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Abstract

A graph G is a (Kq, k) stable graph (q ≥ 3) if it contains a Kq after

deleting any subset of k vertices (k ≥ 0). Andrzej Żak in the paper On

(Kq; k)-stable graphs, ( doi:/10.1002/jgt.21705) has proved a conjecture of
Dudek, Szymański and Zwonek stating that for sufficiently large k the num-
ber of edges of a minimum (Kq, k) stable graph is (2q − 3)(k + 1) and that
such a graph is isomorphic to sK2q−2 + tK2q−3 where s and t are integers
such that s(q − 1) + t(q − 2) − 1 = k. We have proved (Fouquet et al. On

(Kq, k) stable graphs with small k, Elektron. J. Combin. 19 (2012) #P50)
that for q ≥ 5 and k ≤ q

2
+1 the graph Kq+k is the unique minimum (Kq, k)

stable graph. In the present paper we are interested in the (Kq, κ(q)) stable
graphs of minimum size where κ(q) is the maximum value for which for every
nonnegative integer k < κ(q) the only (Kq, k) stable graph of minimum size
is Kq+k and by determining the exact value of κ(q).
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1. Introduction

For terms not defined here we refer to [1]. As usual, the order of a graph G is the
number of its vertices and the size of G is the number of its edges (denoted by
e(G)). The disjoint union of two graphs G1 and G2 is denoted by G1 +G2. The
union of p mutually disjoint copies of a graph G is denoted by pG. For any set
A of vertices, we denote by G[A] the subgraph induced by A and by G − A the
subgraph induced by V (G)−A. If A = {v} we write G− v for G−{v}. For any
set F of edges, we denote by G − F the spanning subgraph (V (G), E(G) − F ).
If F = {e} we write G − e instead of G − {e}. A complete subgraph of order q
of G is called a q-clique of G. The complete graph of order q is denoted by Kq.
When a graph G contains a q-clique as subgraph, we say “G contains a Kq”.

In [6] Horváth and Katona considered the notion of (H, k) edge stable graph2:
given a simple graph H, an integer k and a graph G containing H as subgraph,
G is an (H, k) edge stable graph whenever the deletion of any set of k edges does
not lead to an H-free graph. These authors consider (Pn, k) edge stable graphs
and prove a conjecture stated in [5] on the minimum size of a (P4, k) edge stable
graph. In [2], Dudek, Szymański and Zwonek investigated the vertex version of
this notion and introduced the (H, k) stable graphs.

Definition 1.1 [2]. Given an integer k ≥ 0 and a graph H without isolated
vertices, a graph G containing a subgraph isomorphic to H is said to be an
(H, k) stable graph if, for every subset S of k vertices, G−S contains (a subgraph
isomorphic to) H.

Definition 1.2. A (H, k) stable graph with minimum size is called a minimum

(H, k) stable graph. The size of a minimum (H, k) stable graph shall be denoted
by stab(H, k).

Note that if G is an (H, k) stable graph with minimum size then the graph
obtained from G by addition or deletion of some isolated vertices is also minimum
(H, k) stable. Hence we shall assume that all the graphs considered in the paper
have no isolated vertices. It is clear that H is the unique (H, 0) stable graph with
minimum size.

In this paper we consider (Kq, k) stable graphs with q ≥ 2. Since Kq+k is

(Kq, k) stable, note that a trivial upper bound for stab(Kq, k) is
(

q+k
2

)

. It is an
easy exercise to see that stab(K2, k) = k + 1 and that the matching (k + 1)K2 is
the unique minimum (K2, k) stable graph.

Dudek, Szymański and Zwonek have proved in [2] that stab(K3, k) = 3(k+1)
for k ≥ 0 and stab(K4, k) = 5(k + 1) for k ≥ 1 and they have obtained an upper

2In the original paper [6] these graphs are just called (H, k) stable by the authors.
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bound for stab(Kq, k) for sufficiently large k. More precisely, they have obtained
the following result.

Theorem 1.3 [2]. For every q ≥ 5, there exists an integer k(q) such that for

every k ≥ k(q), stab(Kq, k) ≤ (2q − 3)(k + 1).

In order to obtain Theorem 1.3, the authors consider the graph G = sK2q−2 +
(r− s)K2q−3 with q ≥ 5, k ≥ (q− 1)(q− 2), r ∈ {1, · · · , k+1}, s ∈ {0, . . . , r} and
r(q − 2) + s − 1 = k and note that the number of edges of G is (2q − 3)(k + 1).
A smaller bound for k(q) can be obtained by the following Proposition 1.4 (a
consequence of an old result of Sylvester [7]; see a proof at the end of Section
2), and more generally apart from k ∈ {0, . . . , q − 4}, Theorem 1.6 below gives a
better upper bound than

(

q+k
2

)

for stab(Kq, k).

Proposition 1.4. Let q ≥ 4 be an integer. Set

A(q) =
⋃

0≤i≤q−4{i(q − 1) + j | 0 ≤ j ≤ q − 4− i}
and

B(q) = {b ∈ N | 0 ≤ b ≤ (q − 2)(q − 3)− 2} −A(q).
Let k be a nonnegative integer. There exist integers s and t such that s(q − 1) +
t(q−2)−1 = k if and only if k ∈ B(q) or k ≥ k(q) = (q−3)(q−2)−1. For such

a pair (s, t), G = sK2q−2 + tK2q−3 is (Kq, k) stable and e(G) = (2q − 3)(k + 1).

