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Abstract

For an integer k > 1, we say that a (finite simple undirected) graph G is
k-distance-locally disconnected, or simply k-locally disconnected if, for any
x € V(G), the set of vertices at distance at least 1 and at most k from x
induces in G a disconnected graph. In this paper we study the asymptotic
behavior of the number of edges of a k-locally disconnected graph on n
vertices. For general graphs, we show that this number is ©(n?) for any
fixed value of k and, in the special case of regular graphs, we show that this
asymptotic rate of growth cannot be achieved. For regular graphs, we give a
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general upper bound and we show its asymptotic sharpness for some values
of k. We also discuss some connections with cages.
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1. INTRODUCTION

In this paper, we consider simple finite undirected graphs G = (V(G), E(G));
for notations and terminology not defined here we refer the reader e.g., to [1].
Specifically, we use dist” (z, ) to denote the distance of z and y in G and diam(G)
to denote the diameter of G; d®(z) stands for the degree of a vertex x in G, A(G)
for the maximum degree of G and g(G) for the girth (i.e., the length of a shortest
cycle) of G. We use H C G to denote that H is a subgraph of G and, for a set
M c V(G), we use (M) to denote the induced subgraph of G on M. A path
with terminal vertices u,v will be referred to as a (u,v)-path. If x € V(G) is a
cutvertex of G and B is a component of G — x then the subgraph (V(B)U{z})a
is called the branch of G at x (corresponding to B).

Let f(n), g(n) be two positive functions defined on the set of positive integers.
We say that f(n) is O(g(n)), denoted f(n) € O(g(n)), if there are constants
K > 0 and ng > 0 such that f(n) < Kg(n), for every n > ng. Similarly,
f(n) is Q(g(n)), denoted f(n) € Q(g(n)), if there are constants K’ > 0 and

ny > 0 such that f(n) > K’'g(n) for every n > ny, and f(n) is ©(g(n)), denoted
#(n) € ©(g(n)), if both £(n) € O(g(n)) and f(n) € QAg(n)).

The neighborhood of a vertex z in G is the set N¢(z) = {y € V(G)| zy €
E(G)} and, more generally, for an integer k > 1, the set NF(z) = {y €
V(@)| dist%(z,y) = k} is called the neighborhood at distance k and the set
N[% (z) = {y € V(G)| 1 < distY(z,y) < k} is called the neighborhood at distance
at most k (or simply the k-neighborhood) of x in G (thus, N¢(z) = NF(z) =
Nm( x) and N[k]( x) = U;?:leG(:J:)). We will also use the closed neighborhood
and closed k-neighborhood (of x in G) defined as NY%[z] = N%(z) U {z} and
N[%[ x] = N[GH (x) U {zx}, respectively.

Finally, a graph G is locally disconnected if (N®(x))¢ is a disconnected graph
for every x € V(G) and, more generally, for k > 1, G is k-distance-locally dis-
connected, or simply k-locally disconnected if (N (z))¢ is disconnected for every
z € V(G).

The problem of determining the maximum number of edges of a locally dis-
connected graph was originally posed by Bohdan Zelinka in 1985. In [7], Zelinka
showed that this number cannot be expressed as a linear function of n and de-
termined its exact value in the special case of planar graphs. In [6], it was shown
that, surprisingly, this number can be, in a sense, “arbitrarily close” to the num-
ber of edges of a complete graph (more precisely, for any n > 4, there is a locally
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disconnected graph G, on n vertices such that lim, . IE(S")‘ =1). In [5], a

similar question was studied in the case of edge-induced Vert2ex neighborhoods.
In the present paper, we will study the asymptotic behavior of the number of
edges of a k-locally disconnected graph for & > 2. In Section 2, we will see that
this maximum number is, for & > 2, of asymptotic order g—;, i.e., asymptotically
strictly less than (g), but still ©(n?) for any fixed value of k, while in Section 3
we show that under the restriction to regular graphs the ©(n?) growth rate is not
possible. For regular graphs we give a general upper bound and, for some values
of k, we show its asymptotic sharpness. We also discuss some connections with

cages.

