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1. Introduction

One of the most intensively studied areas in graph theory deals with questions
concerning cycles. The development of this area has undergone a natural growth
and evolution in the qestions studied and results obtained. One particular subarea
involves questions about cycles containing specific sets of vertices of a graph, see
e.g. a recent survey paper [13].

This paper is intended to contribute to this area. Throughout this article we
consider finite simple hamiltonian graphs. We shall try to answer the question
how small the cardinality of a subset of the vertex set of a given hamiltonian
graph can be that the only cycles containing this subset are hamiltonian ones.

We shall use a standard terminology according to [7] except for some terms
defined throughout this paper.

For a graph G and a set X ⊆ V (G), an X-cycle of G is a cycle containing all
vertices of X. Let G be a hamiltonian graph. A nonempty vertex set X ⊆ V (G)
is called a hamiltonian cycle enforcing set (in short an H-force set) of G if every
X-cycle of G is hamiltonian. For the graph G we define h(G) to be the smallest
cardinality of an H-force set of G and call it the H-force number of G.

In this paper we study the H-force number for several families of graphs. First
we survey known results on this parameter for some families of graphs originally
stated in different terms.

The following is obvious

Proposition 1. If X is an H-force set of a graph G and X ⊆ Y ⊆ V (G), then
Y is an H-force set of G too.

Proposition 2. If H is a hamiltonian spanning subgraph of G, then h(H) ≤
h(G).

Proposition 3. If C is a nonhamiltonian cycle of G, then any H-force set of G
contains a vertex of V (G) \ V (C).

The following example demonstrates that the task to determine the H-force num-
ber of a graph is not easy in general.

Example 4. Let G be the dodecahedral graph. Then h(G) = 15.

Proof. Let X ⊆ V (G) be an H-force set of G and let X̄ = V (G) \X.
It is easy to see that X̄ does not contain any of the following configurations

(because the subgraph induced on the remaining vertices is hamiltonian, see
Figure 1).

(a) two vertices with distance 3 (e.g. 1, 7),
(b) two vertices with distance 5 (e.g. 1, 19),
(c) three vertices inducing a 3-path (e.g. 1, 2, 3).
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Figure 1

Suppose that there is an H-force set X ⊆ V (G) with |X| ≤ 14.

Case 1. If there are two adjacent vertices in X̄. Then, without loss of
generality, let 4, 5 ∈ X̄, then 9, 10, 11, 12, 13, 14, 15, 16, 19, 20 ∈ X by (a), 17, 18 ∈
X by (b), and 1, 3, 6, 8 ∈ X by (c), thus |X| ≥ 16, a contradiction.

Case 2. If any two vertices of X̄ are nonadjacent, then there are two vertices
in X̄ incident with the same face of G; without loss of generality, let 6, 8 ∈ X̄.
Hence, 4, 5, 7 ∈ X (Case 1), 1, 2, 3, 9, 11, 13, 15, 16, 17, 18, 19 ∈ X by (a), and
10 ∈ X or 20 ∈ X by (a), as well. Finally, |X| ≥ 15, a contradiction.

It is still necessary to show that there is an H-force set of size 15 in G.
Let X1 = {1, 2, 3, 4, 5}, X2 = {7, 9, 11, 13, 15, 16, 17, 18, 19, 20}, X = X1 ∪ X2,
X̄ = V (G) \X and let C be an X-cycle of G. The subgraph G[X] of G induced
by X consists of two components G[X1] and G[X2], the second of them contains
five vertices of degree 1. Therefore, C contains at least two edges between X1

and X̄ and at least five edges between X2 and X̄. Hence, C contains at least
seven edges between X and X̄, thus at least four vertices of X̄. Because G does
not contain any cycle of length 19, C must be a hamiltonian cycle of G and X is
an H-force set of G.

2. 1-hamiltonian Graphs

Through this paper, the number of vertices (the order) of a graph will be denoted
by n. A graph G is k-hamiltonian (1 ≤ k ≤ n − 3) if G − U is hamiltonian for
every U ⊆ V (G) with 0 ≤ |U | ≤ k. In particular, G is 1-hamiltonian, if it is
hamiltonian and for any vertex u ∈ V (G) the graph G−u is hamiltonian too, i.e.
any n− 1 vertices lie on a common nonhamiltonian cycle of G and thus there is
no H-force set of cardinality n− 1 in G.
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Proposition 5. The 1-hamiltonian graphs are exactly the graphs with H-force

number equal to their order.

Several sufficient conditions for graphs to be 1-hamiltonian have been obtained
by various authors. The following two conditions in terms of vertex degrees are
of Dirac-type and of Ore-type, respectively.

Theorem 6 (Chartrand, Kapoor, Link [6]). Let G be a graph of order n ≥ 4. If

δ(G) ≥ ⌊n
2
⌋+ 1, then G is 1-hamiltonian.

Theorem 7 (Chartrand, Kapoor, Link [6]). Let G be a graph of order n ≥ 4. If

for every pair of non-adjacent vertices x, y ∈ V (G), degG(x) + degG(y) ≥ n+ 1,
then G is 1-hamiltonian.