Note that |A(q)| = (q−3)(q−2)
2 and |B(q)| = |A(q)| − 1.

Lemma 1.5. Let q ≥ 4 and k ≥ 0 be integers. Then k ∈ A(q) if and only if

[k+1
q−1 ,

k+1
q−2 ] contains no integer.

Theorem 1.6. Let q ≥ 3 and k ≥ 0 be integers. Set A(3) = B(3) = ∅, and for

q ≥ 4, A(q) and B(q) are the sets defined in Proposition 1.4. For every positive

integer r set

φ(r) = 1
2

(

q − 1 +
⌊

k+1
r

⌋) ((

q − 2−
⌊

k+1
r

⌋)

r + 2(k + 1)
)

.

Then, stab(Kq, k) is at most equal to

• φ(1) = 1
2(q + k − 1)(q + k) if k ≤ q − 4 (note that k is in A(q)),

• min{φ(⌊k+1
q−1 ⌋), φ(⌊

k+1
q−1 ⌋+ 1)} if k ∈ A(q) and k ≥ q − 1,

• (2q − 3)(k + 1) if k ∈ B(q) or k ≥ k(q) = (q − 3)(q − 2) − 1 (note that

φ(r) = (2q − 3)(k + 1) for every integer r ∈ [k+1
q−1 ,

k+1
q−2 ]).

We shall give a proof of Theorem 1.6 in Section 3 by considering (Kq, k) stable
graphs having cliques as components and having the minimum number of edges.
As a consequence, if every component of a mimimum (Kq, k) stable graph is
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complete (see Problem 1.15) then the upper bound given in Theorem 1.6 is the
exact value for stab(Kq, k).

In light of their results, Dudek, Szymański and Zwonek propose the following
conjecture.

Conjecture 1.7 [2]. There exists an integer k(q) such that for every k ≥ k(q),
stab(Kq, k) = (2q − 3)(k + 1).

Note that Conjecture 1.7 is true for q ∈ {3, 4}. In [4] we have proved that
stab(K5, k) = 7(k + 1) for k ≥ 5, which confirms Conjecture 1.7 for q = 5.
Moreover, we have characterized (Kq, k) stable graphs with minimum size for
q ∈ {3, 4, 5}. The following theorem summarizes these results.

Theorem 1.8 [4] . Let G be a minimum (Kq, k) stable graph, with q ∈ {3, 4, 5}
and k ≥ k(q) with k(3) = 0, k(4) = 1, k(5) = 5. Then G = sK2q−2 + tK2q−3, for

any choice of s and t such that s(q − 1) + t(q − 2) − 1 = k. Moreover, K5+k is

the unique minimum (K5, k) stable graph for k ∈ {1, 2, 3}, K9 and K6 +K7 are

the only minimum (K5, 4) stable graphs.

An important fact is that Conjecture 1.7 of Dudek, Szymański and Zwonek has
been recently solved by Żak [8], who has characterized also the extremal graphs.

Theorem 1.9 [8]. Let q ≥ 2, k ≥ 0 be nonnegative integers. Then stab(Kq, k) ≥
(2q − 3)(k + 1), with equality if and only if k = s(q − 1) + t(q − 2)− 1 for some

nonnegative integers s and t. In particular, stab(Kq, k) = (2q − 3)(k + 1) for

k ≥ (q− 3)(q− 2)− 1. Furthermore, if G is a (Kq, k) stable graph having exactly

(2q − 3)(k + 1) edges, then G = sK2q−2 + tK2q−3 where s and t are nonnegative

integers such that s(q − 1) + t(q − 2)− 1 = k.

Remark 1.10. Since (Kq, k) stable graphs with minimum size for q ∈ {3, 4, 5, 6}
have been characterized (see Theorem 1.8 for q ≤ 5 and [8] for q = 6), to close
the study of minimum (Kq, k) stable graphs we have only to consider q ≥ 7 and
k ∈ A(q) (the set defined in Proposition 1.4).

We have proved in [4] that Kq+k is the unique minimum (Kq, k) stable graph
for q ≥ 4 and k ∈ {1, 2}, that Kq+3 is the unique minimum (Kq, 3) stable graph
for q ≥ 5 and in [3] that Kq+k is the unique (Kq, k) stable graph for q ≥ 6 and

k ≤ q
2 + 1. Remark that

(

q+k
2

)

− (2q − 3)(k + 1) = (q−k−3)(q−k−2)
2 and that this

integer is positive for q ≥ 3 and k /∈ {q − 3, q − 2}. Then, as a consequence of
Proposition 1.4, for q ≥ 4 and for every integer k for which k ∈ B(q)−{q−3, q−2}
or k ≥ (q−3)(q−2)−1 the graph Kq+k is not minimum (Kq, k) stable. Hence, the
set {k ∈ N | Kq+k is minimum (Kq, k) stable} is bounded above, and we propose
the following definition.
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Definition 1.11. For every integer q ≥ 4, we denote by κ(q) the greatest integer
such that for 1 ≤ k < κ(q) the only minimum (Kq, k) stable graph is Kq+k.

