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Abstract

Significant values of a combinatorial count need not fit the recurrence for
the count. Consequently, initial values of the count can much outnumber
those for the recurrence. So is the case of the count, Gl(n), of distance-l
independent sets on the cycle Cn, studied by Comtet for l ≥ 0 and n ≥ 1
[sic]. We prove that values of Gl(n) are nth power sums of the characteristic
roots of the corresponding recurrence unless 2 ≤ n ≤ l. Lucas numbers L(n)
are thus generalized since L(n) is the count in question if l = 1. Asymptotics
of the count for 1 ≤ l ≤ 4 involves the golden ratio (if l = 1) and three of
the four smallest Pisot numbers inclusive of the smallest of them, plastic
number, if l = 4. It is shown that the transition from a recurrence to an
OGF, or back, is best presented in terms of mutually reciprocal (shortly: co-
reciprocal) polynomials. Also the power sums of roots (i.e., moments) of a
polynomial have the OGF expressed in terms of the co-reciprocal polynomial.

Keywords: distance independent set, Lucas numbers, Pisot numbers, power
sums, generating functions, (co-) reciprocal polynomials.
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1. Introduction

In what follows we restrict our study to connected n-vertex graphs, the path Pn

with n ≥ 1 and the cycle Cn with n ≥ 2, which are simple, with exception that
C2 will stand for the 2-vertex multigraph 2K2, the 2-cycle. Additionally, C1 will
stand for the (1-vertex) loop-graph. The letter l stands for a nonnegative integer.
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Our aim is to study the numbers, say Fl(n) and Gl(n), of l-independent sets
(inclusive of the empty set) on the path Pn and the cycle Cn, respectively.

The distance between any two vertices x and y in a graph G is the length of
a shortest x–y path of G. A set S (possibly empty) is called l-independent in G
if S comprises vertices of G and any two elements of S are distance at least l+ 1
apart. In other words, if an l-independent set S includes distinct vertices x and
y then every x–y path of G includes l or more vertices which do not belong to S.
Consequently, each vertex subset of G is 0-independent. Moreover, 1-independent
coincides with independent.

The numbers Fl(n) and Gl(n), denoted respectively by F (n+l, l) and G(n, l),
appear in Comtet [4, p. 46]. Their OGFs (ordinary generating functions) are
presented, too, though the case of Gl for any l > 1 is questionable, see Remark 4
in Section 5 below. Moreover, closed formulas for the corresponding numbers,
fl(n, p) and gl(n, p), of l-independent sets of cardinality p are presented in Comtet
[4, pp. 21,24], namely

fl(n, p) =
(

n−(p−1)l
p

)

and gl(n, p) =
n

n−pl

(

n−pl
p

)

.

The formula for fl is credited to Gergonne (1812) and Muir (1902) and that
for gl to Kaplansky (1943), but the parameter l therein is due to Comtet since
independent sets only, i.e. for l = 1, (on Pn and Cn) are counted by Kaplansky.
All the four sequences of numbers and the two formulas in question, though for
l = 1 only, appeared earlier in Berge’s book, see [2, pp. 31–32]. Clearly,

Fl(n) =
∑

p≥0 fl(n, p) and Gl(n) =
∑

p≥0 gl(n, p).

Note that for l = 0 the four numbers are pairwise 2n (= F0(n) = G0(n)) and
(

n
p

)

(= f0(n, p) = g0(n, p)). It is known that for l = 1 the number F1(n) is the shifted
Fibonacci number Fn+2, as in Sloane [15], under the assumption that Fibonacci
numbers Fn begin at 0, 1 (with F0 = 0). On the other hand, G1(n) = L(n), which
is the nth Lucas number (as noted in [10], but not in Comtet [4], and called a
corrected Fibonacci number in Berge [2]), with two initial values 2 (= L(0)), 1.
All the four (sequences of) numbers (but with distance bound l expressed in terms
of k = l + 1) are presented in [7]. Also the linear recurrence for F (k, n) (= Fl(n)
in our notation) appears in [7].