The connectivity and the independence number of a graph G will be denoted by
κ(G) and α(G), respectively. A simple relationship linking the connectivity, the
independence number and hamiltonian properties was discovered by Chvátal and
Erdős [9], namely, that a graph G is hamiltonian if α(G) ≤ κ(G), and, moreover

Theorem 8 (Chvátal, Erdős [9]). If G is a graph with κ(G) ≥ 3 and α(G) <
κ(G), then G is 1-hamiltonian.

A major theorem of Tutte [21] states that every 4-connected planar graph G
is hamiltonian. The following strengthening was obtained by the same proof
technique.

Theorem 9 (Nelson [17]). Every 4-connected planar graph G is 1-hamiltonian.

A Halin graph is a union of a tree T 6= K2 without vertices of degree 2 and a cycle
C connecting the leaves of T in the cyclic order determined by a plane embedding
of T . Bondy [2] showed that every Halin graph is hamiltonian and improved this
statement to the following (unpublished) result (see [16]).

Theorem 10 (Bondy). Every Halin graph G is 1-hamiltonian.

A graphG is claw-free if it has no induced subgraph isomorphic toK1,3 (the claw),
and it is locally connected (locally k-connected) if, for each vertex u ∈ V (G), the
neighbourhood N(u) of u induces a connected (k-connected) subgraph. Oberly
and Sumner [18] have shown that every connected, locally connected, claw-free
graph of order ≥ 3 is hamiltonian.

Theorem 11 (Broersma, Veldman [4]). If G is a connected, locally 2-connected,
claw-free graph of order ≥ 4, then G is 1-hamiltonian.

The k-th power Gk of a graph G is the graph with vertex set V (G) in which
two vertices are adjacent if and only if their distance in G is ≤ k. The famous
result of Fleischner [12] states that the square G2 of any 2-connected graph G is
hamiltonian.
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Theorem 12 (Chartrand et al. [5]). The square G2 of a 2-connected graph G is

1-hamiltonian.

All conditions of Theorems 6–12 are also sufficient for the mentioned graphs
to be hamiltonian connected (Erdős, Gallai [11]; Ore [19]; Chvátal, Erdős [9];
Thomassen [20] and Chiba, Nishizeki [8]; Barefoot [1]; Kanetkar, Rao [14]; Char-
trand et al. [5]). Recall, that a graph G is hamiltonian connected if any two
vertices of G are connected by a hamiltonian path. Nevertheless, there exist
graphs that are either 1-hamiltonian or hamiltonian connected. The graph G1

(Figure 2, see Zamfirescu [22]) is 1-hamiltonian, but not hamiltonian connected
and the graph Gc (Figure 2) is hamiltonian connected, but not 1-hamiltonian.
Both are very probably the smallest graphs of its type.

G1 Gc

Figure 2

There are a lot of results concerning k-hamiltonian graphs, however, in this paper
we start to study the H-force number with the aim to find a decomposition of
the class of hamiltonian graphs in which the 1-hamiltonian graphs (including
k-hamiltonian graphs, k ≥ 2, as subsets) form an extremal subclass.

3. Graphs with Given H-force Number

Now, we will answer the question for which pairs of integers k and n with n ≥ 3
and 1 ≤ k ≤ n there exists a hamiltonian graph G of order n such that h(G) = k.
For the cycle Cn and the wheel Wn of order n it is obvious that h(Cn) = 1 and
h(Wn) = n. But what can we say for k with 2 ≤ k ≤ n− 1?

Theorem 13. For all integers k and n where 2 ≤ k ≤ n − 2 there exists a

(planar) hamiltonian graph G of order n with h(G) = k.

Proof. Consider the cycle Cn = [v1, v2, . . . , vn]. Let G be the graph with the
vertex set V = V (Cn) and the edge set E = E(Cn) ∪ {v2vn} ∪ {v1vi | 3 ≤ i ≤
k}∪{vkvn}. Note that the graph induced by {v1, v2, . . . , vk, vn} in G is the wheel
Wk (or the cycle C3, if k = 2). The graph G is hamiltonian and even planar. It
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is not difficult to see that {v1, . . . , vk−1} ∪ {u}, for any u ∈ {vk+1, . . . , vn−1}, is
the smallest H-force set of G.

Theorem 14. For every integer n ≥ 10 there exists a hamiltonian graph G of

order n with h(G) = n− 1.

Proof. Consider two complete graphs K3 = (V1, E1) and Kn−7 = (V2, E2) with
the vertex set V1 = {y1, y2, y3} and V2 = {z1, z2, . . . , zn−7}, respectively. Let G
be the graph with the vertex set V = V1 ∪ V2 ∪ {x0, x1, x2, x3} and the edge set
E = E1∪E2∪{x0u |u ∈ V }∪{xiyi, xizi | i = 1, 2, 3}. The graph G is hamiltonian
and V \ {x0} is the smallest H-force set of G, because, for any u ∈ V \ {x0}, the
graph G− u is hamiltonian.

The next two theorems provide existence results with respect to the more special
class of polyhedral (i.e. 3-connected planar) hamiltonian graphs.

Theorem 15. For every integers n ≥ 9 and k where 5 ≤ k ≤ n− 4 there exists

a polyhedral hamiltonian graph G of order n with h(G) = k.

