$, assign c to $u_{i} v_{j}$ if $b \notin D\left(u_{i}\right)$, and assign a to v_{j}.

For $D\left(v_{j}\right)=\{a, 3,4\}, a=1,2$, we assign a to $u_{i} v_{j}$ if $a \in D\left(u_{i}\right)$, assign 3 to $u_{i} v_{j}$ if $a \notin D\left(u_{i}\right)$, and assign 4 to v_{j}.

For $D\left(v_{j}\right)=\{1,2,3,4\}$, we assign 3 to $u_{i} v_{j}$ if $3 \in D\left(u_{i}\right)$, assign 4 to $u_{3} v_{j}$, assign 2 to $u_{6} v_{j}$, and assign 1 to v_{j}.

Then $C\left(u_{i}\right)=D\left(u_{i}\right), 1 \leq i \leq 6$ and $C\left(v_{j}\right)=D\left(v_{j}\right), 1 \leq j \leq n$ with respect to the above coloring. Thus the above coloring is a 5 -VDIET coloring of $K_{6, n}, 6 \leq$ $n \leq 19$.

Theorem 19. $\chi_{v t}^{i e}\left(K_{7, n}\right)=\left\{\begin{array}{rr}8, & \text { when } 114 \leq n \leq 241 ; \\ 9, & \text { when } 242 \leq n \leq 497 ; \\ 10, & \text { when } 498 \leq n \leq 503 ; \\ k, & \text { when }\binom{k-1}{1}+\cdots+\binom{k-1}{8}-7<n \\ \leq\binom{ k}{1}+\cdots+\binom{k}{8}-7, k \geq 10 .\end{array}\right.$
Proof. By Theorem 5, 6, 8 respectively we know the theorem is valid in each case when $n \geq 50$. Now we consider the case $n \leq 49$.
$\xi\left(K_{7, n}\right)= \begin{cases}4, & \text { when } n=7,8 ; \\ 5, & \text { when } 9 \leq n \leq 24 ; \\ 6, & \text { when } 25 \leq n \leq 49 .\end{cases}$
Let $V\left(K_{7, n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{7}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(K_{7, n}\right)=\left\{u_{i} v_{j}: 1 \leq i \leq\right.$ $7,1 \leq j \leq n\}$.

We prove $K_{7, n}$ does not have a 4 -VDIET coloring when $n=7,8$. If not, suppose g is a 4 -VDIET coloring of $K_{7, n}(n=7,8)$ using colors $1,2,3,4$. Then $\left|C\left(u_{i}\right)\right| \geq 2, i=1,2, \ldots, 7$. Otherwise we assume $C\left(u_{1}\right)=\{1\}$. Then $1 \in$ $C\left(v_{j}\right), j=1,2, \ldots, n, n=7,8$. Thus $\bar{C}\left(v_{1}\right), \bar{C}\left(v_{2}\right), \ldots, \bar{C}\left(v_{n}\right)$ are not available for any vertex and at most one of them is an empty set. Therefore there are at most $2^{4}-1-6=9$ nonempty subsets of $\{1,2,3,4\}$ which can be the color sets of vertices $u_{1}, u_{2}, \ldots, u_{7}, v_{1}, v_{2}, \ldots, v_{n}$. These subsets cannot distinguish 14 or 15 vertices, this is a contradiction.

Furthermore, $\left|C\left(v_{j}\right)\right| \geq 2, j=1,2, \ldots, n, n=7,8$. Otherwise we assume $C\left(v_{1}\right)=\{1\}$. Then $1 \in C\left(u_{i}\right), i=1,2, \ldots, 7$. Thus $\bar{C}\left(u_{1}\right), \bar{C}\left(u_{2}\right), \ldots, \bar{C}\left(u_{7}\right)$ are not available for any vertex and at most one of them is an empty set. Therefore there are at most $2^{4}-1-6=9$ nonempty subsets of $\{1,2,3,4\}$ which can be the color sets of vertices $u_{1}, u_{2}, \ldots, u_{7}, v_{1}, v_{2}, \ldots, v_{n}$. These subsets cannot distinguish 14 or 15 vertices, this is also a contradiction.) So four 1 -subsets of $\{1,2,3,4\}$ are not available for any vertex, the remaining 11 nonempty subsets of
$\{1,2,3,4\}$ cannot distinguish 14 or 15 vertices, this is a contradiction. Therefore, $\chi_{v t}^{i e}\left(K_{7, n}\right) \geq 5$ when $n=7,8$.