We will focuse our attention on determining the exact value of κ(q). In two
previous papers we have proved the following.

Theorem 1.12 [3, 4]. κ(3) = 1, κ(4) = 3, κ(5) = 4 and for q ≥ 6, κ(q) > q
2 +1.

In this paper we give an upper bound for the value of κ(q).

Theorem 1.13. For every q ≥ 4, if κ(q) is even, then κ(q) <
√

2(q − 1)(q − 2)
and if κ(q) is odd, then κ(q) <

√

1 + 2(q − 1)(q − 2).

We prove that these upper bounds are reached for values of q such that there
exists a minimum (Kq, κ(q)) stable disconnected graph (note that it is the case
for q = 4 and q = 5).

Theorem 1.14. Let q ≥ 4 and suppose that there exists a disconnected minimum

(Kq, κ(q)) stable graph. Set ρ(q) =
⌈
√

1
2(q − 1)(q − 2)

⌉

− 1.

If 1
2(q − 1)(q − 2) > ρ(q)2 + ρ(q), then κ(q) = 2ρ(q) + 1.

If 1
2(q − 1)(q − 2) ≤ ρ(q)2 + ρ(q), then κ(q) = 2ρ(q).

Proofs of Theorems 1.13 and 1.14 shall be given in Subsection 3.3.

Remark that, by definition of κ(q) and by Theorem 1.9, for every integer k
in {l ∈ N | 0 ≤ l < κ(q) or l ≥ (q− 2)(q− 3)− 1} ∪B(q) every component of any
minimum (Kq, k) stable graph is complete, but we do not know if it is true for k
in { l ∈ N | l ≥ κ(q) and l ∈ A(q)} (where A(q) and B(q) are the sets defined in
Proposition 1.4).

If there is no minimum disconnected (Kq, κ(q)) stable graph then, by defini-
tion of κ(q), there exists a connected minimum (Kq, κ(q)) stable graph Gq which
is not complete. We think that it never happens, so we propose the following
problem.

Problem 1.15. Is it true that if G is a minimum (Kq, k) stable graph, then every

component of G is complete?

If the answer is positive then Theorem 1.14 gives the exact value of κ(q) for every
q ≥ 4.

2. General Results

Lemma 2.1 [2]. Let G be an (H, k) stable graph with k ≥ 1. Then, for every

vertex v, G− v is (H, k − 1) stable.
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A set of vertices of G that intersects every subgraph of G isomorphic toH is called
a transversal of all the subgraphs isomorphic to H or simply an H-transversal of
G. An H-transversal of G having the minimum number of vertices is said to
be a minimum H-transversal of G. The number of vertices of a minimum H-
transversal is denoted by τH(G). Remark that G is (H, k) stable if and only if
τH(G) ≥ k + 1

Definition 2.2. Let G be an (H, k) stable graph. If G has a minimum H-
transversal having exactly k + 1 vertices, G is said to be exactly (H, k) stable.

Lemma 2.3 [2]. Let G be an (H, k) stable graph with k ≥ 1 and e ∈ E(G) such

that G − e is not (H, k) stable. Then G is exactly (H, k) stable and G − e is

exactly (H, k − 1) stable.

Definition 2.4 [2]. Let G be an (H, k) stable graph. If G−e is not (H, k) stable
for every edge e ∈ E(G), then G is said to be minimal (H, k) stable.

Remark 2.5. In [2] “minimal (H, k) stable graphs” are called “strong (H, k)
stable graphs” by the authors. Note that an (H, k) stable graph G is minimal
(H, k) stable if and only if for every e ∈ E(G) the graph G−e is exactly (H, k−1)
stable. Moreover, a minimal (H, k) stable graph is exactly (H, k) stable.

If there exists an edge e of an (H, k) stable graph G such that there are no
subgraphs isomorphic to H containing e, then G − e is an (H, k) stable graph.
Hence, we have the following.

Lemma 2.6 [2]. Every edge of a minimal (H, k) stable graph is contained in a

subgraph isomorphic to H. Consequently, every vertex of a minimal (H, k) stable

graph is also contained in a subgraph isomorphic to H.

Remark 2.7. Clearly, every minimum (H, k) stable graph is minimal (H, k)
stable.

One may ask what happens for components of an (H, k) stable graph. The
following theorem gives us an answer when H is connected. We shall say that a
graph containing no subgraph isomorphic to H is (H,−1) stable.