Our main objective is the study of the numbers Gl(n) via the corresponding
recurrence and its characteristic roots. The known recurrence for Fl(n) is recalled
(with a simplified proof) because it considerably simplifies our reasoning. We
show that both Fl(n) and Gl(n), on denoting them by a(n), satisfy the same
3-term linear homogeneous recurrence

(1) u(n) = u(n− 1) + u(n− l − 1).

In fact, Gl(n) satisfies the recurrence (but only for n ≥ 2l + 2 if l ≥ 2) and
generalizes (includes) integer sequences: powers of 2 (l = 0) and Lucas numbers
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L(n) (l = 1), where L(n) is the sum of nth powers of the two characteristic roots
(including the golden ratio) of the recurrence (1) with l = 1. Our main result
is a simple proof that in the remaining case of l ≥ 2, Gl(n) is the sum of nth
powers of all l+1 characteristic roots unless 2 ≤ n ≤ l. Hence we derive both the
asymptotic equivalent of Gl(n) for any l and, for small l only, a simple formula in
terms of nearest integer function ⌊·⌉. Moreover, the related recent formula for the
number of Hamilton cycles in the square of a cycle is discussed. Rational OGF for
the sequence of moments (defined to be power sums of roots) of any polynomial
is announced.

2. Distance-independent Sets

We shall use classical setting for the problem in question. Namely, as in Comtet,
the path Pn is represented by the integer interval [n] := {1, 2, . . . , n} for n ≥ 1
and the cycle Cn by the cyclic group Zn =: [ñ], with elements 0, 1, . . . , n− 1, for
n ≥ 1, too.

Theorem 1. For any nonnegative integer l ≥ 0, Fl(n) and Gl(n) stand for the

counts of l-independent vertex subsets on the path Pn and the cycle Cn, respec-

tively. Then

Fl(n) = Fl(n− 1) + Fl(n− l − 1) for n ≥ l + 1, with initial conditions(2)

Fl(n) = n+ 1 for n = 1, . . . , l, extended to n = 0 by Fl(0) := 1 ;(3)

Gl(n) = Gl(n− 1) +Gl(n− l − 1) for n ≥ 2l + 2 if l ≥ 2,(4)

and n ≥ l + 1 if l = 0, 1, with initial conditions

Gl(0) := l + 1 for l ≥ 0, Gl(1) := 1 for l ≥ 1,(5)

Gl(n) = n+ 1 for n = 2, 3, . . . , 2l + 1 if l ≥ 1.(6)

Remark 2. Gl(1) := 1 counts the empty subset only. This reflects the convention
that the vertex (as well as the edge) of the loop graph is self-adjacent and therefore
self-dependent.

Proof. Definitions concerning n = 0, 1 in (3) and (5) conveniently extend validity
of the corresponding recurrence (2) and (4), though (4) for l = 0, 1 only. For l = 0,
all equalities are clear, also in (2) and (4). Consequently, F0(n) = 2n = G0(n) for
any admissible n.
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Therefore we assume that l ≥ 1. Initial conditions (3) and (6) are easily seen.
Let us determine the number Fl(n) of l-independent subsets X of [n] for

n ≥ l + 1 ≥ 2. The subsets X containing n do not contain any of l integers
n− 1, n− 2, . . . , n− l, and hence there are Fl(n− l − 1) of the sets X; those not
containing n amount to Fl(n− 1), whence (2) follows. Hence

(7) Fl(n) = Fl(n− 1) + Fl(n− l − 1) for n ≥ l + 1 (since Fl(0) = 1).

Assume that l = 1. Then the recurrence (4) holds for n = 2, 3 due to (5) since
G1(n) = n+ 1 for n = 2, 3, see (6). It remains to determine the number Gl(n) of
l-independent subsets of [ñ] for any l ≥ 1 and n > 2l+1. Then the subsets which
contain 0 do not contain any of 2l integers 1, 2, . . . , l and n − 1, n − 2, . . . , n − l,
whence there are Fl(n − 2l − 1) of the subsets. Similar statement is true if
subsets contain any integer m ∈ [ñ]. Therefore subsets, Y , which contain any
of l consecutive integers n − l + 1, n − l + 2, . . . , n (= 0), contain exactly one of
them. Hence the class of sets Y splits into l parts of cardinality F (n − 2l − 1)
each. On the other hand, remaining l-independent subsets contain none of those
l integers. Hence there are Fl(n− l) of such subsets. Consequently,

Gl(n) = Fl(n− l) + l · Fl(n− 2l − 1) for n ≥ 2l + 2,

where, by (7) with n replaced by n− l,

Fl(n− 2l − 1) = Fl(n− l)− Fl(n− l − 1) for n ≥ 2l + 1.