2. MAXIMAL k-LOCALLY DISCONNECTED GRAPHS

It is easy to observe that, for any integers £k > 1 and n > 2k + 2, there is a
k-locally disconnected graph of order n (a cycle is an easy example). Thus, for
k>1and n > 2k + 2, we can define

ldx(n) = max{|E(G)| | G is k-locally disconnected, |V (G)| = n}.

We will also say that a k-locally disconnected graph G with |V (G)| = n and
|E(G)| = 1dg(n) is mazimal. Note that any k-locally disconnected graph is also

(k — 1)-locally disconnected, hence, for any k > 2 and n > 2k + 2, we have
ldg—1(n) > 1dg(n).

We begin with several structural observations.

Proposition 1. Let G be a k-locally disconnected graph. Then diam(G) > k+ 1.

Proof. Suppose, to the contrary, that G is k-locally disconnected and diam(G) <
k, and let z,y € V(G) be such that dist”(z,y) = diam(G). Since diam(G) < k,
all vertices of G are at distance at most k from =, implying (Ny (7)) = G — =.
As G is k-locally disconnected, G — z is disconnected, i.e., x is a cutvertex of G.
But now, for a vertex z in the component G — x not containing ¥y, we have
dist®(z,y) = dist%(z, z) +dist% (z,y) > dist’(z, y), contradicting the assumption
dist%(z,y) = diam(G). |

Note that e.g. the cycle Cogyo is k-locally disconnected and diam(Coy19) = k+1.
Hence Proposition 1 is sharp.

Proposition 2. Let G be a k-locally disconnected graph, and let x € V(G). Then
every component of (N[% (z))g contains a vertex at distance k from x.

Proof. Let, to the contrary, B be a component of (N[GM (x))q with all vertices
at distance at most k — 1 from . Then z is the only vertex in G — B having a
neighbor in B (for otherwise such a vertex would be at distance at most k from
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x, hence in B, contradicting its definition). Consequently, = is a cutvertex of
G. Let B’ be the branch of G at = corresponding to B and let y € V(B’) be
at maximum distance from x. Then all vertices in G — B’ that are at distance
at most k£ from y are accessible from y only through x, hence all such vertices
occur in the same component of (N[GH (y))g. As G is k-locally disconnected,

(N[f]/ (y))gr = B’ — y is disconnected, hence y is a cutvertex of B’. But then,
similarly as before, for a vertex z in a component of B’ — y not containing z,
we have dist? (z,y) = dist? (z, ) + dist? (z, y) > dist” (z,y), contradicting the
choice of y. n

We say that a k-locally disconnected graph is critical if, for any pair of non-
adjacent vertices z,y € V(G), the graph G + zy is not k-locally disconnected.
Obviously, every maximal k-locally disconnected graph is also critical.

Theorem 3. Let G be a critical k-locally disconnected graph. Then G is 2-
connected.

Proof. Suppose, to the contrary, that G is critical k-locally disconnected and
x is a cutvertex of G. Let B be a branch of G at = and let y € V(B) be a
vertex at maximum distance from z. Observe that all vertices in other branches
of G at x are accessible from y only through z, hence those of them that are at
distance at most k from y must occur in one component of <N[% (y))g. Thus,
if dist®(y,z) < k, all vertices of B are in N[GM (x), hence <N£](I')>B =B-y
is disconnected, implying y is a cutvertex of B. But this, similarly as before,
contradicts the maximality of dist®(z, ).

Thus, every branch of G at x contains a vertex at distance at least k41 from
x. Let y1, y2 be two such vertices in different branches. Then the graph G + y1y2
is also k-locally disconnected, contradicting the criticality of G. [

Note that the graph G consisting of two cycles of length 2k + 2 sharing a vertex
shows that the criticality assumption in Theorem 3 is essential.

The following technical proposition is crucial for the main result of this section,
Theorem 6.

Proposition 4. Let G be a k-locally disconnected graph, k > 2, x € V(Q),
d%(z) = d. Then there are vertices xt € V(G), i = 1,...,d, £ = 1,...,k, such
that

(i) {x{,,xfl} C Ne(z), 6=1,...,k;

(ii) @, xl,... ,:cf is an induced path in G, i=1,...,d;

(iii) for any i1,ia and €1,02, 1 <iy,i2 < d, i1 # i2, 1 < £1,0y < k, the vertices

mfll and a:fj are distinct and for max{l1,l2} > 2 nonadjacent.
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Proof. Let {xi,...,z}} = Ni(z), and consider <N[(,§] (r1))g. As the vertex x

and the vertices x%, . ,xcli are at distance at most 2 from x%, they are in one
component of <N[% (z1))g. By Proposition 2, there are vertices a2, ... ,x’f“ in

another component such that dist(z],z{™") = ¢, £ = 1,...,k (for d = 4 and
k = 5, see Figure 1; note that some of the edges of the form lecc}, 1<i4,5 <d,
are possible in G).