Theorem 2.8. Let H be a connected graph containing at least 2 vertices, let

G be an exactly (H, k) stable graph, and let G1, G2,. . . , Gr, with r ≥ 1, be its

components. Then, there exist integers k1, k2,. . . , kr, with 0 ≤ ki ≤ k, such that

(i) for every i, with 1 ≤ i ≤ r, Gi is exactly (H, ki) stable,

(ii)
∑r

i=1 ki + (r − 1) = k,

G is minimal (H, k) stable if and only if for every i, 1 ≤ i ≤ r, Gi is minimal

(H, ki) stable. Moreover, if G is minimum (H, k) stable, then for every i, 1 ≤
i ≤ r, Gi is minimum (H, ki) stable.
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Proof. For each i, 1 ≤ i ≤ r, let us consider a minimum H-transversal of Gi,
say Ti, and set ki = |Ti| − 1. Clearly, for each i the graph Gi is exactly (H, ki)
stable and the set T =

⋃

1≤i≤r Ti is a minimum H-transversal of G. Note that
the number of elements of T is |T | =

∑r
i=1 ki + r and we have |T | > k. Let S be

any set of vertices of G such that |S| ≤ |T |−1 and for every i denote by Si the set
S ∩ V (Gi). Clearly, there exists i0 ∈ {1, . . . , r} such that |Si0 | ≤ ki0 = |Ti0 | − 1.
Then, Gi0 − Si0 contains a subgraph isomorphic to H, that is, G is exactly
(H, |T | − 1) stable, and we have

∑r
i=1 ki + (r − 1) = k.

Let e be an edge of G and let Gi be the component containing e.

Claim. G− e is (H, k) stable if and only if Gi − e is (H, ki) stable.

Proof. Suppose that Gi−e is (H, ki) stable. Let U be an H-transversal of G−e.
Set Ui = U ∩ V (Gi − e) = U ∩ V (Gi) and for every j 6= i, Uj = U ∩ V (Gj). Since
(Gi−e)−Ui and each Gj−Uj , j 6= i, contain no subgraphs of G−e isomorphic to
H, we have for every j, 1 ≤ j ≤ r, |Uj | ≥ kj +1. Then, |U | =

∑r
j=1 |Uj | ≥ k+1.

Hence, for every set S of k vertices (G− e)− S contains a subgraph isomorphic
to H, that is, G− e is (H, k) stable.

Conversely, suppose that Gi − e is not (H, ki) stable. Let Ti be an H-
transversal of (Gi − e) − Ti having ki vertices. For every j 6= i let Tj be an
H-transversal of Gj having kj + 1 vertices. The set T = ∪r

j=1Tj has k vertices
and is a H-transversal of G− e, that is, G− e is not (H, k) stable.

Thus, G is minimal (H, k) stable if and only if for every i, 1 ≤ i ≤ r, Gi is
minimal (H, ki) stable.

Note that, by replacing a minimal (H, ki) stable component Gi by any minimal
(H, ki) stable graph G′

i (connected or not), we obtain again a minimal (H, k)
stable graph. Thus, if G is minimum (H, k) stable then for every i, 1 ≤ i ≤ r, Gi

is minimum (H, ki) stable.

Remark 2.9. Let r ≥ 2 be an integer, k1, . . . , kr be r non negative integers and
k =

∑r
i=1 ki + (r − 1). If for every i, 1 ≤ i ≤ r, Gi is a minimum (H, ki) stable

graph then the disjoint union G1 +G2 + · · ·+Gr may not be a minimum (H, k)
stable graph. For example, Kq is minimum (Kq, 0) stable, 2Kq and Kq+1 are
minimal (Kq, 1) stable, but for q ≥ 4 since e(2Kq) > e(Kq+1), the graph 2Kq is
not minimum (Kq, 1) stable.

Given relatively prime positive integers a1, . . . , an, let us consider the integers
that can be expressed as a sum k1a1 + k2a2 + · · · + knan, where k1, k2, . . . , kn
are nonnegative integers. Any such integer is said to be representable. Recall
that the Frobenius Problem is the following: find the largest non-representable
integer (called the Frobenius number and denoted by g(a1, . . . , an)). If n = 2, the
Frobenius number is given by the formula g(a1, a2) = a1a2−a1−a2. This formula
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was discovered by Sylvester in 1884 [7], who also demonstrated that there are a

total of N(a1, a2) = (a1−1)(a2−1)
2 non-representable integers. For the particular

case a2 = a1 − 1 one obtains explicitely the set of non-representable integers.

Lemma 2.10 [7]. Let a ≥ 3 be an integer and the function α : N × N −→ N

such that α(s, t) = sa+ t(a− 1). Set A =
⋃

0≤i≤a−3{ia+ j | 1 ≤ j ≤ a− 2− i}.
Every b ∈ N−A is representable (that is, there exists a pair {s, t} of nonnegative

integers such that b = sa + t(a − 1)), and every b in A is not representable.

Moreover, every representable b has a unique representation sa + t(a − 1) such

that 0 ≤ t ≤ a− 1.

We shall give a proof of Lemma 2.10 for completeness.

Proof of Lemma 2.10. Note that max(A) = (a−1)(a−2)−1, |A| = (a−1)(a−2)
2

and for s ≥ 0 and t ≥ 1, α(s, t) = α(s+ 1, t− 1)− 1.
Consider the infinite matrix {α(s, t)}s≥0, t≥0. For any t ≥ 0 the values of the

diagonal {α(i, t− i) | 0 ≤ i ≤ t} are the consecutive integers {t(a−1)+ i | 0 ≤ i ≤
t}. For s ≥ 0, the values of the (partial) diagonal {α(s+i, a−i−1) | 0 ≤ i ≤ a−1}
are the consecutive integers sa+ (a− 1)2, sa+ (a− 1)2 + 1, . . . , sa+ a(a− 1).

