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Abstract

We say that a graph G is maximal Kp-free if G does not contain Kp but
if we add any new edge e ∈ E(G) to G, then the graph G+ e contains Kp.
We study the minimum and maximum size of non-(p − 1)-partite maximal
Kp-free graphs with n vertices. We also answer the interpolation question:
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for which values of n and m are there any n-vertex maximal Kp-free graphs
of size m?
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1. Introduction and Notation

We consider finite undirected graphs without loops or multiple edges. A graph
G has a vertex set V (G) and an edge set E(G). The size of a graph is the
number of edges. We denote by e(G) the size of the graph G and by v(G)
the number of vertices of G. The set of neighbours of a vertex v ∈ V (G) is
denoted by NG(v), or briefly by N(v). Moreover, NG[v] = NG(v) ∪ {v}. Let
S ⊆ V (G), NG[S] =

⋃

v∈S NG[v]. By G[S] we denote the subgraph induced by
the set of vertices S. The degree of v is denoted by dG(v). If H is a subgraph
of G and v ∈ V (G), then dH(v) = |NG(v) ∩ V (H)|. For S ⊆ V (G) we write
dS(v) = dG[S](v). We also use the following notation: Sn is the star with n
vertices, Kn is the complete graph with n vertices, for k ≥ 2, Kn1,...,nk

is the
complete k-partite graph.

For undefined concepts we refer the reader to [4].
Let n, p be integers and p ≥ 2. We say that the graph G is Kp-free if G does

not contain Kp as a subgraph. We say that G is maximal Kp-free (sometimes
called Kp-saturated) if G does not contain Kp as a subgraph but if we add any
new edge e ∈ E(G) to G, then the graph G + e contains Kp. The set of all
maximal Kp-free graphs of order n is denoted by M(n,Kp). A complete k-partite
graph Kn1,...,nk

such that |ni−nj | ≤ 1 for i, j = 1, . . . , k and n1+ · · ·+nk = n we
call Turán’s graph and denoted Tk(n). The classical theorem of Turán [12] states
that if G is an n-vertex Kp-free graph of maximum size, then G is isomorphic
to Tp−1(n). On the other hand Erdős, Hajnal and Moon [5] proved that if G is
maximal Kp-free with n ≥ p− 1 vertices, then e(G) ≥ (p− 2)n− 1

2(p− 1)(p− 2).
However, every maximal Kp-free graph from this theorem is (p − 1)-partite and
contains a vertex of degree n− 1. The problem of determining the minimum size
of maximal Kp-free graphs with no vertex of degree n− 1 was studied by Alon et

al. [1]. The case for p = 3 was treated by Füredi, Seress [8] and Erdős, Holzman
[6]. Duffus and Hanson [7] study the minimum size of maximal Kp-free graphs
with fixed minimum degree.

We will consider the maximal Kp-free graphs that are not (p−1)-partite. Let
s(n,Kp) and e(n,Kp) denote minimum and maximum size of a maximal Kp-free
graph with n vertices that is not a (p− 1)-partite graph, i.e.,
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s(n,Kp) =min{e(G) : G ∈ M(n,Kp) and G is non-(p− 1)-partite},
e(n,Kp) =max{e(G) : G ∈ M(n,Kp) and G is non-(p− 1)-partite}.

Let us define the following sets of graphs:
S(n,Kp) = {G ∈ M(n,Kp): e(G) =s(n,Kp) and G is non-(p− 1)-partite},
E(n,Kp) = {G ∈ M(n,Kp): e(G) =e(n,Kp) and G is non-(p− 1)-partite}.
We will study possible size of the maximal Kp-free graphs with n vertices.

This problem for p = 3 was solved in [11]. The same result was obtained in [3].
In these papers the minimum and maximum size of maximal K3-free graphs was
determined. Moreover, it was proved there that for every integer m such that
s(n,K3) ≤ m ≤ e(n,K3) there exists a maximal K3-free graph with size m and
with n vertices. In Section 2 we will deal with the K3-free graphs, we will recall
some theorems and we will give the stronger result: we completely characterize
the set E(n,K3). The case for p = 4 was studied in [2]. In Sections 3, 4, 5 we will
deal with the maximal Kp-free graphs for p ≥ 4. We will determine the minimum
and maximum size of n-vertex non-(p − 1)-partite maximal Kp-free graphs. In
Section 4 we completely determine the set E(n,Kp). In Section 5 we will solve
the interpolation problem.

2. Maximal K3-free Graphs

Let G be a graph with the vertex set V (G) = {v1, v2, . . . , vk} and ni be integers
for i = 1, . . . , k. By G[n1, . . . , nk] we denote the graph of order n1 + · · · + nk

obtained from G in the following way: each vertex vi we replaced by the set Vi

of ni independent vertices for i = 1, . . . , k. We join each vertex of Vi with each
vertex of Vj whenever vertices vi and vj are adjacent in the graph G.

Murty [10] characterized 2-connected graphs with diameter 2 with the min-
imum number of edges. Let P be the Petersen graph and G7 be the graph in
Figure 1.

v1

v2

v3

v4

v5

v6

v7

Figure 1. The graph G7.