On substituting,

Gl(n) = (l + 1)Fl(n− l)− l · Fl(n− l − 1),(8)

which holds not only for n ≥ 2l + 2 but also for l + 1 ≤ n ≤ 2l + 1 due to the
stated initial values of Gl and Fl. Hence, first by (8) for n ≥ 2l + 2,

Gl(n− 1) +Gl(n− l − 1)
= (l + 1)(Fl(n− l − 1) + Fl(n− 2l − 1))− l (Fl(n− l − 2)+Fl(n− 2l − 2))
= (l + 1)Fl(n− l)− l · Fl(n− l − 1)(by (7)),
= Gl(n) (by (8)),

which completes the proof.

3. Cyclic Strong Independence

Note that significant values of the count Gl(n), namely exactly those on short
n-cycles with 2 ≤ n ≤ l, do not fit the recurrence (4) (in case l ≥ 2 only). We
now modify those values so that the recurrence could hold for n ≥ l + 1 with
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l ≥ 0. We next show that the modified count comprises nth power sums of the
l + 1 characteristic roots of the recurrence for all n ≥ 0 and l ≥ 0. Let

(9) G∗
l (n) =

{

1 for n = 2, . . . , l with l ≥ 2,

Gl(n) otherwise.

Proposition 3. The sequence G∗
l (n) satisfies recurrence (1) for n ≥ l + 1, with

initial values as above.

Proof. In view of Theorem 1 it is enough to see the following. Assume that l ≥ 2.
Then for l + 2 ≤ n ≤ 2l + 1, due to (9) and (6), we have

G∗
l (n− 1) +G∗

l (n− l − 1) = Gl(n− 1) + 1 = n+ 1 = G∗
l (n),

as required. For n = l + 1, we have G∗
l (n) = (l + 1) + 1 = G∗

l (0) +G∗
l (n− 1), as

required, too.

Hence and in regard to Remark 2 the following definition is motivated. A vertex
subset S of a (general) graph (or a cycle) G is l-∗independent (or cyclically strong
l-independent) in G if S is l-independent unless l ≥ 1, the graph G is a short cycle,
G = Zn with 1 ≤ n ≤ l, and |S| > 0. Thus only the empty set is l-∗independent
on a short cycle if l ≥ 1. Therefore G∗

l (n) is the count of such l-∗independent
subsets on the n-cycle.

For other information on sequences G∗
l (n), see sequence A000204 (Lucas num-

bers beginning with L(1) = 1) in [15] and comments therein on generalizations.

4. Recurrence-OGF and Co-reciprocal Polynomials

It is a good opportunity now to show how the notion of mutually reciprocal
polynomials simplifies the procedure which leads from a given recurrence which is
LinHomConst (linear homogeneous with constant coefficients) and complete (i.e.,
with initial values) to the corresponding OGF (and/or vice versa). Let

(10) g(z) =

r
∑

j=0

cjz
j ∈ C[z] with constant term c0 6= 0

be a complex polynomial of positive degree r and with nonzero roots only, possibly
multiple. Then we say that the polynomial f(z) := zr g(z−1) is co-reciprocal for

(or the reciprocal polynomial of ) g(z), and that polynomials f(z) and g(z) are
co-reciprocal (or mutually reciprocal). These notions are not well-established in
literature yet; e.g., ‘reciprocal’ in Andrews’ [1] means ‘self-reciprocal’. A self-
reciprocal polynomial is invariant under reciprocation of the set of roots and so
invariant is the set of roots itself. By the way, the minimal polynomial of the
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golden ratio, h1(x) := x2 − x − 1 (see (13) with l = 1), is not so invariant, but
the reciprocation of its roots results in negating both of roots.