In the following we give a 5 -VDIET coloring of $K_{7, n}$ using colors $1,2,3,4,5$ when $7 \leq n \leq 17$.

Let $u_{1}, u_{2}, \ldots, u_{7}$ receive color 5 . Suppose $\mathcal{S}_{4}=(\{1,5\},\{2,5\},\{3,5\},\{4,5\}$, $\{1,2\},\{1,4\},\{2,3\},\{3,4\},\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,4\},\{1,4,5\},\{2,3,4\}$, $\{2,3,5\},\{3,4,5\},\{1,2,3,4\})$ and let $D\left(v_{i}\right)$ be the i-th term of $\mathcal{S}_{4}, i=1,2, \ldots, n$. Let $D\left(u_{i}\right)=\{1,2,3,4,5\} \backslash\{i\}, i=1,2,3,4, D\left(u_{5}\right)=\{1,3,5\}, D\left(u_{6}\right)=\{2,4,5\}$ and $D\left(u_{7}\right)=\{1,2,3,4,5\}$.
Let $u_{1} v_{1}$ and $u_{6} v_{1}$ receive color $5, v_{1}$ and its other incident edges receive color 1 . Let $u_{2} v_{2}$ and $u_{5} v_{2}$ receive color $5, v_{2}$ and its other incident edges receive color 2 . Let $u_{3} v_{3}$ and $u_{6} v_{3}$ receive color $5, v_{3}$ and its other incident edges receive color 3 . Let $u_{4} v_{4}$ and $u_{5} v_{4}$ receive color $5, v_{4}$ and its other incident edges receive color 4 .

For $D\left(v_{j}\right)=\{a, b\}, 5 \leq j \leq n, a<b$, we assign b to $u_{i} v_{j}$ if $b \in D\left(u_{i}\right)$, assign a to v_{j} and its remaining incident edges.

For $D\left(v_{j}\right)=\{a, b, c\},\{a, b, c\} \neq\{1,2,4\}, a<b<c$, we assign b to $u_{i} v_{j}$ if $b \in D\left(u_{i}\right)$, assign c to $u_{i} v_{j}$ if $b \notin D\left(u_{i}\right)$, and assign a to v_{j}.

For $D\left(v_{j}\right)=\{1,2,4\}$, we assign 1 to $u_{i} v_{j}$ if $1 \in D\left(u_{i}\right)$, assign 2 to $u_{i} v_{j}$ if $1 \notin D\left(u_{i}\right)$, and assign 4 to v_{j}.

For $D\left(v_{j}\right)=\{1,2,3,4\}$, we assign 2 to $u_{i} v_{j}$ if $2 \in D\left(u_{i}\right)$, assign $4,3,1$ to $u_{2} v_{j}, u_{5} v_{j}$ and v_{j} respectively.

Then $C\left(u_{i}\right)=D\left(u_{i}\right), 1 \leq i \leq 7$ and $C\left(v_{j}\right)=D\left(v_{j}\right), j=1,2, \ldots, n$ with respect to the above coloring. Thus the above coloring is a 5 -VDIET coloring of $K_{7, n}, 7 \leq n \leq 17$.

We prove $K_{7, n}$ does not have a 5 -VDIET coloring when $18 \leq n \leq 24$. If not, suppose g is a 5 -VDIET coloring of $K_{7, n}(18 \leq n \leq 24)$ using colors $1,2,3,4,5$. First we give four claims as follows.

Claim 20. $\left|C\left(u_{i}\right)\right| \geq 2, i=1,2, \ldots, 7$.
Proof. Suppose the claim is not true, without loss of generality we assume $C\left(u_{1}\right)=\{1\}$. Then $1 \in C\left(v_{j}\right), j=1,2, \ldots, n, 18 \leq n \leq 24$. Thus $\bar{C}\left(v_{1}\right), \bar{C}\left(v_{2}\right), \ldots$, $\bar{C}\left(v_{n}\right)$ are not available for any vertex and at most one of them is an empty set. Therefore there are at most $2^{5}-1-17=14$ nonempty subsets of $\{1,2,3,4,5\}$ which can be the color sets of vertices $u_{1}, u_{2}, \ldots, u_{7}, v_{1}, v_{2}, \ldots, v_{n}$. These subsets cannot distinguish $n+7$ vertices when $18 \leq n \leq 24$, this is a contradiction.