Theorem 1 [10]. Let G be a 2-connected graph of order n such that diam(G) = 2
with the minimum size. Then e(G) = 2n−5 and G ∈ {C5[t, 1, n− t−3, 1, 1] : 1 ≤
t ≤ n− 4}∪ {G7[1, t1, t2, n− t1 − t2 − 4, 1, 1, 1] : t1, t2 ≥ 1, t1 + t2 ≤ n− 5}∪ {P}.
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Lemma 2. Let G be a non-bipartite maximal K3-free graph. Then G is 2-

connected and diam(G) = 2.

Proof. Suppose that there are two vertices u, v ∈ V (G) such that dG(u, v) > 2,
where dG(u, v) denotes the distance between u and v. Thus, G + uv does not
contain K3, so G is not maximal. This yields that diam(G) = 2. Since G is not
bipartite and diam(G) = 2, we have that G is 2-connected.

From Theorem 1 and Lemma 2 it immediately follows

Theorem 3. Let n ≥ 5. Then

(a) s(n,K3) = 2n− 5,

(b) S(n,K3) = {C5[t, 1, n− t− 3, 1, 1] : 1 ≤ t ≤ n− 4} ∪ {P}.

For n ≥ 5 let us denote C∗
5 [n] = {C5[n1, . . . , n5] : n1 + · · · + n5 = n} and

C∗
5 = {C∗

5 [n] : n ≥ 5}. From Theorem 3 it follows that non-bipartite maximal
K3-free graphs of minimum size belong to C∗

5 . In [7] it was proved that maximal
K3-free graphs with minimum degree 2 having minimum size belong to C∗

5 . In
the next theorem we will show that also non-bipartite K3-free graphs with a
maximum size belong to C∗

5 . First we will show how to distribute the vertices in
any graph from C∗

5 [n] to obtain the maximum size. Let us define the subclasses
of C∗

5 [n]:
for n even

A(n,K3) = {C5[
n
2 − 2, k, 1, 1, n2 − k] : 1 ≤ k ≤ n

2 − 1},
B(n,K3) = {C5[

n
2 − 1, k, 1, 1, n2 − k − 1] : 1 ≤ k ≤ n

2 − 2},
for n odd

C(n,K3) = {C5[
n−1
2 − 1, k, 1, 1, n−1

2 − k] : 1 ≤ k ≤ n−1
2 − 1}.

Lemma 4. Let n ≥ 5 and G ∈ C∗
5 [n] with the maximum size. Then

G ∈

{

A(n,K3) ∪B(n,K3) for n even,
C(n,K3) for n odd.

Proof. Let G = C5[n1, n2, n3, n4, n5]. Let Vi (i = 1, . . . , 5) be independent sets
of G such that |Vi| = ni (i = 1, . . . , 5). First we will show that in G there are two
consecutive independent sets with exactly one vertex each. Let us consider two
cases.

Case 1. There are two consecutive independent sets with distinct number
of vertices. Without loss of generality we assume that V1 and V2 have distinct
number of vertices and n1 > n2. We show that n3 = 1. If this is not true (i.e.,
n3 ≥ 2), then we delete one vertex from V3 and add one vertex to V5, so we obtain
the graph C5[n1, n2, n3−1, n4, n5+1] having more edges than G, a contradiction.
Now, we show that also n4 = 1 or n2 = 2. If n4 ≥ 2, we delete one vertex
from V4 and add one vertex to V1. Hence we obtain C5[n1 + 1, n2, n3, n4 − 1, n5]
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that has more edges than G if n2 6= 1. Thus, if G has a maximum size and two
consecutive independent sets with distinct number of vertices, then it also has
two consecutive independent sets with exactly one vertex each.

Case 2. All independent sets have the same number of vertices. Thus, n1 =
n2 = n3 = n4 = n5 = p. Suppose that p ≥ 2. If we delete one vertex from V2 and
add one vertex to V1 and we delete one vertex from V3 and add one vertex to V5,
then we obtain a graph C5[p+ 1, p− 1, p− 1, p, p+ 1] with more edges.

Hence we may assume that n3 = n4 = 1. Then e(G) = n1(n − n1 − 2) +
n − n1 − 2 + 1. When n is even, e(G) achieves the maximum for n1 = n

2 − 1 or
n1 =

n
2 −2. When n is odd, e(G) achieves the maximum for n1 =

n−1
2 −1. Thus,

G ∈ A(n,K3) ∪B(n,K3) for n even or G ∈ C(n,K3) for n odd.

Theorem 5. Let n, q, r be integers such that n ≥ 5, n = 2q + r, r = 0, 1. Then

(a) e(n,K3) =
n2

4 − n
2 + r

4 + 1,

(b) E(n,K3) =

{

A(n,K3) ∪B(n,K3) for n even,
C(n,K3) for n odd.

Proof. Since (b) implies (a), we prove only the part (b). Let G be a graph
with n vertices such that G is a non-bipartite K3-free of maximum size, i.e.,
G ∈ E(n,K3). First we show that G ∈ C∗

5 [n]. Next we use Lemma 4 to obtain (b).
Let v be the vertex of maximum degree d(v) = ∆(G) = ∆. Since G is triangle-
free, N(v) is an independent set and since G is not a bipartite G contains an odd
cycle of order at least 5. Hence G − N [v] contains at least one edge. Suppose
that G−N [v] contains two vertex-disjoint edges xy and x′y′. Consider deleting
all edges adjacent to x′ and all edges adjacent to y′ and next we join vertices x′

and y′ with all vertices of N(v). Since |N(v)| = ∆(G), this new graph has more
edges than G and it is a K3-free graph, a contradiction. Hence G − N [v] does
not contain two vertex-disjoint edges, so G−N [v] = St+1 ∪Kn−∆−t−2.