Proof. Let C = [x1, . . . , x6] be a cycle in the plane with a vertex x0 in the inner
face and with a path P = [y1, . . . , yr] with r ≥ 0 in the outer face. We connect x0
with every vertex of C, x1 with every vertex of P and introduce edges x2y1, x6yr.
Moreover, let Q = [z1, . . . , zs] with s ≥ 2 be a path in the unbounded face of the
above constructed plane graph. We connect z1 with x4 and every vertex of Q
with the vertices x2 and x6. The resulting graph G = (V,E) of order n = r+s+7
is polyhedral where [x1, y1, . . . , yr, x6, x5, x4, z1, . . . , zs, x2, x3, x0] is a hamiltonian
cycle.

First, we will see that G − v is hamiltonian for every v ∈ S = {x1, x3, x5,
y1, . . . , yr, z1, zs}. Hence, every H-force set F of G contains S as a subset.
G − x1 is hamiltonian with [x0, x2, x3, x4, z1, . . . , zs, x6, x5] if r = 0 and with
[x2, y1, . . . , yr, x6, x5, x0, x3, x4, z1, . . . , zs], otherwise. G− x3 is hamiltonian with
[x1, y1, . . . , yr, x6, x5, x4, z1, . . . , zs, x2, x0] and, by symmetry G − x5 is hamilto-
nian, too. If r > 0 then G−yi with 1 ≤ i ≤ r is hamiltonian with [x2, y1, . . . , yi−1,
x1, yi+1, . . . , yr, x6, x5, x0, x3, x4, z1, . . . , zs]. G−z1 is hamiltonian with [x1, y1, . . . ,
yr, x6, z2, . . . , zs, x2, x3, x4, x5, x0] and, G− zs is hamiltonian with [x1, y1, . . . , yr,
x6, x5, x4, z1, . . . , zs−1, x2, x3, x0].

Now we prove that S is an H-force set of G which implies h(G) = |S| = r+5.
For this purpose it is sufficient to show that G−v for any v ∈ V \S has no S-cycle.
Suppose, for the contrary, that for some v ∈ V \ S there exists an S-cycle D in
G− v.

In the case v = x0 we have x0xi /∈ E(G − v) for i = 1, . . . , 6. So, x3, x5 ∈ S
implies that D contains the path [x2, x3, x4, x5, x6] and, x4z1 /∈ E(D). By z1 ∈ S
we have z1x2 or z1x6 ∈ E(D), say z1x2 ∈ E(D). Then, x2zj /∈ E(D) for j =
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2, . . . , s and, because of zs ∈ S the path [z1, . . . , zs, x6] is contained in D. Thus,
D = [x2, . . . , x6, zs, . . . , z1], a contradiction.

In the case v = x2 we have x2x3, x2zj /∈ E(G − v) for j = 1, . . . , s. Then,
because of z1, zs ∈ S the path [x4, z1, . . . , zs, x6] is contained in D, because oth-
erwise D = [z1, . . . , zs, x6], a contradiction. Moreover, x3 ∈ S implies that D
contains the path [x0, x3, x4]. Hence, x4x5 /∈ E(D) and D contains also the path
[x0, x5, x6] which yields D = [x0, x3, x4, z1, . . . , zs, x6, x5], a contradiction.

In the case v = x6 by symmetry we obtain a contradiction, too.

In the case v = x4 we have x4x0, x4x3, x4x5, x4z1 /∈ E(G − v). Because of
x3, x5 ∈ S the path [x2, x3, x0, x5, x6] is contained in D and, because of z1, z2 ∈ S
exactly one of the paths [x2, z1, . . . , zs, x6] and [x2, zs, . . . , z1, x6] is contained in
D which gives a contradiction.

Let us consider now the case v = zj0 where 1 < j0 < s. Because of
zs ∈ S there exists a j1 with j0 < j1 ≤ s such that D contains one of the
two paths [x2, zj1 , . . . , zs, x6], [x2, zs, . . . , zj1 , x6]. Without loss of generality, we
may assume that D contains [x2, zj1 , . . . , zs, x6]. Moreover, z1 ∈ S implies
that there exists a j2 with 1 ≤ j2 < j0 such that D contains either (i) one
of the two paths [x2, z1, . . . , zj2 , x6], [x2, zj2 , . . . , z1, x6] or (ii) one of the two
paths [x4, z1, . . . , zj2 , x2], [x4, z1, . . . , zj2 , x6]. In case (i) D is equal to one of the
cycles [x2, zj1 , . . . , zs, x6, zj2 , . . . , z1], [x2, zj1 , . . . , zs, x6, z1, . . . , zj2 ] which yields
a contradiction. In case (ii) by symmetry we may assume that D contains
[x4, z1, . . . , zj2 , x2]. Hence, x2x3 /∈ E(D). Then, by x3 ∈ S the path [x0, x3, x4]
is contained in D which implies that x4x5 /∈ E(D). Then, because of x5 ∈ S the
path [x0, x5, x6] is also contained in D which yields D = [x2, zj2 , . . . , z1, x4, x3, x0,
x5, x6, zs, . . . , zj1 ], a contradiction. Thus, S is proved to be an H-force set of G.

If n is the order and k the H-force number of G, then the relations n = r+s+7
and k = r + 5 together with r ≥ 0 and s ≥ 2 imply n ≥ 9 and 5 ≤ k ≤ n − 4
which completes the proof.