By induction, for i = 2,...,d, some component of (N[%] (z}))g contains all
of Ni[z] \ {x}} and all the vertices x? for 1 <j<iand 2 </¢ < k-1, hence

2 ¥+ in another component such that dist(z!, 1) = ¢,

there are vertices x7, ..., x; 5T
{=1,...,k. By the construction, it is straightforward to verify that the vertices
2t i=1,...,d, ¢ =1,..., k have the required properties (1), (ii) and (iii). [

79

Figure 1

Theorem 5. Let G be a k-locally disconnected graph of order n. Then

n—2

AG) €

Proof. The statement is obvious for k = 1, thus let & > 2, and let z € V(G) be
a vertex of degree d = A(G). By Proposition 4, [NF(z)| > dfor £ =1,...,k and
clearly |Njy1(z)| > 1. Hence we have n > |N[§j+1] (2] > 1+ 35 ING(z)| +1>
kd + 2, from which d < "T_2 [

Theorem 6. Let G be a k-locally disconnected graph of order n. Then

|E(G)| < —(n* — 2n).

)
2k
Proof. By Theorem 5, |E(G)| = %erV(G) d%(z) < inA(G) < 5zn(n—2). =

In Theorem 6 we have, for any k > 1, an O(n?) upper bound on the number of
edges of a k-locally disconnected graph of order n. The next result shows that
the quadratic growth rate is achievable.
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Theorem 7. Let k> 1 andt > 2 be integers and let n = t(k+1) Then there is a
k-locally disconnected graph G with n vertices and |E(G)| = (k+l) s(n?+(k2—1)n)
edges.

Proof. For given k > 1 and t > 2, let H;, Hs be two copies of the complete
graph K; and let G be the graph obtained by joining the vertices of H; to the
vertices of Hy with ¢ vertex-disjoint paths of length k (for ¢ = 4 and k = 3, see
Figure 2.) Then clearly G is k-locally disconnected, n = |V (G)| = (k + 1)t, and

Py Py
@ 4

Figure 2

I()

(k;+1

| = ()+kt_t(t_1)+kt_t2+(k_1)t:(T_Th)2+(k—1)k%1:
5(n% + (k? — 1)n), as required. -

Now we are able to determine the asymptotic growth rate of the function 1dg(n).

Theorem 8. For any fized integer k > 1,
ldx(n) € ©(n?).

Proof. We have 1d;(n) € O(n?) immediately by Theorem 6. To obtain ldg(n) €
Q(n?), we extend the construction from the proof of Theorem 7 in such a way
that, for n = t(k + 1) +r with 1 <r < k, we arbitrarily subdivide some of the ¢
paths joining H; to Hy with r vertices of degree 2. [

3. REGULAR k-LOCALLY DISCONNECTED GRAPHS

In the previous section we have seen that, for any fixed k& > 2, the number of
edges of a k-locally disconnected graph of order n can achieve the growth rate
O(n?). Here we will show that this is not possible under the additional restriction
on GG to be regular. Similarly to the general case, we set

1d2(n) = max{|E(G)| | G regular and k-locally disconnected, |V (G)| = n}.
Furthermore, analogously, for any k > 2 and n > 2k 4+ 2 we have
1df 1 (n) > 1df(n).

We begin with a structural result that will be crucial for our proof of the main
result of this section. Here, a leaf of a tree T' is a vertex of degree 1 in T'.
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Proposition 9. Let G be a k-locally disconnected (k > 1) d-reqular graph and
let z € V(G). Then G contains a tree T such that

() V(T) € NG [o);

(ii) all leaves of T are in N&(x);

(iil) for anyy € V(T), dist’ (x,y) = dist%(z,y);
(iv) foranyt, 1 <t <k,

N (@) 2 jﬁj:};

H

for t odd,
for t even.