Claim 21. $\left|C\left(v_{j}\right)\right| \geq 2, j=1,2, \ldots, n, 18 \leq n \leq 24$.
Proof. Suppose the claim is not true, without loss of generality we assume $C\left(v_{1}\right)=\{1\}$. Then $1 \in C\left(u_{i}\right), i=1,2, \ldots, 7$. Thus $\bar{C}\left(u_{1}\right), \bar{C}\left(u_{2}\right), \ldots, \bar{C}\left(u_{7}\right)$, $\left\{g\left(u_{1}\right), g\left(u_{2}\right), \ldots, g\left(u_{7}\right)\right\}$ are not available for any vertex and at most one of them
is an empty set. Therefore there are at most $2^{5}-1-7=24$ nonempty subsets of $\{1,2,3,4,5\}$ which can be the color sets of vertices $u_{1}, u_{2}, \ldots, u_{7}, v_{1}, v_{2}, \ldots, v_{n}$. These subsets cannot distinguish $n+7$ vertices when $18 \leq n \leq 24$, this is also a contradiction.

Claim 22. $C\left(u_{1}\right) \cap C\left(u_{2}\right) \cap \cdots \cap C\left(u_{7}\right)=\emptyset$.
Claim 23. $C\left(v_{1}\right) \cap C\left(v_{2}\right) \cap \cdots \cap C\left(v_{n}\right)=\emptyset, 18 \leq n \leq 24$.
The proofs of Claim 22 and Claim 23 are analogous to the proofs of Claim 11 and Claim 12 in Theorem 8, respectively.

By Claims 20 and 21, five 1 -subsets of $\{1,2,3,4,5\}$ are not available for any vertex. The remaining 26 nonempty subsets of $\{1,2,3,4,5\}$ cannot distinguish $n+7$ vertices when $20 \leq n \leq 24$, this is a contradiction. So we assume $n=18,19$ in the following.

Let $t=\left|\left\{g\left(u_{1}\right), g\left(u_{2}\right), \ldots, g\left(u_{7}\right)\right\}\right|$, and $\left\{g\left(u_{1}\right), g\left(u_{2}\right), \ldots, g\left(u_{7}\right)\right\}=\{1,2, \ldots, t\}$, by Claim 22 and Claim 23, we know that $t=2$ or $t=3$.

Case 1. $t=2,\left\{f\left(u_{1}\right), f\left(u_{2}\right), \ldots, f\left(u_{7}\right)\right\}=\{1,2\}$. Of course $\{1,2\} \notin\left\{C\left(v_{1}\right)\right.$, $\left.C\left(v_{2}\right), \ldots, C\left(v_{n}\right)\right\}$. If $\{1,2\} \in\left\{C\left(u_{1}\right), C\left(u_{2}\right), \ldots, C\left(u_{7}\right)\right\}$, then $1 \in C\left(v_{j}\right)$ or $2 \in C\left(v_{j}\right), j=1,2, \ldots, n$. Thus $\{3,4\},\{3,5\},\{4,5\},\{3,4,5\}$ cannot be the color sets of any vertices. Moreover, five 1 -subsets are not available for any vertex. Then at most $2^{5}-1-5-4=22$ nonempty subsets of $\{1,2,3,4,5\}$ are available for the vertices $u_{1}, u_{2}, \ldots, u_{7}, v_{1}, v_{2}, \ldots, v_{n}$. This is a contradiction because 22 subsets cannot distinguish 25 (when $n=18$) or 26 (when $n=19$) vertices. So $\{1,2\}$ is not available for any vertex.

If $\left|C\left(u_{i}\right)\right| \geq 3, i=1,2, \ldots, 7$, then $\bar{C}\left(u_{1}\right), \bar{C}\left(u_{2}\right), \ldots, \bar{C}\left(u_{7}\right)$ cannot be the color sets of any vertices because there are 5 colors in all. At most one of $\bar{C}\left(u_{1}\right), \bar{C}\left(u_{2}\right), \ldots, \bar{C}\left(u_{7}\right)$ is an empty set, so there are at most $2^{5}-1-6-1=24$ nonempty subsets of $\{1,2,3,4,5\}$ are available for the vertices $u_{1}, u_{2}, \ldots, u_{7}, v_{1}, v_{2}$, \ldots, v_{n}. This is a contradiction because 24 subsets cannot distinguish 25 (when $n=18$) or 26 (when $n=19$) vertices.