First suppose that the graph G−N [v] has exactly one edge xy. Let X and
Y be the sets of neighbours in N(v) of x and y, respectively. The set X ∩ Y = ∅
because G is K3-free and X ∪ Y = N(v) because G is maximal. Also, neither
X nor Y can be empty. For any vertex z ∈ (V (G) \ N [v]) \ {x, y} we have
N(z) = N(v). This implies that we can divide V (G) into five independent sets
V1 = {x}, V2 = {y}, V3 = Y, V4 = (V (G) \ N(v)) \ {x, y}, V5 = X such that
the sets Vi ∪ Vj , j = i + 1 (mod 5), induce a complete bipartite graph. Thus,
G ∈ C∗

5 [n].

Now suppose that t ≥ 2. Let us denote by x, x1, x2, . . . , xt vertices of St+1

such that x is a central vertex of the star. Since N(v) = ∆(G), each vertex
xi (i = 1, . . . , t) is nonadjacent to at least one vertex of N(v). Suppose that there
is j such that xj is nonadjacent to more than one vertex in N(v). We can delete
the edge xxj and join xj with all vertices of N(v). The new graph has more
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edges than G and is K3-free, a contradiction. Thus, each vertex xi (i = 1, . . . , t)
is nonadjacent to exactly one vertex in N(v). By Lemma 2 diam(G) = 2 and
hence x has a neighbour w in N(v). Since G is K3-free, w is nonadjacent to all
neighbours of x. Thus, all vertices xi (i = 1, . . . , t) are nonadjacent to the vertex
w. Therefore, we can divide V (G) into the following independent sets: V1 =
{x}, V2 = {x1, . . . , xt}, V3 = N(v) \ {w}, V4 = V (G) \ (N(v) ∪ V (St+1)), V5 =
{w}. Thus, G ∈ C∗

5 [n], so by Lemma 4 we obtain (b).

For convenience we repeat the following result given in [3, 11].

Theorem 6. Let n, q, r be integers such that n ≥ 5, n = 2q + r, r = 0, 1. Then

for any integer m such that 2n − 5 ≤ m ≤ n2

4 − n
2 + r

4 + 1 there is a maximal

K3-free graph of size m with n vertices.

Proof. If n = 5 then m = 2n − 5 = n2

4 − n
2 + r

4 + 1 = 5 and C5 is the only
graph in M(5,K3). For n ≥ 6, let Gx

t (n) = C5[t, 1, x − t, n−x
2 − 1, n−x

2 ] where
2 ≤ x ≤ n− 4, 1 ≤ t ≤ x− 1 and x, n are the same parity. It is easy to see that
Gx

t (n) ∈M(n,K3) and e(Gx
t (n)) =

n2−x2

4 + x−n
2 + t. Moreover, e(Gn−4

1 ) = 2n− 5

and e(G2
1(n)) =

n2

4 − n
2 +1 for n = 2q, e(G3

1(n)) =
n2

4 − n
2 + 1

4 +1 for n = 2q+1.
Let x = n − 4 and t = 1. If we increase t by 1, then we obtain the graph

with one extra edge. If we decrease x by 2, then we obtain the graph with x− 2
extra edges, i.e, e(Gx

t+1(n)) = e(Gx
t (n)) + 1 and e(Gx−2

t (n)) = e(Gx
t (n)) + x− 2.

Thus, if we fix x and increase t by 1 from t = 1 to t = x− 1, then we obtain
the sequence of graphs whose sizes are all integers from the interval [n

2−x2

4 +
x−n
2 +1, n

2−x2

4 + x−n
2 + t]. Next, if we decrease the value of x by 2 from x = n−4

to x = 2 for n even and to n = 3 for n odd, then we obtain all integers m from
the interval [2n− 5, n

2

4 − n
2 + r

4 + 1].

3. Minimum Size of Non-(p− 1)-partite Maximal Kp-free Graphs

The theorem of Erdős, Hajnal and Moon [5] states that if the graph G is maximal
Kp-free, then e(G) ≥ (p− 2)n− 1

2(p− 1)(p− 2) and the bound is realized by the
complete (p− 1)-partite graph K1,1,...,1,n−p+2. The next complete (p− 1)-partite
graph K1,1,...,2,n−p+1 has (p − 1)n − 1

2(p − 1)p − 1 edges. We will show that the
minimum size of non-(p − 1)-partite maximal Kp-free graphs with n vertices is
(p− 1)n− 1

2(p− 1)p− 2 if n is large enough.
We need the following results.

Theorem 7 [9]. If G ∈ M(n,Kp) and G contains no vertex of degree n− 1, then

δ ≥ 2(p− 2)

Theorem 8 [1]. Let G ∈ M(n,K4) and δ(G) = 4. If G contains no vertex of

degree n− 1, then e(G) ≥ 4n− 15.
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Theorem 9. Let p, n be integers such that p ≥ 3 and n ≥ 3(p+ 4). Then

s(n,Kp) = (p− 1)n−
1

2
(p− 1)p− 2.