Proof. We construct a sequence of trees {Tt}f:l such that, for any ¢, 1 <t <k,
(i) V(1) C N[t][ z];
(ii) all leaves of T} are in N (z);

(iil) for any y € V(T}), dist’t (z,y) = dist® (z,y);

t—1

for ¢t odd,

for t even;

(iv) [N/ ()] > {

=
t=2
2
(v) fort>2, T, C Tz

We proceed by induction on t.

1. Fort = 1, we set V(T1) = NE[x] and E(T}) = {zy| y € N%(z)}. Then
clearly T} satisfies (i)-(iv) for ¢ = 1.

2. Let t¢ > 2 and suppose that we have already constructed a tree T;_;
satisfying (i)-(v) with ¢ := ¢—1 (hence also its subtrees Ty for all ¢/, 1 < ' < t—1).
Note that, by the induction hypothesis, we have
d(d—1)7" for t odd,

d(d — 1)% for t even
(since t — 1 is even/odd for ¢ odd/even, respectively).

Ty
[N ()] =

(a) Suppose first that ¢ is even and let y be a leaf of T;_;. Then all vertices
in 77 are at distance at most ¢ from y and, since t < k, T is (together with
the (y,z)-path in T;_1) a subgraph of one component of ( [(k;]( ))g. Thus, y
has a neighbor y* that is in another component of ( [k:]( y))c (not containing
T1). Choose such a vertex y* for every leaf y of T t—1. Then all these vertices
are distinct and nonadjacent in G, for if e.g. yl yQ € E(QG) for some two leaves
Y1, Y2 of Ty_1, then yq, y2 and all vertices of the (yq,z)-path in T;—1 would be
at distance at most t < k from y;, implying yf is in the same component of
<N[% (y1))q as Ti, a contradiction (the case y; = yo is similar). Thus, adding to
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T;_1 the vertices y* and the edges yy* for all leaves y of T;_1, we obtain the
desired tree T; (note that if ¢ is even then the lower bound (iv) is the same for ¢
and for ¢t — 1).

(b) If ¢ is odd (implying t > 3), we construct a desired tree 7} by attaching
to every leaf of T;_o a tree Ty rooted at y such that T, contains the edge yy™
(where y* is the leaf of T;_; defined in the previous step) and T}, has d — 1 leaves
at distance 2 from y (hence at distance ¢ from x).

Thus, let y be a leaf of T;_5 and y™ the corresponding leaf of T; ;. Since G
is d-regular, y* has, besides y, d — 1 other neighbors y{,...,y, ;. Choose the
notation such that, for some s, 0 <'s <d — 1, we have yy, ¢ E(G) for 1 <i<s
and yy, € E(G) for s+ 1 <i < d — 1. First observe that all y}, i = 1,...,s, are
at distance ¢ from z (in G), for, if some y; , 1s at distance at most ¢t — 1 from z,
then, since yy; ¢ E(G), there is a path from y; to some vertex in T3 of length at
most t — 2 avoiding y, hence y* is in the same component of (NV, [Gk] (y))g as Ty, a
contradiction.

Now let s +1 < i < d— 1. Then ¥} is adjacent to both y and y™, implying
dist®(z,y!) <t —1. Similarly as before, dist®(z,y}) = t — 1 and ¥/ is nonadjacent
to any vertex in T;_1, for otherwise y* is in the same component of (N[% (y)a
as Ty, a contradiction. But now Tj, all vertices of the (y*,z)-path in T;_q,
all vertices y; for j # ¢, and all their neighbors are in the same component of
<N[% (vi))a. Thus, y; has a neighbor y/ in another component of (N[GM (i) a,
and clearly y/ is at distance ¢t from z. By their definition, all the vertices v,
i=s+4+1,...,d—1, are distinct and nonadjacent.

Now, we define T}, as the tree containing the vertices y,y™, y},...,y, ; and
Yoi1,---,Yl_, the edge yy™, the edges yTy; for 1 < i < s, and the paths yy.y.
for s+1 < i < d—1. Then T, has d—1leaves yi,..., Y%, Yor1,---, Yy, at distance
2 from y (see Figure 3, where the edges of the tree T, appear as thick lines).