Therefore, there exists a vertex $u_{i_{0}}$ with $\left|C\left(u_{i_{0}}\right)\right|=2$. Since $\{1,2\}$ is not available for any vertex, so without loss of generality, we assume $C\left(u_{i_{0}}\right)=\{1,3\}$, then $1 \in C\left(v_{j}\right)$ or $3 \in C\left(v_{j}\right), j=1,2, \ldots, n$. Thus $\{4,5\}$ is not available for any vertex. Furthermore, $\{1,2\}$ and five 1 -subsets are not available for any vertex. There are at most $2^{5}-1-5-2=24$ nonempty subsets of $\{1,2,3,4,5\}$ are available for the vertices $u_{1}, u_{2}, \ldots, u_{7}, v_{1}, v_{2}, \ldots, v_{n}$. This is a contradiction because 24 subsets cannot distinguish 25 (when $n=18$) or 26 (when $n=19$) vertices.

So $K_{7, n}(n=18,19)$ does not have a 5 -VDIET coloring in this case.
Case 2. $t=3$, $\left\{f\left(u_{1}\right), f\left(u_{2}\right), \ldots, f\left(u_{7}\right)\right\}=\{1,2,3\}$. By Claim 23, $\mid\left\{f\left(v_{1}\right)\right.$, $\left.f\left(v_{2}\right), \ldots, f\left(v_{n}\right)\right\} \mid \geq 2$, so $\left\{f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{n}\right)\right\}=\{4,5\}$. Then $\{4,5\}$ is not
the color set of any vertex $u_{i}, i=1,2, \ldots, 7$. If $\{4,5\} \in\left\{C\left(v_{1}\right), C\left(v_{2}\right), \ldots, C\left(v_{n}\right)\right\}$, then $4 \in C\left(u_{i}\right)$ or $5 \in C\left(u_{i}\right), i=1,2, \ldots, 7$. Thus $\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}$ cannot be the color sets of any vertex. Moreover, five 1 -subsets are not available for any vertex. Then at most $2^{5}-1-5-4=22$ nonempty subsets of $\{1,2,3,4,5\}$ are available for the vertices $u_{1}, u_{2}, \ldots, u_{7}, v_{1}, v_{2}, \ldots, v_{n}$. This is a contradiction because 22 subsets cannot distinguish 25 (when $n=18$) or 26 (when $n=19$) vertices. So $\{4,5\}$ is not available for any vertex.

If $\left|C\left(v_{j}\right)\right| \geq 3, j=1,2, \ldots, n$, then $\bar{C}\left(v_{1}\right), \bar{C}\left(v_{2}\right), \ldots, \bar{C}\left(v_{n}\right)$ cannot be the color sets of any vertex because there are 5 colors in all. At most one of them is an empty set, so at most $2^{5}-1-(n-1) \leq 14$ nonempty subsets of $\{1,2,3,4,5\}$ are available for the vertices $u_{1}, u_{2}, \ldots, u_{7}, v_{1}, v_{2}, \ldots, v_{n}$. This is a contradiction because these subsets cannot distinguish 25 (when $n=18$) or 26 (when $n=19$) vertices.

Therefore, there exists a vertex $v_{j_{0}}$ with $\left|C\left(v_{j_{0}}\right)\right|=2$. Since $\{4,5\}$ is not available for any vertex, so without loss of generality, we assume $C\left(v_{j_{0}}\right)=\{1,4\}$. Then $1 \in C\left(u_{i}\right)$ or $4 \in C\left(u_{i}\right), i=1,2, \ldots, 7$. Thus $\{2,3\}$ is not available for any vertex. Moreover, $\{4,5\}$ and five 1 -subsets are not available for any vertex. There are at most $2^{5}-1-5-2=24$ nonempty subsets are available for the vertices $u_{1}, u_{2}, \ldots, u_{7}, v_{1}, v_{2}, \ldots, v_{n}$. This is a contradiction because 24 subsets cannot distinguish 25 (when $n=18$) or 26 (when $n=19$) vertices.