Proof. Let G = F + Kp−3, F ∈ S(n − (p − 3),K3). Thus, the graph G is
Kp-maximal non-(p − 1)-partite and e(G) = (p − 1)n − 1

2(p − 1)p − 2. Hence
s(n,Kp) ≤ (p− 1)n− 1

2(p− 1)p− 2.
Now we show that s(n,Kp) ≥ (p−1)n− 1

2(p−1)p−2. We prove by induction
on p. By Theorem 3, the result holds for p = 3. Assume that the result holds
for p − 1, i.e. s(n,Kp−1) ≥ (p − 2)n − 1

2(p − 2)(p − 1) − 2. Let G ∈ S(n,Kp).
Suppose that ∆(G) = n − 1. Let v be the vertex of degree n − 1. Since G is
maximal Kp-free, G − v is maximal Kp−1-free. The assumption that G is not
(p− 1)-partite implies that G− v is not (p− 2)-partite. Thus, by the induction
hypothesis

e(G− v) ≥ (p− 2)n− 1
2(p− 2)(p− 1)− 2,

hence
e(G) = e(G− v) + n− 1 ≥ (p− 1)n− 1

2(p− 1)p− 2.
Thus, we may assume that ∆(G) ≤ n− 2. Then by Theorem 7 we have δ(G) ≥
2(p− 2). If δ(G) ≥ 2(p− 1), then e(G) ≥ (p− 1)n. Thus, to complete the proof
we consider δ(G) = 2(p− 2) and δ(G) = 2p− 3.

Let v be a vertex with minimum degree and let H = V (G) \N [v]. Since G
is maximal, for any vertex x ∈ H the subgraph G[N(x) ∩ N(v)] contains Kp−2.
Let

T = {y ∈ N(v) : y is in a (p− 2)−clique of G[N(v)]}.
Let |T | = t. Each vertex of H has at least p− 2 neighbours in T and each vertex
of T has at least p− 3 neighbours in T . Thus,
e(G[T ∪H]) ≥ 1

2 t(p− 3) +
∑

x∈H dT (x).
Moreover,
|E(G− v) \ E(G[T ∪H])| ≥

∑

x∈N(v)\T dT∪H(x) + 1
2

∑

x∈N(v)\T (dG(x)− 1

− dT∪H(x)) + 1
2

∑

x∈H(dG(x)− dT (x))
= 1

2

∑

x∈N(v)\T (dG(x)− 1 + dT∪H(x)) + 1
2

∑

x∈H(dG(x)− dT (x))

≥ 1
2

∑

x∈N(v)\T (dG(x)− 1) + 1
2

∑

x∈H(dG(x)− dT (x)).
Now we can calculate the lower bound for e(G). Let δ(G) = δ.
e(G) = e(G[T ∪H]) + |N(v)|+ |E(G− v) \ E(G[T ∪H])|
≥ 1

2 t(p−3)+
∑

x∈H dT (x)+δ+ 1
2

∑

x∈N(v)\T (dG(x)−1)+ 1
2

∑

x∈H(dG(x)−dT (x))

= 1
2 t(p− 3) + δ + 1

2

∑

x∈N(v)\T (dG(x)− 1) + 1
2

∑

x∈H(dG(x) + dT (x))

≥ 1
2 t(p− 3) + δ + 1

2(δ − t)(δ − 1) + 1
2 |H|(δ + p− 2)

= 1
2 t(p− 2− δ) + 1

2δ(δ − 1) + 1
2(n− 1− δ)(δ + p− 2).

Since δ(G) = 2(p−2) or δ(G) = 2p−3, this expression has the smallest value
when t is as large as possible. Since t ≤ δ, we have e(G) ≥ −1

2δ
2 − δ+ 1

2δn+ 1
2(n

− 1)(p− 2). When δ(G) = 2(p− 2), we have −1
2δ

2 − δ+ 1
2δn+ 1

2(n− 1)(p− 2) ≥
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(p−1)n− 1
2(p−1)p−2 for p ≥ 5 and n ≥ 3(n+4). When δ(G) = 2p−3, we have

−1
2δ

2−δ+ 1
2δn+

1
2(n−1)(p−2) ≥ (p−1)n− 1

2(p−1)p−2 for p ≥ 4 and n ≥ 3(n+4).
To complete the proof note that by Theorem 8 s(n,Kp) ≥ (p−1)n− 1

2(p−1)p−2
for p = 4 and δ(G) = 4.

4. Maximum Size of Non-(p− 1)-partite Kp-free Graphs

In this section we will give a maximum size of the non-(p − 1)-partite Kp-free
graphs for p ≥ 4. We will also determine the set E(n,Kp) for p ≥ 4. We will
prove this in the following way. First we will show that the non-(p − 1)-partite
Kp-free graph G of maximum size is the join of the non-bipartite K3-free graph of
maximum size with the (p− 3)-partite graph, i.e., G = G1 +G2, where G1 ∈ C∗

5

and G2 is complete (p − 3)-partite. Next we will show how to distribute the
vertices of G between G1 and G2 to obtain a maximum size.