For the following theorem which considers the remaining three cases k = n −
3, n − 2, n − 1 we present the construction figures for a proof but (for shortness
of this paper) not the complete proof.

Theorem 16. For every integers n ≥ n0 and s ∈ {1, 2, 3} there exists a polyhedral

hamiltonian graph G of order n with h(G) = n − s, where n0 = 12, 16, 14 for

s = 3, 2, 1, respectively.

Proof. In the case s = 3 let the cycles C1 = [x1, x2, x3], C2 = [y1, . . . , y6] and
C3 = [z1, z2, z3] be drawn one into each other in the plane such that C1 is the
outer and C3 the inner one and connect the cycles by the edges x1y1, x2y3, x3y5,
z1y2, z2y4 and z3y6. If n is greater than n0 = 12 then let, in addition, the path
P = [u1, . . . , un−12] be drawn in the unbounded face where x1 is connected with
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all vertices of P by an edge and x2u1, x3un−12 are additional edges. The so
constructed polyhedral graph G of order n is hamiltonian and V (G) \ {y2, y4, y6}
is a smallest H-force set of G.

In the case s = 2 let the cycles C1 = [x1, . . . , x4], C2 = [y1, y2, . . . , y8] and
C3 = [z1, . . . , z4] be drawn one into each other in the plane such that C1 is
the outer and C3 the inner one and connect the cycles by the edges x1y1, x2y3,
x3y5, x4y7 z1y2, z2y4, z3y6 and z4y8. If n is greater than n0 = 16 then let, in
addition, the path P = [u1, . . . , un−16] be drawn in the unbounded face where x1
is connected with all vertices of P by an edge and x2u1, x3un−16 are additional
edges. The so constructed polyhedral graph G of order n is hamiltonian and
V (G) \ {x2, x4} is a smallest H-force set of G.

In the case s = 1 let a cycle C = [x1, . . . , x9] be drawn in the plane and let
z be a vertex in the bounded face which is connected with each vertex of C by
an edge. Moreover, let K1,3 be a claw in the unbounded face with endvertices
y1, y2, y3. Let the claw be connected with C by edges y1x2, y1x3, y2x5, y2x6,
y3x8 and y3x9. If, now, n is greater than n0 = 14 then let, in addition the
path P = [u1, . . . , un−14] be drawn in the unbounded face where x1 is connected
with all vertices of P by an edge and x2u1, x9un−14 are additional edges. The
so constructed polyhedral graph G of order n is hamiltonian and V (G) \ {z} is
a smallest H-force set of G.

4. Bipartite Graphs

If the number of components of a graph G is denoted by c(G) we have

Proposition 17. Let G be a hamiltonian graph of order n. If there exists a set

S ⊆ V (G) with c(G− S) = |S|, then h(G) ≤ n− |S|.

Proof. Let X = V (G) \ S. Any X-cycle of G requires |S| additional vertices,
thus it is a hamiltonian one and thereby X is an H-force set of G.

There are two noteworthy special cases of the previous statement, the first, if
|S| = 2

Corollary 18. If G is a hamiltonian graph of order n with κ(G) = 2, then

h(G) ≤ n− 2.

and the second, if every component of G− S is a single vertex.

Corollary 19. If G is a hamiltonian graph of order n with α(G) = n
2
, then

h(G) ≤ n
2
.

Applying Corollary 19 to the complete bipartite graph Kn

2
,n
2

and considering that
any k vertices with k < n

2
are contained in a nonhamiltonian cycle we obtain
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Corollary 20. h(Kn

2
,n
2

) = n
2
.

Dirac [10] proved that any k vertices of a k-connected graph lie on a common
cycle. We use this result to prove the following

Theorem 21. If G 6= Cn is a hamiltonian graph, then h(G) ≥ κ(G).

Proof. Let G be a hamiltonian graph with κ(G) = κ. Since for κ = 2 the
proposition is obvious, let κ ≥ 3.

For any vertex u ∈ V (G), the graph G− u is (κ− 1)-connected. For any set
X ⊆ V (G − u) with |X| = κ − 1, by the above mentioned result of Dirac, there
is an X-cycle in G − u that is obviously nonhamiltonian in G. Therefore, there
is no H-force set in G consisting of κ− 1 vertices.

Moreover, graphs resulting from Kn

2
,n
2

by adding any edges in exactly one partite
set have h = κ = n

2
, i.e. the lower bound on H-force number in the last theorem

is tight.

The prism over a graph G is the Cartesian product G�K2 of G with K2, i.e.
the prism over G is obtained by taking two copies of G and joining the two copies
of each vertex by a vertical edge. We identify G with one of its copies in G�K2

and denote G̃ the other copy of G. This notation is extended, in an obvious way,
to vertices, edges and subgraphs of G�K2. Moreover, if y = x̃, we set ỹ = x, in
other words, ˜̃x = x.

For a path P and two vertices x, y ∈ V (P ) let [x, y]P be the subpath of P
from x to y and for a cycle C and two vertices x, y ∈ V (C) let [x, y]+C ([x, y]−C)
be the path from x to y on C following the anticlockwise (clockwise) orientation
of C. For a vertex x ∈ V (C), x+ (x−) denotes its successor (predecessor) on C
according to the anticlockwise orientation.