So $K_{7, n}(n=18,19)$ does not have a 5 -VDIET coloring.
Therefore, $\chi_{v t}^{i e}\left(K_{7, n}\right) \geq 6$ when $18 \leq n \leq 49$.
In the following we give a 6 -VDIET coloring of $K_{7, n}$ using colors $1,2,3,4,5,6$ when $18 \leq n \leq 49$.

Arrange all 49 subsets of $\{1,2,3,4,5,6\}$ except for $\emptyset,\{1\},\{2\},\{3\},\{4\},\{5\}$, $\{6\},\{4,5\},\{2,3,4,5,6\},\{1,3,4,5,6\},\{1,2,4,5,6\},\{1,2,3,5,6\},\{1,2,3,4,6\}$, $\{1,2,3,4,5,6\},\{1,2,3,6\}$ into a sequence \mathcal{S}_{5} such that the first 5 terms are $\{1,6\},\{2,6\},\{3,6\},\{4,6\},\{5,6\}$ respectively. Let $D\left(v_{j}\right)$ be the j-th term of $\mathcal{S}_{5}, j=1,2, \ldots, n$. Let $D\left(u_{i}\right)=\{1,2,3,4,5,6\} \backslash\{i\}, i=1,2,3,4,5, D\left(u_{6}\right)=$ $\{1,2,3,4,5,6\}, D\left(u_{7}\right)=\{1,2,3,6\}$.

Let $u_{1}, u_{2}, \ldots, u_{7}$ receive color 6 . Let v_{j} receive color $j, j=1,2, \ldots, 5$. Let $u_{i} v_{i}$ receive color $6, i=1,2, \ldots, 5$. Let $u_{i} v_{j}$ receive color $j, i=1,2, \ldots, 6, j=$ $1,2, \ldots, 5, i \neq j$. Let $u_{7} v_{1}, u_{7} v_{2}, u_{7} v_{3}, u_{7} v_{4}$ and $u_{7} v_{5}$ receive colors $1,2,3,6$ and 6 respectively.

For $D\left(v_{j}\right)=\{a, b\}, 6 \leq j \leq n, a<b$, we assign b to $u_{i} v_{j}$ if $b \in D\left(u_{i}\right)$, assign a to v_{j} and its remaining incident edges.

For $D\left(v_{j}\right)=\{a, 4,5\}, 1 \leq a \leq 3$, we assign 5 to v_{j}, a to $u_{i} v_{j}$ if $a \in D\left(u_{i}\right)$, assign 4 to $u_{i} v_{j}$ otherwise.

For $D\left(v_{j}\right)=\{a, b, c\}, a<b<c,\{b, c\} \neq\{4,5\}$, we assign a to v_{j}, b to $u_{i} v_{j}$ if $b \in D\left(u_{i}\right)$, assign c to $u_{i} v_{j}$ otherwise.

For $D\left(v_{j}\right)=\{a, b, c, d\}, a<b<c<d$, we assign a to v_{j}, b to $u_{i} v_{j}$ if
$b \in D\left(u_{i}\right), i \neq 6$, assign c to $u_{i} v_{j}$ if $b \notin D\left(u_{i}\right), c \in D\left(u_{i}\right), i \neq 6$, and assign d to the remaining incident edges of v_{j}.

For $D\left(v_{j}\right)=\{1,2,3,4,5\}$, we assign 1 to v_{j}, assign $2,3,4,5$ to $u_{3} v_{j}, u_{4} v_{j}, u_{5} v_{j}$, $u_{6} v_{j}$ respectively and assign 3 to the remaining incident edges of v_{j}.

Then $C\left(u_{i}\right)=D\left(u_{i}\right), 1 \leq i \leq 7$ and $C\left(v_{j}\right)=D\left(v_{j}\right), j=1,2, \ldots, n$ with respect to the above coloring. Thus the above coloring is a 6 -VDIET coloring of $K_{7, n}, 24 \leq n \leq 49$.

Theorem 24. Let K_{n} be the complete graph of order $n(n \geq 3)$. Then $\chi_{v t}^{i e}\left(K_{n}\right)=$ n.

Proof. As any two vertices in K_{n} must receive different colors under an arbitrary VDIET coloring, therefore $\chi_{v t}^{i e}\left(K_{n}\right) \geq n$. Of course we may be able to show that $\chi_{v t}^{i e}\left(K_{n}\right)=n$ by giving a VDIET coloring of K_{n} using n colors $1,2, \ldots, n$ as follows. Assign colors $1,2, \ldots, n$ to vertices $v_{1}, v_{2}, \ldots, v_{n}$ of K_{n} respectively and then let all edges receive the same color 1 .