Since α(0, a− 1) = α(a− 2, 0) + 1 and for every s ≥ 0 , α(s+ a− 1, 0) + 1 =
α(s+ 1, a− 1) = sa+ a(a− 1) + 1, every integer b ≥ (a− 2)(a− 1) appears in

{α(i, a− 2− i) | 0 ≤ i ≤ a− 2} ∪
⋃

s≥0{α(s+ i, a− i− 1) | 0 ≤ i ≤ a− 1}.

Let B =
⋃

0≤i≤a−3{α(j, i− j) | 0 ≤ j ≤ i} =
⋃

0≤i≤a−3{i(a− 1) + j | 0 ≤ j ≤ i}.
Clearly |B| = |A|. It is easy to check that A and B are disjoint sets and that
A ∪ B = {0, 1, . . . , (a − 2)(a − 1) − 1}. Thus, every b ∈ A is not representable
and for every integer b ∈ N − A there exists a unique pair (s, t) with s ≥ 0 and
0 ≤ t ≤ a− 1 such that b = sa+ t(a− 1).

Remark 2.11. It is easy to see that every representable b < a(a − 1) has a
unique representation. For a representable b ≥ a(a − 1), since we can choose
values of t ≥ a, it is possible that b = α(s, t) = α(s′, t′) for distinct pairs (s, t)
and (s′, t′). Indeed, if s ≥ a − 1, then for every positive integer r ≤ ⌊ s

a−1⌋,
α(s, t) = α(s− r(a− 1), ra+ t).

Proof of Proposition 1.4. Let us apply Lemma 2.10 to a = q−1 and b = k+1.
B(q) is the set of integers k ≤ (q−3)(q−2)−3 such that k+1 is representable as
s(q− 1)+ t(q− 2). More precisely, B(q) =

⋃

1≤i≤q−4{i(q− 2)+ j− 1 | 0 ≤ j ≤ i}.
It is easy to see that the set of integers k such that k+1 is not representable

as s(q − 1) + t(q − 2) is A(q) =
⋃

0≤i≤q−4{i(q − 1) + j | 0 ≤ j ≤ q − 4− i}.
A minimum Kq-transversal of G = sK2q−2 + tK2q−3 contains exactly s(q −

1) + t(q − 2) = k + 1 vertices, that is G is (Kq, k) stable, and it is easy to check
that e(G) = (2q − 3)(k + 1).
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Proof of Lemma 1.5. If there exist integers s and t such that s(q− 1) + t(q−
2) = k + 1 then k+1

q−1 = s + t − t
q−1 and k+1

q−2 = s + t + s
q−2 , and hence r =

s + t ∈ [k+1
q−1 ,

k+1
q−2 ]. Conversely, let r ∈ [ k+1

q−1 ,
k+1
q−2 ]. Then q − 2 ≤ k+1

r
≤ q − 1.

If k + 1 = r(q − 1) then we are done. If k+1
q−1 < r then q − 2 = ⌊k+1

r
⌋ is the

quotient in the division of k + 1 by r. Hence, if s denotes the remainder, then
k + 1 = r(q − 2) + s = s(q − 1) + (r − s)(q − 2). We conclude by applying
Proposition 1.4.

3. Minimum (Kq, k) Stable Graphs

In this section we are interested in (Kq, k) stable graphs with minimum size
(q ≥ 3). Recall that stab(Kq, k) = min{e(G) | G is (Kq, k) stable}.

3.1. Some known results

We give here some known results about this topic.

By Remark 2.5 and Lemma 2.6 we have:

Properties 3.1 [2]. A minimal (Kq, k) stable graphs G has the following prop-

erties:

(P1) G is exactly (Kq, k) stable.

(P2) For every edge e, G− e is exactly (Kq, k − 1) stable.

(P3) For every vertex v, G− v is exactly (Kq, k − 1) stable.

(P4) Every vertex of G belongs to some q-clique of G.

(P5) Every edge of G belongs to some q-clique of G.

Remark 3.2. For any two integers q ≥ 3 and k ≥ 1, Kq+k is minimal (Kq, k)
stable.

Proposition 3.3 [4]. K5 is the unique minimum (K4, 1) stable graph, K6 is

the unique minimum (K4, 2) stable graph and for every integer q ≥ 5 and every

integer k ∈ {1, 2, 3}, Kq+k is the unique minimum (Kq, k) stable graph.

Dudek et al. [2] defined the family A
(Kq ,k)
r with k ≥ 0, q ≥ 3, 1 ≤ r ≤ k + 1 as

the family of graphs consisting of r complete graphs Kij with i1 ≥ · · · ≥ ir ≥ q
satisfying the condition

∑r
i=1(ij − q) + (r − 1) = k and they proved that every

graph in A
(Kq ,k)
r is minimal (Kq, k) stable. We observe that if a (Kq, k) stable

graph G is a disjoint union of r ≥ 1 cliques Kij , 1 ≤ j ≤ r, then by Theorem

2.8, G ∈ A
(Kq ,k)
r . They defined a graph G ∈ A

(Kq ,k)
r as a balanced union if

|ij − il| ∈ {0, 1} for every j and l in {1, 2, . . . , r} and they proved that given q,
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k and r there is exactly one balanced union B
(Kq ,k)
r in A

(Kq ,k)
r , and that B

(Kq ,k)
r

has the minimum number of edges among the graphs in A
(Kq ,k)
r .