A polynomial f(x) ∈ C[x] is said to be characteristic or in characteristic form

if f(x) is monic, of positive degree, say r, with nonzero roots, and with coefficient
at xr−j denoted by aj :

(11) f(x) =
r

∑

j=0

ajx
r−j with positive r, ar 6= 0 and a0 = 1.

A polynomial Q(x) =
∑r

j=0 cjz
j is said to be co-characteristic or in co-characteris-

tic form if Q(x) is the reciprocal polynomial of a characteristic polynomial, that
is, the co-reciprocal polynomial xdeg Q(x)Q(1/x) is a characteristic polynomial.
Then the constant term of Q(x), c0 = 1. We say that a recurrence is a character-

istic recurrence or is in the characteristic form if the recurrence is LinHomConst,
with highest argument n, the highest coefficient, say, c0 = 1, and is as in (12)
below.

Note that given a characteristic (order-r) recurrence (12), substitutions u(n−
j) ← xj in the left-hand side therein produce a polynomial, say Q(x), in co-
characteristic form, and reciprocation of Q(x) gives a characteristic (degree-r)
polynomial, f(x), which is characteristic polynomial of the recurrence, too. There-
fore Q(x) is said to be the co-characteristic polynomial of the recurrence. On the
other hand, f(x) is obtained straightforwardly by the substitutions u(n − j) ←
xr−j (instead of the former ones) provided that r is the order of the recurrence.
Going backwards from f(x) we arrive at the corresponding characteristic recur-
rence with f(x) as a characteristic polynomial of the recurrence. Passing on to
the intermediate stage, the polynomial Q(x), simplifies hand calculations.

In this section it is assumed that a count/sequence u(n) is defined for n ≥
n1 ≥ 0 where n1 is an initial argument. Then u(j) := 0 for all integers j < n1.

procedure LinHomConstR-OGF.
Input [A complete characteristic recurrence of order r]:

(12)
r

∑

j=0

cju(n− j) = 0 for n ≥ k where a certain k ≥ r,

with at least r initial values (of which last r ones are initial for the recurrence):

u(n1), u(n1 + 1), . . . , u(k − r), . . . , u(k − 1)

for some n1 ≤ k− r, provided that cj are constant coefficients, c0 = 1 and cr 6= 0.

Output [The OGF (possibly reducible), say]:

φ(x) = P (x)
Q(x) , where Q(x) is the co-characteristic polynomial of the OGF,
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Q(x) =
∑r

j=0 cjx
j , with coefficients cj taken from the recurrence,

P (x) := Q(x) · φ(x) = Q(x)
∑k−1

j=n1
u(j)xj mod xk, a polynomial of degree

less than k.
Note that reducing the OGF (if possible) leads to an equivalent simpler re-

currence, by using what follows.
The following converse procedure includes a recursive generation, see Stanley

[16], of initial values of the count.

procedure OGF-LinHomRec.
Input [A rational function Φ(x) := P (x)/Q(x) which is the irreducible OGF for
u(n) where n ≥ n1 ≥ 0. Let r = deg Q(x), Q(x) =

∑r
j=0 cjx

j with c0 =
Q(0) = 1, as above. Let bj be coefficients of the numerator polynomial P (x),
P (x) =

∑s
j=0 bjx

j with deg P (x) = s.]
Output [The recurrence (LinHomConst and of the smallest possible order r) is
obtainable from the co-characteristic polynomial Q(x):

u(n) +
r

∑

j=1

cj u(n− j) = 0 for n ≥ max(r + n1, 1 + s).

The resulting recurrence is valid for n ≥ max (degQ(x) + n1, 1 + degP (x)). Ini-
tial (and any) terms u(m) of the sequence u(n) can be found recursively on equat-
ing coefficients of xm in the identity

Q(x) ·
∑

m≥0 u(m)xm = P (x).