Theorem 22. Let G be a hamiltonian graph of order n
2
. Then

h(G�K2) =

{

n
2
, if G is bipartite,

n, if G is not bipartite.

Proof. Let G be a hamiltonian graph of order m = n
2
and let C be a hamiltonian

cycle of G.

Case 1. If G is bipartite then the prism G�K2 over G is bipartite as well
and h(G�K2) ≤

n
2
= m by Corollary 19. Moreover, for any set X ⊆ V (G�K2)

of m − 1 vertices, there is a vertical edge ww̃ ∈ E(G�K2) with w, w̃ 6∈ X, thus
D1 = [w+, w−]+C ∪ w−w̃− ∪ [w̃−, w̃+]−

C̃
∪ w̃+w+ (Figure 3) is a nonhamiltonian

X-cycle in G�K2. Therefore, there is no H-force set of cardinality m − 1 in
G�K2.
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Figure 3

Case 2. Let G be not bipartite.

Case 2.1. If the order m of G is odd then it is easy to see that, for any vertex
w of G�K2, there is a cycle D2 of length n− 1 in G�K2 omitting just the vertex
w and containing all vertical edges except of ww̃ (Figure 3). Hence, there is no
H-force set of cardinality n− 1 in G�K2.

Case 2.2. If the order m of G is even then there is an edge uv ∈ E(G)\E(C)
such that C1 = [u, v]−C ∪ uv and C2 = [u, v]+C ∪ uv are both odd cycles. Let
Gi (i = 1, 2) be the graph induced by V (Ci) in G. For any vertex of G�K2

we look for a cycle omitting just this vertex. Let, without loss of generality,
w ∈ V (G1) \ {v}. Then G1�K2 is the prism of a graph of odd order, thus by the
previous case, there is a cycle D′ in G1�K2 containing all vertices except of w and
all vertical edges except of ww̃. Then D3 = (D′−vṽ)∪ [v, u+]−C ∪u+ũ+∪ [ũ+, ṽ]+

C̃
(Figure 3) is the desired cycle.

5. Planar Graphs

By Theorem 9 of Nelson, the H-force number of every 4-connected planar graph
is equal n. In section 3, planar graphs of order n and with a given H-force number
k were constructed, for any 1 ≤ k ≤ n.

A planar graph is outerplanar if it can be embedded in the plane in such
a way that all its vertices are incident to the unbounded face. The weak dual

D⋆(G) of an outerplanar graph G is the graph obtained from the dual of G by
removing the vertex corresponding to the unbounded face; it is a tree, if G is
2-connected. In this case let ℓ(G) denote the number of leaves of D⋆(G).

Theorem 23. If G 6= Cn is an outerplanar hamiltonian graph, then h(G) =
ℓ(G) ≥ 2.

Proof. Let G be an outerplanar graph with a hamiltonian cycle C creating
the boundary of its outerface. With every leaf of the weak dual D⋆(G) there



On Vertices Enforcing a Hamiltonian Cycle 81

is associated a face α of G incident with a chord xy of C. All vertices of α
except for x and y have degree 2 in G and every H-force set X of G contains
at least one of them. Otherwise the cycle [x, y]+C ∪ {xy} (or [x, y]−C ∪ {xy}) is
a nonhamiltonian cycle of G omitting all 2-valent vertices of α, a contradiction.
Hence, |X| = h(G) ≥ ℓ(G).

To prove the converse inequality it is enough to find an H-force set X con-
sisting of ℓ(G) vertices. If we choose one vertex of degree 2 from each face of G
corresponding to a leaf of the weak dual D⋆(G) we obtain a desired set X. Sup-
pose that there exists a nonhamiltonian X-cycle C ′ in G. Then it has to contain
a chord xy ∈ E(G). The graph G − x − y consists of exactly two components
each containing a vertex from X, but C ′ has an empty intersection with one of
them, a contradiction.

For a plane hamiltonian graph G with a hamiltonian cycle C let Gi
C (or Go

C) be
the graph consisting of the cycle C and all edges of G lying inside (outside) of C.
Clearly, Gi

C and Go
C are both outerplanar. Taking into consideration the graphs

Gi
C and Go

C and the proof of the previous theorem we immediately obtain

Theorem 24. If G is a planar hamiltonian graph with δ(G) ≥ 3 and C a hamil-

tonian cycle of G, then h(G) ≥ ℓ(Gi
C) + ℓ(Go

C) ≥ 4.

Other results about planar graphs follow in the next section.

6. Graphs with Small H-force Number

Let C = [v1, v2, . . . , vn] be a hamiltonian cycle of G. We say that a chord vivj
(i < j − 1) separates vertices vk, vl (k < l − 1) on C, if they belong to different
components of C− vi− vj , and, moreover, crosses the chord vkvl, if vkvl ∈ E(G).

Theorem 25. Let G 6= Cn be a hamiltonian graph and C = [v1, v2, . . . , vn] be
a hamiltonian cycle of G. Then h(G) = 2 if and only if

(i) there exist x, y ∈ V (G), degG(x) = degG(y) = 2, such that every chord

vivj (i < j − 1) separates x and y on C, and

(ii) for every pair vivj and vkvl (i < j−1, k < l−1) of crossed chords vivk, vjvl ∈
E(C) holds.