In [2] the following lemma has been given. We give its proof for completeness.

Lemma 3.4 [2]. Let G0 be a (Kq, k0) stable graph (k0 ≥ 0) which has the

minimum size among all graphs beeing a disjoint union of r cliques (r ≥ 1),
Gj ≡ Kq+kj with 1 ≤ j ≤ r, kj ≥ 0. There exist nonnegative integers s and k
such that 0 ≤ s ≤ r− 1, G0 = sKq+k+1 + (r− s)Kq+k with r(k + 1) + s = k0 + 1
and e(G0) =

1
2r (r(q − 1) + k0 + 1− s) (r(q − 2) + k0 + 1 + s) .

Proof. Suppose, without loss of generality, that k1 ≥ k2 ≥ · · · ≥ kr and that
there exist two components Gi and Gj with i < j such that ki − kj ≥ 2. By
substituting G′

i ≡ Kq+ki−1 for Gi and G′
j ≡ Kq+kj+1 for Gj , we obtain a new

(Kq, k) stable graph G′
0 such that e(G′

0) = e(G0)− (ki − kj − 1) < e(G0), which
is a contradiction. Thus, for any i and any j, 0 ≤ |ki−kj | ≤ 1. Hence, either for
any i and any j, ki and kj have the same value k and we have G0 = rKq+k with
k ≥ 0, or there exist distinct ki and kj and we have G0 = sKq+k+1+(r− s)Kq+k

with k ≥ 0 and 0 ≤ s ≤ r − 1. Hence, a minimum Kq-transversal of G0 has
k0 + 1 = s(k + 2) + (r − s)(k + 1) = s + r(k + 1) vertices. Note that r divides
k0+1− s. We have 2e(G0) = s(q+k+1)(q+k)+ (r− s)(q+k)(q+k− 1). Since
k+1 = k0+1−s

r
, we obtain e(G0) =

1
2r (r(q− 1)+k0+1− s)(r(q− 2)+k0+1+ s).

Remark 3.5. In Lemma 3.4 the integers q, k0 and r are given. Given q and k0,
in order to obtain an upper bound for stab(Kq, k0) we will determine the values
of r for which e(G0(r)) = 1

2r (r(q − 1) + k0 + 1 − s)(r(q − 2) + k0 + 1 + s)) is
minimum. We note that if every component of a minimum (Kq, k0) stable graph
is complete then the minimum value of e(G0(r)) is exactly stab(Kq, k0).

3.2. Proof of Theorem 1.6

First we give a technical lemma used for proving Theorem 1.6.

Lemma 3.6. Let a and b be positive integers and for x > 0 consider the real-to-

real function

f(x) = 1
2

(

a+ 1 +
⌊

b
x

⌋) ((

a−
⌊

b
x

⌋)

x+ 2b
)

.

Then, f is continuous on (0,+∞), nonincreasing on (0, b
a+1 ], constant on [ b

a+1 ,
b
a
]

and nondecreasing on [ b
a
,+∞). Moreover min{f(r) | r ∈ N− {0}} is equal to

• f(1) = 1
2(a+ b+ 1)(a+ b) if [ b

a+1 ,
b
a
] contains no integer and b < a,

• min {f(⌊ b
a+1⌋), f(⌊

b
a+1⌋+1)} if [ b

a+1 ,
b
a
] contains no integer and b > a+1,



On Minimum (Kq, k) Stable Graphs 111

• (2a + 1)b if [ b
a+1 ,

b
a
] contains at least one integer r (and is equal to f(r)

for every such r).

Proof. For x > b we have ⌊ b
x
⌋ = 0 and f(x) = 1

2(a + 1)(ax + 2b). For every

integer p ≥ 1 and for every x ∈ [ b
p+1 ,

b
p
] we have ⌊ b

x
⌋ = p, and hence f(x) =

1
2(a + 1 + p)((a − p)x + 2b). It is easy to see that the function f is continuous

on (0,+∞), nonincreasing on [0, b
a+1 ], constant on [ b

a+1 ,
b
a
] and nondecreasing on

[ b
a
,+∞). The minimum value for f(x) (with a x positive real number) is the

integer (2a + 1)b and is reached for every real number x in [ b
a+1 ,

b
a
]. We note

that if r is a positive integer, then f(r) is a positive integer.

Now we will find the minimum value of f(r) when r is a positive integer.

Case 1. [ b
a+1 ,

b
a
] ∩ N = ∅. Note that 0 < b

a
− b

a+1 < 1 (that is, 0 < b <

a(a+ 1) ), 0 ≤ ⌊ b
a+1⌋ ≤ a and ⌊ b

a+1⌋ <
b

a+1 < b
a
< ⌈ b

a
⌉ = ⌊ b

a+1⌋+ 1.