From the results obtained in this paper, we know that for any graph G discussed in this paper except $K_{n}(n \geq 6)$, we have $\chi_{v t}^{i e}(G)=\xi(G)$ or $\xi(G)+1$. So we propose the following conjectures.

Conjecture 25. For a simple graph G, if its (proper vertex coloring) chromatic number $\chi(G) \leq 4$, then we have $\chi_{v t}^{i e}(G)=\xi(G)$ or $\xi(G)+1$.

Conjecture 26. For a simple graph G, we have $\chi_{v t}^{i e}(G) \leq \max \{\xi(G)+1, \chi(G)\}$.
Conjecture 27. Let s be the minimum positive integer such that $2^{s}-1 \geq 3 m$. When $2^{r}-2 m-1<n \leq 2^{r+1}-2 m-1$, we have $\chi_{v t}^{i e}\left(K_{m, n}\right)=r+1$, where $r=s, s+1, \ldots, m-2, s \leq m-2$.

Acknowledgement

The authors would like to thank the referees for their valuable comments and helpful suggestions.

References

[1] P.N. Balister, B. Bollobás and R.H. Shelp, Vertex distinguishing colorings of graphs with $\Delta(G)=2$, Discrete Math. 252 (2002) 17-29. doi:10.1016/S0012-365X(01)00287-4
[2] P.N. Balister, O.M. Riordan and R.H. Schelp, Vertex distinguishing edge colorings of graphs, J. Graph Theory 42 (2003) 95-109.
doi:10.1002/jgt. 10076
[3] C. Bazgan, A. Harkat-Benhamdine, H. Li and M. Woźniak, On the vertexdistinguishing proper edge-colorings of graphs, J. Combin. Theory (B) 75 (1999) 288-301. doi:10.1006/jctb.1998.1884
[4] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge-colorings, J. Graph Theory 26 (1997) 73-82. doi:10.1002/(SICI)1097-0118(199710)26:2 $\langle 73::$ AID-JGT2〉3.0.CO;2-C
[5] J. Černý, M. Horňák and R. Soták, Observability of a graph, Math. Slovaca 46 (1996) 21-31.
[6] X. Chen, Asymptotic behaviour of the vertex-distinguishing total chromatic numbers of n-cube, J. Northwest Univ. 41(5) (2005) 1-3.
[7] F. Harary and M. Plantholt, The point-distinguishing chromatic index, in: F. Harary, J.S. Maybee (Eds.), Graphs and Application, New York (1985) 147-162.
[8] M. Horňák and R. Soták, Observability of complete multipartite graphs with equipotent parts, Ars Combin. 41 (1995) 289-301.
[9] M. Horňák and R. Soták, Asymptotic behaviour of the observability of Q_{n}, Discrete Math. 176 (1997) 139-148. doi:10.1016/S0012-365X(96)00292-0
[10] M. Horňák and R. Soták, The fifth jump of the point-distinguishing chromatic index of $K_{n, n}$, Ars Combin. 42 (1996) 233-242.
[11] M. Horňák and R. Soták, Localization jumps of the point-distinguishing chromatic index of $K_{n, n}$, Discuss. Math. Graph Theory 17 (1997) 243-251. doi:10.7151/dmgt. 1051
[12] M. Horñák and N. Zagaglia Salvi, On the point-distinguishing chromatic index of complete bipartite graphs, Ars Combin. 80 (2006) 75-85.
[13] N. Zagaglia Salvi, On the point-distinguishing chromatic index of $K_{n, n}$, Ars Combin. 25B (1988) 93-104.
[14] N. Zagaglia Salvi, On the value of the point-distinguishing chromatic index of $K_{n, n}$, Ars Combin. 29B (1990) 235-244.
[15] Z. Zhang, P. Qiu, B. Xu, J. Li, X.Chen and B.Yao, Vertex-distinguishing total colorings of graphs, Ars Combin. 87 (2008) 33-45.

[^0]: ${ }^{1}$ This research is supported by NNSFC (No.61163037, 61163054), the Scientific Research Project of Northwest Normal University (No. nwnu-kjcxgc-03-61), the Natural Foudation Project of Ningxia (No. NZ1154) and the Scientific Research Foundation Project of Ningxia University ((E):ndzr10-7)