Consequently, values of u(n) (inclusive of the initial ones, for n1 ≤ n ≤ max(r +
n1 − 1, s), are found recursively for consecutive m = 0, 1, . . . from

u(m) +

min(m,r)
∑

j=1

cj u(m− j) = bm

where bm = 0 for m < n1 and for m > s = degP (x).]

5. OGF and Power Sums of Roots

The recurrences (2), (4), and (1) are LinHomConst (linear homogeneous, with
constant coefficients) and of order l + 1 and are essentially the same. Their
characteristic polynomial, say hl(x), for x = z ∈ C, is

(13) hl(z) = zl+1 − zl − 1,

with all characteristic roots being nonzero.
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We now find an OGF, say Φ(x) = ΦF (x),ΦG(x),Φ
∗
G(x), for each of the cor-

responding counts Fl(n), Gl(n), G∗
l (n). Then Φ(x) = P (x)

Q(x) where Q(x) is the
co-characteristic polynomial, that is,

Q(x) = xl+1hl(1/x) = 1− x− xl+1,

and the numerator P (x) = Q(x) Φ(x) depends on the respective initial values
presented in Theorem 1 and Proposition 3. Thus we get

ΦF (x) :=
∑

n≥0

Fl(n)x
n =

1 + x+ · · ·+ xl

1− x− xl+1
,(14)

Φ∗
G(x) :=

∑

n≥0

G∗
l (n)x

n =
l + 1− lx

1− x− xl+1
,(15)

ΦG(x) :=
∑

n≥0

Gl(n)x
n = Φ∗

G(x) +

l
∑

n=2

nxn.(16)

Remark 4. In Comtet’s valuable book [4, p. 46] the OGF for the sequence G(n, l),
namely, (t + (l + 1)tl+1)(1 − t − tl+1)−1 which equals Φ∗

G(t) − (l + 1), should be
replaced by

ΦG(t)− l − 1 = (t+ (l + 1)tl+1)(1− t− tl+1)−1 +
∑l

n=2 nt
n.

Proposition 5. The characteristic roots, roots of hl(z), are nonzero and simple.

Proof. The constant term of hl(z) is nonzero and the only nonzero root of the
derivative h′l(z) = (l + 1)zl−1(z − l/(l + 1)) does not nullify hl(z).

Let z1, z2, . . . , zl+1 be all roots of the characteristic polynomial hl(z). Define

(17) σn(l) =
l+1
∑

j=1

zj
n,

which is the nth power sum of characteristic roots.

Theorem 6. For integers l ≥ 0 and n ≥ 1, each count G∗
l (n) of l-∗independent

subsets of the cycle Zn equals the nth power sum of roots of the characteristic

polynomial, i.e., G∗
l (n) = σn(l). Additionally, for n = 0, σ0(l) = l + 1 =: G∗

l (0).

Proof. Let P (x) = l + 1 − lx, Q(x) = 1 − x − xl+1, and let tj , j = 1, . . . , l + 1,
be all roots of Q(x). Hence, by (15), the OGF for G∗

l (n) is Φ∗
G(x) = P (x)/Q(x).

Moreover, the reciprocals 1/tj are characteristic roots zj . Due to Proposition 5,
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we use the following standard expansion into partial fractions,

Φ∗
G(x) =

l+1
∑

j=1

P (tj)

Q′(tj)
·

1

x− tj
=

l+1
∑

j=1

P (tj)

Q′(tj)
·

1

−tj · (1− xzj)

=

∞
∑

n=0

xn
∑

j

cj · (zj)
n

where

cj :=
P (tj)

−tj Q′(tj)
=

1 + l · (1− tj)

(tj + tj l+1) + ltj l+1
= 1, j = 1, . . . , l + 1,

because Q(tj) = 0, i.e., tj
l+1 = 1−tj for each root tj . Thus G∗

l (n) = [xn] Φ∗
G(x) =

σn(l), which completes the proof.

Corollary 7. The count Gl(n) of l-independent subsets of the cycle Cn is the nth

power sum σn(l), i.e., Gl(n) = G∗
l (n), unless l ≥ 2 and 2 ≤ n ≤ l.