Case 1.1. b < a. Since ⌈ b
a
⌉ = 1 and f(r) is non decreasing on [ b

a
,+∞), the

minimum value is f(1) = 1
2(a+ b+ 1)(a+ b).

Case 1.2. b ≥ a. Since b /∈ {a, a+ 1}, we have b > a+ 1 and 1 ≤ ⌊ b
a+1⌋ ≤ a,

hence the minimum value is

min
{

f
(⌊

b
a+1

⌋)

, f
(⌊

b
a+1

⌋

+ 1
)}

.

Let β be the remainder of the division of b by a+1. In order to obtain the value
f(⌊ b

a+1⌋) we must know the integer p1 ≥ a + 1 such that b
p1+1 < ⌊ b

a+1⌋ ≤ b
p1
.

Since ⌊ b
a+1⌋ =

b−β
a+1 , we have p1 = ⌊ b(a+1)

b−β
⌋, and hence

f
(⌊

b
a+1

⌋)

= 1
2 (a+ 1 + p1)

(

(a− p1)
(

b−β
a+1

)

+ 2b
)

.

In the same way we obtain

f
(⌊

b
a+1

⌋

+ 1
)

= 1
2(a+ 1 + p2)

(

(a− p2)
(

b+a+1−β
a+1

)

+ 2b
)

with p2 =
⌊

b(a+1)
b+a+1−β

⌋

.

Case 2. [ b
a+1 ,

b
a
] ∩ N 6= ∅. For any integer r such that b

a+1 ≤ r ≤ b
a
, f(r) is

equal to the minimum value (2a+ 1)b.

Proof of Theorem 1.6. In order to avoid confusion between “k” of the state-
ment of Theorem 1.6 and “k” appearing in the proof of Lemma 3.4, let us
replace “k” by “k0” in the statement of Theorem 1.6. Consider the (Kq, k0)
stable graph G0 defined in Lemma 3.4 and see Remark 3.5. We have G0 =
sKq+k+1+(r− s)Kq+k with r(k+1)+ s = k0+1 and e(G0) =

1
2r (r(q− 1)+ k0+

1 − s)(r(q − 2) + k0 + 1 + s). Since k + 1 is the quotient of k0 + 1 divided by r
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and s is the remainder, we have s = k0 + 1− r⌊k0+1
r

⌋. Hence,

e(G0(r)) =
1

2

(

q − 1 +

⌊

k0 + 1

r

⌋)((

q − 2−

⌊

k0 + 1

r

⌋)

r + 2(k0 + 1)

)

.

Set a = q − 2, b = k0 + 1 and apply Lemma 3.6 and Lemma 1.5.

3.3. Minimum (Kq, k) stable graph for small k

In the following, if no confusion is possible, we simply denote the integer κ(q) by
κ.

Lemma 3.7. Suppose that q ≥ 4. If κ is even, then stab(Kq, κ−1) < e(2Kq+κ
2
−1)

and stab(Kq, κ) ≤ e(Kq+κ
2

+Kq+κ
2
−1).

If κ is odd, then stab(Kq, κ − 1) < e(Kq+κ−1

2

+ Kq+κ−3

2

) and stab(Kq, κ) ≤

e(2Kq+κ−1

2

).

Proof. Recall that, by definition of κ, Kq+κ−1 is the only minimum (Kq, κ− 1)
stable. If κ is even then 2Kq+κ

2
−1 is exactly (Kq, κ−1) stable and Kq+κ

2

+Kq+κ
2
−1

is exactly (Kq, κ) stable. If κ is odd then Kq+κ−1

2

+Kq+κ−3

2

is exactly (Kq, κ−1)

stable and 2Kq+κ−1

2

is exactly (Kq, κ) stable.

Lemma 3.8. Let q ≥ 3 and p ≥ 0 be two integers. Then,

e(Kq+2p) < e(Kq+p +Kq+p−1) if and only if p2 + p < 1
2(q − 1)(q − 2) and

e(Kq+2p) = e(Kq+p +Kq+p−1) if and only if p0 =
1
2(
√

1 + 2(q − 1)(q − 2)− 1) is

an integer and p = p0.

e(Kq+2p+1) < e(2Kq+p) if and only if (p+ 1)2 < 1
2(q − 1)(q − 2) and

e(Kq+2p+1) = e(2Kq+p) if and only if p1 =
1
2(
√

2(q − 1)(q − 2)− 1) is an integer

and p = p1.

Proof. It is easy to check that e(Kq+2p) − e(Kq+p +Kq+p−1) = p2 + p − 1
2(q −

1)(q−2) and e(Kq+2p+1)−e(2Kq+p) = (p+1)2− 1
2(q−1)(q−2). These polynomials

of degree 2 in p have positive roots p0 = 1
2(
√

1 + 2(q − 1)(q − 2) − 1) and p1 =
1
2(
√

2(q − 1)(q − 2)− 1) respectively.

Proof of Theorem 1.13. If κ = 2p then, by Lemma 3.7, stab(Kq, κ − 1) <
e(2Kq+κ

2
−1). Since κ − 1 = 2(p − 1) + 1, by Lemma 3.8, p2 < 1

2(q − 1)(q − 2),

that is, κ <
√

2(q − 1)(q − 2).