We need the following lemma.

Lemma 10. Let G be a maximal Kp-free graph and v ∈ V (G). Let xy be such

an edge that, x, y ∈ V (G) \N [v]. Then the vertices N(v) ∩N(x) ∩N(y) induce

the Kp−2-free graph and |N(v) \ (N(x) ∩N(y))| ≥ 2.

Proof. If the subgraph induced by N(v) ∩N(x) ∩N(y) had a clique Kp−2, this
clique together with x and y would form Kp. Since G is the maximal Kp-free
graph, the subgraph N(v)∩N(x) contains a clique K ′ on p− 2 vertices and also
the subgraph N(v) ∩ N(y) contains a clique K ′′ on p − 2 vertices. If K ′ = K ′′,
then this clique together with x, y form Kp, a contradiction. Thus, at least one
vertex of K ′ is not adjacent to y and at least one vertex of K ′′ is not adjacent to
x.

Let us introduce the following notations. For S ⊆ V (G), e(S) denotes the number
of edges incident with vertices of S, i.e., e(S) = e(G[N [S]]). For S1, S2 ∈ V (G),
by the symbol E(S1, S2) we denote the set of all edges linking a vertex from the set
S1 with a vertex from the set S2, i.e., E(S1, S2) = {uv ∈ E(G) : u ∈ S1, v ∈ S2}.
Let e(S1, S2) = |E(S1, S2)|. Let T

∗
p = {Tp(n) : n ≥ p}.

Theorem 11. Let p ≥ 3 and n ≥ p + 2. If G ∈ E(n,Kp), then G = G1 + G2

where G1 ∈ C∗
5 and G2 is complete (p− 3)-partite.

Proof. Let v be the vertex of maximum degree and ∆(G) = ∆. We consider
two cases.

Case 1. G[N(v)] is not (p − 2)-partite. We prove by induction on p. For
p = 3 the proof follows from Theorem 5. Suppose that the subgraph induced by
V (G) \ N [v] contains an edge. Since |N(v)| = ∆, if we delete all the edges in
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G[V (G) \N [v]] and join each vertex of V (G) \N [v] to all vertices of N(v), then
we obtain a non-(p− 1)-partite Kp-free graph with more edges, a contradiction.
Thus, V (G) \N [v] is the independent set of vertices. Since G[N(v)] is Kp−1-free
and is not (p − 2)-partite, we have by the induction hypothesis that G[N(v)] =
G1+G′

2, where G1 ∈ C∗
5 and G′

2 is complete (p−4)-partite. This implies that G′
2

together with V (G)\N(v) form the complete (p−3)-partite graph G2. Therefore,
G = G1 +G2 where G1 ∈ C∗

5 and G2 is complete (p− 3)-partite.

Case 2. G[N(v)] is (p − 2)-partite. Let H = V (G) \ N [v]. Since the graph
G is not (p − 1)-partite, there is an edge in the subgraph induced by H. Let
x, y ∈ H and xy ∈ E(G). Let S be the maximum Kp−2-free subgraph of G[N(v)]
(i.e. Kp−2-free with maximum number of vertices) and |S| = s. Since G[N(v)]
contains Kp−2, we have ∆− s ≥ 1. Let us consider two cases.

Subcase 2.1. ∆ − s ≥ 2. Let F = G1 + G2, where G1 = C5[1, 1, 1,∆ − s −
1, n − ∆ − 2] and G2 ∈ Tp−3(s). Note that e(F ) = n∆ − ∆2 − s2 + ∆s − ∆ +
s + 1 + e(Tp−3(s)) and F is non-(p − 1)-partite Kp-free. Since G ∈ E(n,Kp), it
follows that e(G) ≥ n∆−∆2 − s2 +∆s−∆+ s+ 1 + e(Tp−3(s)).

On the other hand we can calculate the size of G in the following way:

e(G) = d(v) + e(H \ {x, y}) + e({x, y}, N(v)) + e(G[N(v) \S]) + e(N(v) \S, S) +
1 + e(G[S]).

Note that e(H\{x, y}) ≤ (|H|−2)∆. The subgraph induced byN(v)∩N(x)∩N(y)
is Kp−2-free, this yields that |N(v) ∩ N(x) ∩ N(y)| ≤ s, since s is order of the
maximum Kp−2-free subgraph of G[N(v)]. Thus, e({x, y}, N(v)) ≤ ∆ + s. The
subgraph induced by N(u) ∩ N(v) for any u ∈ N(v) \ S is Kp−2-free, since
otherwise the subgraph induced by N [v] would contain Kp. Thus, e(G[N(v) \
S]) + e(N(v) \ S, S) ≤ (∆ − s)s. Therefore, e(G) ≤ ∆ + (|H| − 2)∆ + ∆ + s +
(∆− s)s+ 1 + e(G[S]) ≤ n∆−∆2 − s2 +∆s−∆+ s+ 1 + e(Tp−3(s)).

We conclude that we obtain the graph of maximum size if the equality holds.
This implies the following:

(1) Each vertex of H \ {x, y} has maximum degree.

(2) The set H \ {x, y} is independent.

(3) The vertices N(v) ∩N(x) ∩N(y) induce the maximum Kp−2-free subgraph
of G[N(v)].