This corollary gives rise to closed formulas for Gl(n) if l is small, l ≤ 4. The
formulas are known for l = 0, 1 and n ≥ 0. Namely,

G0(n) = 2n, the number of all subsets of an n-set, and

G1(n) =
(

1+
√
5

2

)n

+
(

1−
√
5

2

)n

= L(n), the nth Lucas number.

For l = 2, 3, 4 the formulas for roots due to Cardano-del Ferro-Tartaglia (l=2,4;
since h4(z) = (z3 − z − 1)(z2 − z + 1)) on one hand and Ferrari (l = 3) on the
other hand and the de Moivre formula are helpful, see the result in [12, formula
(11)] for G2(n) with n > 2 only.

6. Main Result Via Newton’s Formulas

Given a degree-r characteristic polynomial f(x) = xr + a1x
r−1 + · · · + ar, its

nth moment, Sn, being the nth power sum of roots of f(x), satisfies the order-r
recurrence corresponding to f(x), namely, Sn + a1Sn−1 + · · · + arSn−r = 0 for
each n ≥ r. It is so because the general solution includes Sn as a particular
solution. Initial values Sk for k = 0, 1, . . . , r − 1 (S0 = r, S1 = −a1) can be
obtained for k ≥ 1 recursively from the following Newton formulas: −nan =
Sn+a1Sn−1+ · · ·+an−1S1 where n = 1, 2. . . . , with ak = 0 for k > deg f(x) = r.

Alternative proof of Theorem 6. The moment σn(l) and the count G∗
l (n) sat-

isfy the same recurrence with characteristic polynomial hl(z) of degree r := l+ 1
and with only two nonzero coefficients aj , namely a1 = −1 = ar. Hence, due to



226 Z. Skupień

Newton’s formulas, the r initial values of σn(l), for n = 0, 1, . . . , r − 1 = l, are
l + 1, 1, . . . , 1, and these are initial values of G∗

l (n) due to (9) and (5).

For the case l = 2 only, a similar proof in [12, Lemma 10 and Remark 3.2] uses
the Viète formulas (instead of Newton’s).

7. Asymptotics

The following celebrated result is of basic importance in asymptotic analysis of
combinatorial counting sequences, see [5].

Theorem 8 (Pringsheim’s Theorem). Let f(z) be a power series analytic at the

origin z = 0, with nonnegative coefficients and with finite radius of convergence

R. Then the point z = R is a dominant pole (of least magnitude) of the function

f(z).

A polynomial Q(x) ∈ Z[x] is called a multi-composition polynomial if Q(x) =
1 −

∑ν
j=1mjx

aj where all ν ≥ 2, mjs and 1 ≤ a1 < a2 < · · · < aν are nat-
ural numbers of which ais are relatively prime, gcd{a1, . . . , aν} = 1. Then the
co-reciprocal polynomial of Q(x), say h(x) := xaνQ(1/x), is the characteristic
polynomial of a ‘compositional’ recurrence (for a ‘compositional’ count u(n)),
u(n) =

∑ν
j=1mju(n − aj), generated by Q(x) via the above LinHomConstR-

OGF. Elementary reasoning gives the following result.

Lemma 9 (Skupień [13]). Any multi-composition polynomial has a simple positive

root, τ , which is smaller than the minimum magnitude among remaining roots, if

any, and τ < 1.

Corollary 10. If u(n) is a compositional count with nontrivial natural initial

terms and λ is a characteristic root of largest magnitude then λ is a simple positive

root, λ > 1, and u(n) = Θ(λn), the exact asymptotic order of growth.

This result applies to our counts due to Theorems 1 and 6, and Corollary 7.
Hence,

Proposition 11. If λ(l) stands for the dominant root of the characteristic poly-

nomial hl(z) = zl+1 − zl − 1 then Fl(n) = Θ(λ(l)n), both G∗
l (n), Gl(n) ∼ λ(l)n,

and Gl(n) = ⌊λ(l)
n⌉ for n ≥ 2 if l = 1, n ≥ 6 if l = 2, and n ≥ 22 if l = 3.

Remark 12. It can be seen, for l ≤ 3 only, that magnitudes of remaining charac-
teristic roots are less than 1 and therefore nearest integer function is applicable.