Proof. Suppose h(G) = 2 and let F = {x, y} be an H-force set of G (i.e. every
F -cycle of G is hamiltonian). Moreover, we may assume v1 = x and vt = y where
3 ≤ t ≤ n− 1.

Claim 1. degG(x) = degG(y) = 2,
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otherwise, if degG(x) ≥ 3 then, for x∗ ∈ N(x) \ {x−, x+}, one of the cycles
D1 = [x, x∗]+C ∪ xx∗ and D2 = [x, x∗]−C ∪ xx∗ contains y but does not contain one
of x− or x+, therefore it is a nonhamiltonian F -cycle; a contradiction.

Claim 2. Every chord uw of C separates x and y on C,

otherwise one of the cycles D3 = [u,w]+C ∪ uw or D4 = [u,w]−C ∪ uw is an F -cycle
omitting u− or u+; a contradiction.

Claim 3. If vivj and vkvl (1 < i < k < t < j < l) are two crossed chords of C,

then vivk, vjvl ∈ E(C) (i.e. k = i+ 1 and l = j + 1),

otherwise, if vivk 6∈ E(C) then D5 = [vk, vj ]
+

C ∪ vivj ∪ [vi, vl]
−

C ∪ vkvl is an F -cycle
of G missing vertex vi+1; a contradiction.

To prove the converse let G be a graph satisfying properties (i) and (ii). We
assume again v1 = x and vt = y where 3 ≤ t ≤ n− 1.

Claim 4. For every vertex vi ∈ V (G) \ {x, y} there is a vertex v∗i ∈ V (G) such

that {vi, v
∗

i } separates x and y in G,

because,
(a) if degG(vi) ≥ 3 and vivj is a chord of C crossed by vi+1vj+1 then {vi, vj+1}

separates x and y,
(b) if degG(vi) ≥ 3 and vivj is a chord of C crossed by no other chord then

{vi, vj} separates x and y, and
(c) for degG(vi) = 2 let P = [u,w]+C be the longest subpath of C containing

vi with internal vertices of degree 2 (in G) only (i.e. degG(u), degG(w) ≥ 3).
Then vi separates x and y in G with the same vertex as w does or with one of
the vertices u, w (in the case V (P ) ∩ {x, y} 6= ∅).

Finally, F = {x, y} is an H-force set of G, because otherwise there exists a non-
hamiltonian F -cycle C ′ missing a vertex vi. If {vi, v

∗

i } separates x and y in G,
then the vertices x and y are separated by at most 1 vertex on C ′; a contradiction.

Thus, any hamiltonian graph with H-force number 2 can be considered as the
union of two outerplanar hamiltonian graphs with a common hamiltonian cycle
which implies

Corollary 26. Every hamiltonian graph G with h(G) = 2 is planar.

For a graph G and a set X ⊆ V (G) we denote by KX(G) the graph with the
vertex set V (G) and the edge set E(G)∪{uv |u, v ∈ X}, i.e. the smallest spanning
supergraph of G in which X induces a clique. Kawarabayashi [15] proved, that
for any k-connected graph G and any given ℓ vertices (k ≤ ℓ ≤ 3

2
k), there is

a cycle in G containing exactly k of them.
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By Theorem 21, the H-force number of a 3-connected hamiltonian graph is ≥ 3.
We prove that there are only four 3-connected graphs with the H-force number
3.

Theorem 27. Let G be a 3-connected hamiltonian graph. Then

(i) h(G) ≥ 4 or

(ii) G results from K3,3 by adding any edges in exactly one partite set.

Proof. Let G be a 3-connected hamiltonian graph with h(G) = 3. There exists
an H-force set F = {v1, v2, v3} ⊆ V (G) in G (i.e. every F -cycle of G is hamilto-
nian). Consider an arbitrary vertex x ∈ V (G) \ F . By the above mentioned the-
orem of Kawarabayashi the graph G contains a cycle C through exactly three of
the vertices v1, v2, v3, x. Thus, C is nonhamiltonian and, consequently, it is no F -
cycle which allows to assume that without loss of generality v2, v3, x ∈ V (C). As
G is 3-connected, there exist three internally disjoint (v1, C)-paths P1, P2, P3 with
different endvertices yi ∈ V (Pi) ∩ V (C), i = 1, 2, 3. Denote Qi = [yi+1, yi+2]

+

C ,
i = 1, 2, 3 (indices modulo 3; see Figure 4) and let v∗j ∈ N(vj) \ {v−j , v

+

j } for
j = 2, 3.

Figure 4

Case 1. If v2, v3 belong to the same path Qi (possibly they are its endvertices)
then Qi ∪ Pi+1 ∪ Pi+2 is an F -cycle omitting vertex yi, thus nonhamiltonian, a
contradiction.

Case 2. Let v2, v3 do not belong to the same path Qi and let one of them
be identical with a vertex yj , i.e. assume w.l.o.g. v2 = y2, v3 ∈ Q2 where
v3 6∈ {y1, y3}.

The cycles D1 = P1∪P2∪Q1∪Q2 and D2 = P2∪P3∪Q2∪Q3 (Figure 4) are
both F -cycles, thus hamiltonian. Therefore, P1, P3, Q1, Q3 are paths of length
1 (i.e. v1y1, v1y3, y2y3, y1y2 ∈ E(G)).