(4) N(v) ⊆ N(x) ∪N(y).

(5) Each vertex of N(v) \ S is adjacent to all vertices of S.

(6) The vertices of S induce a graph from T ∗
p−3.

From (5) and (6) it immediately follows

Claim 1. G[N(v)] is the complete (p− 2)-partite graph.
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SinceG[N(v)] is the complete (p−2)-partite graph andN(v)∩N(x)∩N(y) induces
the maximum Kp−2-free subgraph of G[N(v)] (by (3)), we have the following

Claim 2. The vertices of N(v)∩N(x)∩N(y) induce the complete (p−3)-partite
graph.

Let G2 be the subgraph of G induced by N(v)∩N(x)∩N(y), so G2 is complete
(p− 3)-partite by Claim 2.

Claim 3. Each vertex of V (G) \ V (G2) is adjacent to all vertices of V (G2).

Proof. It is easy to see that each vertex of (V (G) \ V (G2)) \ (H \ {x, y}) is
adjacent to all vertices of V (G2). Now we show that it holds also for each vertex
of H \ {x, y}. First note that each vertex of z ∈ H \ {x, y} is nonadjacent to at
most two vertices of N(v), since dG(z) = ∆ and H \{x, y} is independent (by (1)
and (2)). Suppose that there is a vertex z ∈ H \ {x, y} that is nonadjacent to a
vertex of V (G2). First assume that z is nonadjacent to exactly one vertex of N(v)
(i.e., a vertex of G2). Thus, z is adjacent either to x or to y. Since G is maximal
Kp-free, N(v) ∩ N(z) must contain a clique on p − 2 vertices. Since G[N(v)]
is complete (p − 2)-partite, both N(z) ∩ N(x) ∩ N(v) and N(z) ∩ N(y) ∩ N(v)
contains a (p−2)-clique. This implies that this clique either with z, x or z, y form
Kp, a contradiction. Now assume that z is nonadjacent to exactly two vertices
of N(v) (at least one of them is in V (G2)). Thus, z is adjacent to both x and
y. Thus, either N(z)∩N(x) or N(z)∩N(y) contains Kp−2, so G contains Kp, a
contradiction.

To finish the proof of this case it is enough to see that vertices of G \ V (G2)
must induce the K3-free graph that is not bipartite. Moreover, since G has a
maximum size G1 = G \ V (G2) ∈ C∗

5 . Hence G = G1 +G2, where G1 ∈ C∗
5 and

G2 is (p− 3)-partite.

Subcase 2.2. ∆−s = 1. Let F = G1+G2, where G1 = C5[1, 1, 1, 1, n−∆−2]
and G2 ∈ Tp−3(∆− 2). Note that e(F ) = (n−∆)∆+3(∆− 2)+ e(Tp−3(∆− 2)).
Thus,

(∗) e(G) ≥ n∆−∆2 + 2∆− 5 + e(Tp−3(∆− 2)).

Let w = N(v)\S. Since S isKp−2-free, every (p−2)-clique of G[N(v)] contains w.
From fact that N(x)∩N(v) and N(y)∩N(v) contain Kp−2, we have wx ∈ E(G)
and wy ∈ E(G). Since dG(w) ≤ ∆, we have dS(w) ≤ s− 2. Let u ∈ S such that
wu /∈ E(G). Let S′ = S \ {u}. We can calculate the size of G in the following
way e(G) = d(v) + e(H \ {x, y}) + e({x, y}, N(v)) + e({w, u}, S′) + 1 + e(G[S′]).

Since ∆(G) = ∆, e(H\{x, y}) ≤ (|H|−2)∆. By Lemma 10, e({x, y}, N(v)) ≤
2∆−2. Since w is nonadjacent to two vertices of S, e({w, u}, S′) ≤ 2∆−5. Thus,
e(G) ≤ ∆+ (n−∆− 3)∆+ 2∆− 2 + 2∆− 5 + 1+ e(Tp−3(∆− 2)) = n∆−∆2 +
2∆− 6 + e(Tp−3(∆− 2)). But this contradicts (∗).



On the Non-(p−1)-partite Kp-free Graphs 19

In the next lemma we show how to distribute the edges in the graph G = G1+G2

such that G1 ∈ C∗
5 and G2 is a complete (p − 3)-partite graph to obtain the

maximum size.

Lemma 12. Let p ≥ 4 and n ≥ p + 2, n = (p − 1)q + r, (r = 0, 1, . . . , p − 2).
Let G = G1 +G2 be the n-vertex graph such that G1 ∈ C∗

5 and G2 is a complete

(p − 3)-partite graph. If the graph G has the maximum size, then the following

conditions hold:

(1)























for q = 1, 2, v(G1) = 5,

for q ≥ 3, v(G1) ∈















{2q − 1, 2q} for r = 0,
{2q − 1, 2q, 2q + 1} for r = 1, 2, . . . , p− 4,
{2q, 2q + 1} for r = p− 3,
{2q + 1} for r = p− 2,

(2) G1 is the graph of maximum size in C∗
5 and G2 ∈ T ∗

p−3.