Moreover, the initial λ(l)s are important in the subclass of algebraic integers which
comprises Pisot numbers [3, 17]: golden ratio (l = 1) and next the 4th (l = 2),
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2nd (l = 3), and 1st (l = 4) of the smallest Pisot numbers, the smallest being
called the plastic number, and its minimal polynomial is the degree-3 factor of
h4(z), h4(z) = (z3 − z − 1)(z2 − z + 1).

l 1 2 3 4

λ(l) 1.61803+ 1.46557+ 1.38028− 1.32472−

Table 1. Pisot numbers.

8. Hamilton Cycles in a Squared Cycle

Investigations into distance-independent circular sets, presented above, have been
inspired by the problem of counting Hamilton cycles (i.e., connected 2-factors) in
the square of a cycle [11, 12]. Recall that the square of the n-cycle Cn, in symbols
Cn

2, is the graph Cn together with all n shortest chords (all chords of length
two). One of the main results in [12] is the following closed formula which gives
the number, h(Cn

2), of Hamilton cycles in Cn
2 for n ≥ 5 in terms of the number,

G2(n) = G∗
2(n), of 2-independent sets on the n-cycle. Namely, if

(18) hn := G∗
2(n) + 2⌈n/2⌉,

then h(Cn
2) = hn for n ≥ 5.

n 0 1 2 3 4 5 6 7 8 9 10

G∗
2(n) 3 1 1 4 5 6 10 15 21 31 46

hn 3 3 3 8 9 12 16 23 29 41 56

Table 2

Values of the extended hn such that (18) holds for arguments n ≥ 0 are presented
in Table 2. Note that the result hn = h(Cn

2) does not extend to n = 4 because
h(C4

2) = h(K4) = 3 6= h4 = 9. (In general, h(Kn) = ⌊(n − 1)!/2⌋. That is why
h5 = h(K5) = 12.)

Proposition 13. For the extended sequence hn, OGF: 3−2x
1−x−x3 + x

(1−x)2
+ x

1−x2 ,

hn = 2hn−1 − hn−3 − hn−5 + hn−6 for n ≥ 6, with initial conditions included in

Table 2.

Proof. Due to (15) with l = 2, it is easily seen that the above OGF is the sum
of three OGFs one each for three summands in hn = G∗

2(n) + n+ (1− (−1)n)/2.
Therefore l.c.m., say Q(x), of denominators of the three partial OGFs is the
denominator of the above main OGF,
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Q(x) = (1− x− x3)(1− x2)(1 + x) = 1− 2x+ x3 + x5 − x6.

Hence the above Procedure OGF-LinHomRec gives the stated recurrence (of order
six).

9. Concluding Remarks

Inspired by the above study is the following recent theorem related to very old
Girard-Newton-Waring’s formulas for moments (power sums of roots) of a poly-
nomial. The theorem seems to be unpublished yet, and this opinion agrees with
comments in the introductory part of [8].

Theorem 14 [14]. Let f(z) be a polynomial of degree r > 0 and with nonzero

roots only, whereas g(z) the reciprocal polynomial of f(z). Let Sn(f) and Sn(g)
be the nth moments of f and g, resp. Then the OGF for moments of f(x) is

rg(z)− zg′(z)

g(z)
=

∞
∑

n=0

Sn(f)z
n

and OGF for moments of g(x) results on interchanging symbols f ↔ g on both

sides of the formula.

Procedure RootsPowerSums.
Input [h(z), a polynomial with nonzero roots].
Output [The sequence of power sums of roots of h(z), represented by the ratio-

nal OGF P (z)
Q(z) or by LinHomRec obtainable by Procedure OGF-LinHomRec, see

Section 4].
Action
Q(z) := zdeg h(z)h(1/z), the co-reciprocal polynomial of h(z);
P (z) := −z Q′(z) mod Q(z) so that P (0) = deg h(z);
Procedure OGF-LinHomRec;
STOP.

Another byproduct (which is useful when dealing with LinHomConst recurrences)
is the notion of mutually reciprocal polynomials.
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