Case 2.1. If v∗3 ∈ [y3, v
−

3
]+C then D3 = [v2, v

∗

3]
+

C ∪ v∗3v3 ∪ [v3, y1]
+

C ∪ P1 ∪ P2

(Figure 5) is an F -cycle omitting the vertex v−
3
, a contradiction.

Case 2.2. If v∗3 ∈ [v+
3
, y1]

+

C then D4 = [v2, v3]
+

C ∪ v3v
∗

3 ∪ [v∗3, y1]
+

C ∪ P1 ∪ P2

(Figure 5) is an F -cycle omitting the vertex v+
3
, a contradiction.
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Figure 5

Case 2.3. If v∗3 = v2 then D5 = v2v3 ∪ [v3, y1]
+

C ∪ P1 ∪P2 (Figure 5) is an F -cycle
omitting the vertex y3, a contradiction.

Figure 6

Case 2.4. If v∗3 ∈ P2, v
∗

3 6= v2, then D6 = [v1, v
∗

3]P2
∪ v∗3v3 ∪ [v3, y3]

+

C ∪ P3

and D7 = [v2, v
∗

3]P2
∪ v∗3v3 ∪ [v3, y3]

−

C ∪P3 ∪P1 ∪Q3 (Figure 6) are both F -cycles,
thus hamiltonian and therefore P2 and Q2 have length 2, i.e. K3,3 is a spanning
subgraph of G.

Figure 7

Case 3. Let v2, v3 do not belong to the same path Qi and let they be different
from yj , i.e. assume w.l.o.g. v2 ∈ Q3 and v3 ∈ Q1.

D8 = Q3 ∪ Q1 ∪ P3 ∪ P1 (Figure 7) is an F -cycle, thus hamiltonian and
therefore P2 and Q2 have length 1 (i.e. v1y2, v3y1 ∈ E(G)).

Case 3.1. If v∗3 ∈ [v+
3
, y3]

+

C then D9 = [y2, v3]
+

C ∪v3v
∗

3 ∪ [v∗3, y3]
+

C ∪P3∪P1∪Q3

(Figure 7) is an F -cycle omitting the vertex v+
3
, a contradiction.

Case 3.2. If v∗3 ∈ P3 then D10 = [y2, v3]
+

C ∪ v3v
∗

3 ∪ [v∗3, v1]P3
∪P1 ∪Q3 (Figure

7) is an F -cycle omitting the vertex y3, a contradiction.
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Figure 8

Case 3.3. If v∗3 ∈ [v2, v
−

3
]+C then D11 = [v3, y3]

+

C ∪ P3 ∪ P1 ∪ [y1, v
∗

3]
+

C ∪ v∗3v3
(Figure 8) is an F -cycle omitting the vertex v−

3
, a contradiction.

Case 3.4. If v∗3 ∈ [y+
1
, v2]

+

C then D12 = [y2, v
∗

3]
−

C ∪ v∗3v3 ∪ [v3, y3]
+

C ∪ P3 ∪ P2

(Figure 8) is an F -cycle omitting the vertex y1, a contradiction.

Figure 9

Analogously, we obtain a contradiction in corresponding cases under considera-
tion of v2 and its neighbour v∗2. There are two remaining cases:

Case 3.5. If v∗2 ∈ P3, v∗3 ∈ P1 and v∗j 6= yj+1 for j = 2 or j = 3 then

D13 = [v2, v3]
+

C ∪ v∗3v3 ∪ [v∗3, v1]P1
∪ [v1, v

∗

2]P3
∪ v∗2v2 (Figure 9) is an F -cycle

omitting the vertex yj+1, a contradiction.

Case 3.6. If v∗2 = y3 and v∗3 = y1 then D14 = [v2, y2]
+

C ∪ P2 ∪ P1 ∪ y1v3 ∪
[v3, y3]

+

C ∪ y3v2 and D15 = [y2, v3]
+

C ∪ v3y1 ∪ [y1, v2]
+

C ∪ v2y3 ∪ P3 ∪ P2 (Figure 9)
are both F -cycles, thus hamiltonian and therefore paths P1 and P3 have length
1 and paths Q1 and Q3 have length 2, i.e. K3,3 is a spanning subgraph of G.

In any case, K3,3 is a spanning subgraph of G. Let X,Y ⊆ V (K3,3) =
V (G) be the bipartition of K3,3. If G ⊆ KX(K3,3) then 3 = h(K3,3) ≤ h(G) ≤
h(KX(K3,3)) ≤ 3 by Proposition 2 and Corollaries 19 and 20, thus h(G) = 3.
Otherwise, if G′ = K3,3 ∪ {x1x2, y1y2 |xi ∈ X, yi ∈ Y, i = 1, 2} is a subgraph of
G, then h(G) ≥ h(G′) = 6, which completes the proof.

In the previous section we proved that the H-force number of a planar hamiltonian
graph G with δ(G) ≥ 3 is lower-bounded by ℓ(Gi

C) + ℓ(Go
C) ≥ 4.

Theorem 28. Let G be a 3-connected planar hamiltonian graph. Then

(i) h(G) ≥ 5 or
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(ii) G = K4 or G results from the graph Q3 of the cube by adding any edges in

exactly one partite set.