Proof. Because the number of edges in E(V (G1), V (G2)) depends neither on the
structure of G1 nor on the structure of G2, it is easy to see that the condition
(2) is satisfied for a graph of maximum size. We show that the condition (1) also
holds. We prove this in the following way: if G1 has less vertices than in thesis,
then we delete a vertex from G2 and add it to a proper set of G1 and we show
that the resulting graph has more edges; if G1 has more vertices than in thesis,
then we delete a vertex from G1 and add it to a proper set of G2 and we show
that the new graph has more edges.

Let v(G1) = t and A(t,K3), B(t,K3), C(t,K3) be the families of graphs de-
fined in Section 2. From Lemma 4 it immediately follows

Claim 4. If t is odd, then G1 ∈ C(t,K3) and in G1 there is a vertex x such that
x is nonadjacent to t−1

2 + 1 vertices of G1.

Claim 5. If t is even, then G1 ∈ A(t,K3) ∪B(t,K3) and in G1 there is a vertex
x such that x is nonadjacent to t

2 + 1 vertices.

Claim 6. If t is odd, then G1 ∈ C(t,K3) and we can add a new vertex x and
join x with t−1

2 vertices of G1 in such a way that the resulting graph is in C∗
5 .

Claim 7. If t is even, then G1 ∈ A(t,K3)∪B(t,K3) and we can add a new vertex
x and join x with t

2 vertices of G1 in such a way that the resulting graph is in
C∗
5 .

For q = 1, 2, we have p+2 ≤ n ≤ 3(p−1)−1. It is easy to see that the result holds
for n = p + 2. Assume that n ≥ p + 3 and v(G1) ≥ 6. Let V1, V2, . . . , V5 be the
independent sets that replace the vertices of C5 in G1. Since v(G1) ≥ 6, at least
one set of V1, V2, . . . , V5 has at least two vertices. Let x be the vertex in this set.
Thus, d(x) ≤ n− 4. Since n ≤ 3p− 4 and v(G1) ≥ 6, we have v(G2) ≤ 3n− 10.
Hence, there is a partite set of G2 that has less than three vertices. If we shift
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the vertex x to this set, then we obtain a graph with more edges, because now
d(x) ≥ n− 3.

Now suppose that q ≥ 3, r = 0 and v(G1) ≤ 2q−2. Thus, v(G2) ≥ (p−3)q+2
and there is a partite set of G2 having more than q vertices. Let x be the vertex in
this set, so d(x) ≤ n−q−1. Claim 6 and Claim 7 imply that if we shift the vertex
x to G1, then we obtain a graph with more edges, because now d(x) ≥ n− q.

Suppose that for q ≥ 3, r = 0 and v(G1) ≥ 2q + 1. By Claim 4 and Claim
5 there is a vertex x such that d(x) ≤ n− q − 1. Because v(G2) ≤ (p− 3)q − 1,
the graph G2 contains a partite set with at most q − 1 vertices. If we shift the
vertex x to this set, then we obtain a graph with more edges, now d(x) ≥ n− q.

Assume that q ≥ 3 and r = 1, 2, . . . , p− 4. If v(G1) ≤ 2q − 2, then v(G2) ≥
(p− 3)q + r + 2. Thus, there is a partite set of G2 having at least q + 1 vertices.
Let x be a vertex in this set, so d(x) ≤ n − q − 1. By Claim 6 and Claim 7 if
we shift the vertex x to G1, then we obtain a graph with more edges, because
now the vertex x is adjacent to at least n − q edges. If v(G1) ≥ 2q + 2, then
by Claim 4 and Claim 5 there is a vertex x such that d(x) ≤ n − q − 2. Since
v(G2) ≤ (p − 3)q + r − 2, the graph G2 contains a partite set with at most q
vertices. If we shift the vertex x to this set, then we obtain a graph with more
edges, now d(x) ≥ n− q − 1.

Assume that q ≥ 3 and r = p−3. If v(G1) ≤ 2q−1 then v(G2) ≥ (p−3)(q+
1) + 1. Thus, there is a partite set of G2 having at least q + 1 vertices. Let x be
a vertex in this set, so d(x) ≤ n − q − 1. By Claim 6 and Claim 7 we can shift
the vertex x to G1 to obtain a graph with more edges, because then the vertex x
is adjacent to at least n− q edges. If v(G1) ≥ 2q+2, then by Claim 4 and Claim
5 there is a vertex x such that d(x) ≤ n− q− 2. Since v(G2) ≤ (p− 3)(q+1)− 2,
the graph G2 contains a partite set with at most q vertices. If we shift the vertex
x to this set, then we obtain a graph with more edges, now d(x) ≥ n− q − 1.

Assume that q ≥ 3 and r = p−2. If v(G1) ≤ 2q, then v(G2) ≥ (p−3)(q+1)+1.
Thus, there is a partite set of G2 with at least q + 1 vertices. Let x be a vertex
in this set, so d(x) ≤ n − q − 1. By Claim 6 and Claim 7 if we shift the vertex
x to G1, then we obtain a graph with more edges, because now the vertex x is
adjacent to at least n− q edges. If v(G1) ≥ 2q+2, then by Claim 4 and Claim 5
there is a vertex x such that d(x) ≤ n− q − 2. Since v(G2) ≤ (p− 3)(q + 1)− 1,
the graph G2 contains a partite set with at most q vertices. If we shift the vertex
x to this set, then we obtain a graph with more edges, now d(x) ≥ n− q − 1.