Now it is again straightforward to verify that if y,v are two leaves of T;_o
and T}, T, are the corresponding trees, then all vertices of T}, and T, are distinct
and nonadjacent, for otherwise we have a contradiction with the definition of ™,
vt or of some of y or v/. Thus, for the tree T}, obtained from T;_s by attaching
T, to y for any leaf y of T; 5, we have

IN/H(@)] = IND @)](d = 1) 2 d(d = )7 (d = 1) =d(d— 1),
as requested. ]

The following result is a counterpart to Theorem 5 for regular graphs.

Theorem 10. Let k > 1 be odd and let G be a d-regular k-locally disconnected
graph of order n. Then

dgn%ﬂ—l-l.
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1 2 t t+1 t+2
___.: _______ °
e _ .

Ty 1

Figure 3

Proof. Choose a vertex € V(G) and let T be the tree given in Proposition 9.
Then we have
n > V(T +1=1+ 0, INF(2)] +1
> 14+d+d+d(d—1)+d(d—1)+ - +d(d—1)"F +d(d—1)F +d(d—1)F +1
=242d1+(d—1) 4+ (d—1)T]+dd-1)"7
-1

bl _
=2+2d“ N a1

—242.0 [(d—1)"T —1]+dd—1)"T

k=1 k=1 k=1 k41
>2+42[(d-1)z —1]+d(d—-1)2 =(d+2)d—1)2 >(d—-1)=.
Thus, we have n > (d — 1)%, from which d < R 4 1. |
Now we are able to give an upper bound on the function 1d¥(n). We will show
that, unlike in the general case (cf. Theorem 8), ©(n?) growth rate is not possible
in the case of regular graphs.

Theorem 11. Let G be a reqular k-locally disconnected graph of order n. Then

1 +n%+1) for k odd,

EG) <
@)l 1+n%) for k even.

[SISENT

Proof. If k is even, then k — 1 is odd and the upper bound for k£ — 1 equals the
upper bound for k. Since 1d£ | (n) > 1d¥(n), it is sufficient to prove the bound

for k odd. If G is d-regular, then d < n'%rl + 1 by Theorem 10. From this we
have
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B(G)| = § Y aer d9(x) = dnd < L (nln% n n) —n <1 n n%)
as requested. [

Corollary 12. For any fized integer k > 1,

x-\w

14f(n) € { O(n”k+ ) for k odd
O(n'Tk)  fork even.

Proof. Proof follows immediately from Theorem 11. [

Specifically, we have:

O(n?) fork=1,2,

3
O(nz) for k=3,4
1djf L
k() € O(né) for k = 5,6,
O(nt) fork=71,8,

etc. We finish with examples of infinite families of regular locally disconnected
graphs showing that, for 1 < k <5, k =7 and k£ = 11 these asymptotic growth
rates can really be achieved. We do not know similar constructions for k > 12;
for these values of k we only give some general observations.

Since 1dff(n) > 1d%(n) and 1d¥(n) > 1df(n), it is not necessary to give the
constructions for £ = 1, 3; constructions for k£ = 2,4 are sufficient.

Example 1: k£ = 2. Let Hy, H1, Ho be three copies of the complete bipartite
graph K;;, t > 2, with vertices colored black and white, and let G' be the graph
obtained by joining black vertices in H; to white vertices in H;;1 with a matching,
i = 0,1,2 (indices modulo 3). For ¢t = 3, see Figure 4. Then n = |V(G)| = 6t,

Figure 4

ie,t=1% and |E(G)| =3t +3t = 3(%)?+ 3%, i.e. |E(G)| = 75(n®+ 6n). Thus

|E(Q)| € Q(n?).

Example 2: £k = 4. Let t > 2 and let H;;j,i=20,...,4, 57 =0,...,t -1,
w! . ( bi-1) denote the

be 5t copies of the graph K;; and let w”,... g Ui
white (black) vertices of H; j, respectively. The graph G is obtained by joining
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Figure 5

bk to lek for all j,k=0,...,t—1and i =0,...,4 (index ¢ modulo 5). For
t = 2, see Figure 5. Then n ::|L’( )| 5t 2t = 10t2, ie., t = /7, and

|E(G)| = 5t -2 + 5t% = 5¢3 + 5t2 = 2rn + 1n, hence we have |E(G)| € Q(n%)

For our next examples, we will need some definitions and observations. Given
integers d, g, a (d, g)-graph is a d-regular graph of girth g, and a (d, g)-graph of
minimum order (number of vertices) is called a (d, g)-cage. For a survey paper
on cages, see [2]. Since a graph of girth g is clearly (|4 ] — 1)-locally disconnected
and cages are such graphs of minimum order, cages are candidates for “good”
locally disconnected graphs. While it can be seen that cages themselves are not
dense enough to provide a sharpness example, we show that they can be used as

“building blocks” for such a construction.