If κ = 2p + 1 then by Lemma 3.7, stab(Kq, κ − 1) < e(Kq+κ−1

2

+ Kq+κ−3

2

).

Since κ − 1 = 2p, by Lemma 3.8, p < 1
2(
√

1 + 2(q − 1)(q − 2) − 1), that is,

κ <
√

1 + 2(q − 1)(q − 2).
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Theorem 3.9. Let q ≥ 4 and suppose that there exists a minimum (Kq, κ) stable

graph G0 which is disconnected. Then G0 is isomorphic to Kq+⌊κ
2
⌋ +Kq+⌊κ−1

2
⌋.

Proof. Let G0 be a minimum (Kq, κ) stable disconnected graph having r ≥ 2
connected components G1, G2, . . . , Gr. By Theorem 2.9, there are integers k1 ≥
k2 ≥ · · · ≥ kr with

∑r
i=1 ki + (r− 1) = κ such that for 1 ≤ i ≤ r, Gi is minimum

(Kq, ki) stable. For every i, since ki < κ, we have Gi ≡ Kq+ki .
Let us suppose that r ≥ 3. We have kr + kr−1 = κ − (kr−2 + kr−3 + · · · +

k1) − (r − 1) ≤ κ − 2. Hence, e(Kq+kr+kr−1+1) < e(Kq+kr) + e(Kq+kr−1
) and

the graph Kq+k1 +Kq+k2 + · · ·+Kq+kr−2
+Kq+kr−1+kr+1 is (Kq, κ) stable with

strictly smaller size than Kk1 +Kk2 + · · · +Kkr , a contradiction. Hence, r = 2,

G0 ∈ B
(Kq ,κ)
2 and by Lemma 3.4 the theorem follows.

Note that Theorem 3.9 implies that there exists at most one disconnected mini-
mum (Kq, κ) stable graph and this graph, if it exists, is

• either isomorphic to Kq+κ
2

+Kq+κ
2
−1 (if κ is even)

• or else isomorphic to 2Kq+κ−1

2

(if κ is odd).

Proof of Theorem 1.14. By Lemma 3.7 and Theorem 3.9,

if κ is odd, then

e(Kq+κ−1) < e(Kq+κ−1

2

+Kq+κ−3

2

) < stab(Kq, κ) = e(2Kq+κ−1

2

) ≤ e(Kq+κ)

(note that, by Lemma 3.8, it may be possible that e(2Kq+κ−1

2

) = e(Kq+κ) for

some values of q);

if κ is even, then

e(Kq+κ−1) < e(2Kq+κ
2
−1) < stab(Kq, κ) = e(Kq+κ

2

+Kq+κ
2
−1) ≤ e(Kq+κ)

(note that, by Lemma 3.8, it may be possible that e(Kq+κ
2

+Kq+κ
2
−1) = e(Kq+κ)

for some values of q).

For κ = 2p+ 1 we have

1

2
(q+2p)(q+2p− 1) < (q+ p− 1)2 < (q+ p)(q+ p− 1) ≤

1

2
(q+2p+1)(q+2p).

This implies that
(A) p2 + p < 1

2(q − 1)(q − 2) ≤ (p+ 1)2.

For κ = 2p we have

1

2
(q+2p−1)(q+2p−2) < (q+p−1)(q+p−2) < (q+p−1)2 ≤

1

2
(q+2p)(q+2p−1).



114 J.L. Fouquet, H. Thuillier, J.M. Vanherpe and A.P. Wojda

This implies that

(B) p2 < 1
2(q − 1)(q − 2) ≤ p2 + p.

Combining (A) and (B) yields

p2 <
1

2
(q − 1)(q − 2) ≤ (p+ 1)2.

This implies that

√

1

2
(q − 1)(q − 2)− 1 ≤ p <

√

1

2
(q − 1)(q − 2).

Hence, p = ρ(q) =
⌈
√

1
2(q − 1)(q − 2)

⌉

− 1.

By inequalities (A) and (B), position of 1
2(q − 1)(q − 2) in comparison to

ρ(q)2+ρ(q) determines the parity of κ. Hence, if 1
2(q−1)(q−2) > ρ(q)2+ρ(q), then

κ = 2ρ(q)+1 = 2
⌈
√

1
2(q − 1)(q − 2)

⌉

−1 else κ = 2ρ(q) = 2
⌈
√

1
2(q − 1)(q − 2)

⌉

−

2.

If there is no minimum disconnected (Kq, κ(q)) stable graph then, by definition
of κ(q), there exists a connected minimum (Kq, κ(q)) stable graph Gq distinct
from a clique. Note that if such a graph exists, then

e(Gq) < min{e(Kq+κ), e(Kq+κ
2

+Kq+κ
2
−1)}, if κ = κ(q) is even

or

e(Gq) < min{e(Kq+κ), e(2Kq+κ−1

2

)}, if κ = κ(q) is odd.

A positive answer to Problem 1.15 states that there is no such graph Gq.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, 244 ( Springer, Series Graduate Texts
in Mathematics, 2008).
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