Let us denote by Gi the graphs from Lemma 12 achieving the maximum size. Let
Gi (i = 1, . . . , 4) be the graph of order n = (p − 1)q + r, 0 ≤ r ≤ p − 2, p ≥ 4
such that Gi = Gi1 +Gi2, where

G11 = C5, G12 = Tp−3(n− 5),
G21 ∈ E(2q − 1,K3), G22 = Tp−3(q(p− 3) + r + 1),
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G31 ∈ E(2q,K3), G32 = Tp−3(q(p− 3) + r),
G41 ∈ E(2q + 1,K3), G42 = Tp−3(q(p− 3) + r − 1).

Then, from Theorem 11 and Lemma 12 it immediately follows

Theorem 13. Let p, n, q, r be integers such that p ≥ 4, n ≥ p+2, n = (p−1)q+
r, 0 ≤ r ≤ p− 2. Then

E(n,Kp) =























{G1} for q = 1, 2,
{G2, G3} for q ≥ 3 and r = 0,
{G2, G3, G4} for q ≥ 3 and r = 1, 2, . . . , p− 4,
{G3, G4} for q ≥ 3 and r = p− 3,
{G4} for q ≥ 3 and r = p− 2.

Theorem 13 implies the following

Theorem 14. Let p, n, q, r be integers such that p ≥ 3, n ≥ p+2, n = (p−1)q+
r, 0 ≤ r ≤ p− 2. Then

e(n,Kp) =
p−2

2(p−1)n
2 − 1

p−1n+ r(r+2)
2(p−1) −

r
2 + 1.

5. Size of Maximal Kp-free Graphs

Note that e(K1,1,...,1,n−p+2) = sat(n,Kp) (the minimum size of the maximal Kp-
free graph with n vertices) and e(Tp−1(n)) = tp−1(n). Since e(K1,1,...,2,n−p+1) >
(p−1)n− 1

2(p−1)p−2, Theorem 9 implies that for large n there is no maximalKp-
free graph with n vertices and size m such that sat(n,Kp) < m < s(n,Kp). From
Theorem 14 we have that for any pair n,m such that e(n,Kp) < m ≤ tp−1(n)
each n-vertex maximal Kp-free graph with n edges is complete (p− 1)-partite.

Theorem 15. Let p, n be integers such that p ≥ 3, n ≥ 3p + 4. Then for any

integer m such that s(n,Kp) ≤ m ≤ e(n,Kp) there is a maximal Kp-free graph

with n vertices and size m.

Proof. Let us consider the family of n-vertex graphs α(n) = {H + Q : H ∈
C∗
5 , Q ∈ T ∗

p−3, v(H) + v(Q) = n}. Observe that every graph from α(n) is
non-(p − 1)-partite maximal Kp-free. Let n = q(p − 1) + r, 0 ≤ r ≤ p − 2. If
v(Q) = p− 3 and H ∈ S((q − 1)(p− 1) + r − 2,K3), then e(H +Q) = s(n,Kp).
If v(Q) = (p − 3)q + r and H ∈ E(2q,Kp) or v(Q) = (p − 3)q + r − 1 and
H ∈ E(2q + 1,Kp), then e(H + Q) = e(n,Kp). Let αb(n) ⊆ α(n) such that
αb(n) = {H + Q : H ∈ C∗

5 , Q ∈ T ∗
p−3, v(Q) = b, v(H) = n − b}. Note that for

any graph from αb(n) the number of edges adjacent to vertices of Q is constant.
Let eb be the number of edges adjacent to vertices of Q in the graph from αb(n).

From Theorem 6 it follows that for any integer e such that
e ∈ [eb + 2(n− b)− 5, eb +

1
4(n− b)2 − 1

2(n− b) + 1
4r

2 + 1],
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where r ≡ n− b (mod 2)

there is a graph in αb(n) with size e. To complete the proof we show that for b
such that p− 3 ≤ b ≤ q(p− 3) + r the inequality

eb +
1
4(n− b)2 − 1

2(n− b) + 1
4r

2 + 2 ≥ eb+1 + 2(n− b− 1)− 5

holds. Or, equivalently,
eb+1 − eb ≤

1
4(n− b)2 − 5

2(n− b) + 1
4r

2 + 9.

To prove this observe the following: if in H +Q ∈ αb(n) we shift a vertex v from
H to Q (to the independent set V1 with the smallest number of vertices), then
we must delete all edges joining v with V1 and add all edges joining v with H
to obtain a graph from αb+1(n). Thus, eb+1 − eb = n − b − 1 − |V1|. To finish
the proof we conclude that n − b − 1 − |V1| ≤

1
4(n − b)2 − 5

2(n − b) + 1
4r

2 + 9.
Indeed, when b ≥ 3(p − 3), we have |V1| ≥ 3, so n − b − 1 − |V1| ≤ n − b − 4 ≤
1
4(n− b)2− 5

2(n− b)+ 1
4r

2+9. When p−3 ≤ b ≤ 3(p−3)−1, we have n− b ≥ 14.
Thus, n− b− 1−|V1| ≤ n− b− 2 ≤ 1

4(n− b)2− 5
2(n− b)+ 1

4r
2+9, for n− b ≥ 14.
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