An inflation of a graph H is the graph G obtained from H by
(i) replacing each vertex x € V(H) with a clique K, of order d” (x);

(ii) replacing each edge xy € E(H) with an edge joining a vertex in K, to a
vertex in K, in such a way that the edges of G corresponding to edges of H
form a perfect matching in G.

Obviously, an inflation of a (d, g)-graph (hence also of a (d, g)-cage) is a d-
regular (g — 1)-locally disconnected graph. We will use known families of cages
of girths g = 6,8 and 12 to construct examples showing asymptotic sharpness for
k=5,7and 11.

Example 3: k£ = 5. The incidence graph of a projective plane of order ¢ is
a cage of degree d = ¢+ 1 and girth ¢ = 6, has n’ = 2(¢%> + ¢ + 1) vertices
(see [2], Section 2.2.1), and its inflation is a 5-locally disconnected graph. Let
G be such an inﬂation. Then G is d-regular with d = d’ = ¢ + 1 and has

= |V(G)|] = =2(¢+ D(¢®> +q+1) < 2(q+ 1)3 vertices, from which
qg+1> (%)% Si nc4e G is d-regular, we have |E(G)| = %erV(G) d%(z) = tdn =
3(g+1)n > —5=ns.

2{‘/5
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Example 4: k = 7. The incidence graph of a generalized quadrangle of order
(g,q) is a cage of degree d’ = ¢+ 1 and girth g = 8, and has n’ = 2(¢g+ 1)(¢> + 1)
vertices (see [2], Section 2.2.2). Let G be its inflation. Then G is 7-locally
disconnected, d-regular with d = d’ = ¢+ 1, and has n = dn’ = 2(q + 1)%(¢*> +
1) < 2(q + 1)* vertices, from Which qg+1> (%)i As G is d-regular, we have

|B(G)| = 3dn = 5(¢+1)

2 3 f
Example 5: k = 11. Similarly, the incidence graph of a generalized hexagon
of order (q,q) is a cage of degree d = g+ 1 and girth ¢ = 12, and has n’ =
2(¢® + 1)(¢*> + q + 1) vertices (see [2], Section 2.2.3). Again, its inflation G is
11-locally disconnected, d-regular with d = d' = ¢ + 1, and has n = dn’ =
2(g+ 1)(¢®* + 1)(¢* + ¢ + 1) < 2(q + 1) vertices, from which ¢ +1 > (% )é and

hence |E(G)| = 4dn = L(¢+ 1)n > Tlﬁn

For k > 12, no infinite families of cages of girth g > 12 are known. Thus, to
obtain similar constructions based on inflations, instead of cages we can only use
“good” families of (d 9)- graphs The best known such families have (see [3], or
Theorem 12 in [2]) n’ < 2dq49 4 vertices, where ¢ denotes the smallest odd prime
power for which d < ¢. By a well-known result (proved by Chebychev in the mid of
19th century, see e.g. [4], page 96), for any integer a > 2, there is a prime between
a and 2a, hence certainly ¢ < 2d, which gives n/ < (2d)%g_3. For the inflation G
we then have |V(G)| =n =dn’ < 2%9_3d%g_2, from which, for fixed g, we have
d > clni”;%f?, where ¢; is a suitable constant, and |E(G)| = %dn > 02n1+3;%8 =

3g—4
con39—8  where again cy is a suitable constant.

Similarly to before, G is k-locally disconnected, where k = g — 1, and hence
3(k+1)—4
|E(G)| > can3t+D-8 = 02n1+3k4—5. Thus, we have |E(G)| € Q(n1+3k4—5), which is

noticeably less than the upper bound of Corollary 12.
Of course, there could possibly be a better special construction (not based
on the inflation of a (d, g)-graph), however, this remains an open question.
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