Proof. Let G be a plane 3-connected hamiltonian graph with h(G) = 4 and let
C be a hamiltonian cycle of G. Theorems 23 and 24 imply ℓ(Gi

C) = ℓ(Go
C) = 2,

i.e. the weak duals D⋆(Gi
C) and D⋆(Go

C) are paths. Let α, β and γ, δ be the faces
of G corresponding to endvertices of D⋆(Gi

C) and D⋆(Go
C), respectively, and let

F = {x, y, u, v} be an H-force set, where x ∈ V (α), y ∈ V (β), u ∈ V (γ), v ∈ V (δ)
and degGi

C

(x) = degGi

C

(y) = degGo

C
(u) = degGo

C
(v) = 2.

Claim 1. Every chord e ∈ E(Gi
C) (or e ∈ E(Go

C)) of C separates x, y in Gi
C (or

u, v in Go
C).

Let x∗ be a neighbour of x in G, different from x+ and x−, with the smallest
distance dC(x

∗, y) from y on C and similarly, y∗ ∈ N(y)\{y+, y−} with minimum
dC(y

∗, x), u∗ ∈ N(u)\{u+, u−} with minimum dC(u
∗, v) and v∗ ∈ N(v)\{v+, v−}

with minimum dC(v
∗, u).

Case 1. Let xy, uv ∈ E(G) (i.e. x∗ = y, y∗ = x, u∗ = v, v∗ = u), then
D1 = [x, u]+C ∪ uv ∪ [v, y]−C ∪ yx and D2 = [x, v]−C ∪ vu ∪ [u, y]+C ∪ yx (Figure 10)
are F -cycles, hence, both are hamiltonian. Therefore, [x, u]+C , [v, y]

−

C , [x, v]
−

C and
[u, y]+C are paths of length 1 (i.e. xu, vy, xv, uy ∈ E(C)) and finally G = K4.

Figure 10

Figure 11

Case 2. Let, without loss of generality, xy ∈ E(G) and uv 6∈ E(G) (i.e.
x∗ = y, y∗ = x, u∗ 6= v, v∗ 6= u).

Case 2.1. If u∗ ∈ [y, v]+C (and consequently v∗ ∈ [x, u]+C), then D3 = [x, u∗]−C∪
u∗u ∪ [u, y]+C ∪ yx (Figure 11) is an F -cycle omitting vertex v∗, a contradiction.
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Case 2.2. If u∗ ∈ [v, x]+C (and consequently v∗ ∈ [u, y]+C), then D4 = [x, u]+C ∪
uu∗ ∪ [u∗, y]−C ∪ yx (Figure 11) is a nonhamiltonian F -cycle, a contradiction.

Case 3. Let xy, uv 6∈ E(G) (i.e. {x∗, y∗, u∗, v∗} ∩ {x, y, u, v} = ∅).

Case 3.1. Let each of the paths [x, u]+C , [u, y]
+

C , [y, v]
+

C , [v, x]
+

C contains a
vertex from {x∗, y∗, u∗, v∗} (without loss of generality, let v∗ ∈ [x, u]+C , x∗ ∈
[u, y]+C , u

∗ ∈ [y, v]+C and y∗ ∈ [v, x]+C).

Then D5 = [x, v∗]+C ∪ v∗v ∪ [v, y∗]+C ∪ y∗y ∪ [y, u∗]+C ∪ u∗u ∪ [u, x∗]+C ∪ x∗x,
D6 = [x, y∗]−C∪y

∗y∪[y, v]+C∪vv
∗∪[v∗, x∗]+C∪x

∗x, andD7 = [x, u]+C∪uu
∗∪[u∗, y∗]+C∪

y∗y∪[y, x∗]−C∪x∗x (Figure 12) are F -cycles, hence all are hamiltonian. Since each
of the paths [x, v∗]+C , [v

∗, u]+C , [u, x
∗]+C , [x

∗, y]+C , [y, u
∗]+C , [u

∗, v]+C , [v, y
∗]+C , [y

∗, x]+C
has with at least one of the hamiltonian cycles D5, D6, D7 no inner vertex in
common, there is no inner vertex on any of these paths, and, consequently, the
cube graph Q3 is a spanning subgraph of G.

Figure 12

Case 3.2. Let exactly two of the paths [x, u]+C , [u, y]
+

C , [y, v]
+

C , [v, x]
+

C contain
a vertex from {x∗, y∗, u∗, v∗} (without loss of generality and because of claim 1
let x∗, v∗ ∈ [u, y]+C and y∗, u∗ ∈ [v, x]+C).

Case 3.2.1. Let u∗ 6∈ [y∗, x]+C (or analogously v∗ 6∈ [x∗, y]+C). Then D8 =
[x, u]+C ∪ uu∗ ∪ [u∗, x∗]−C ∪ x∗x (Figure 13) is a nonhamiltonian F -cycle, a contra-
diction.

Figure 13

Case 3.2.2. Let u∗ ∈ [y∗, x]+C and v∗ ∈ [x∗, y]+C . D9 = [x, u]+C∪uu
∗∪[u∗, y∗]−C∪

y∗y∪[y, v]+C∪vv
∗∪[v∗, x∗]−C∪x

∗x (Figure 13) is an F -cycle, hence it is hamiltonian.
Therefore then the paths [u, x∗]+C , [v

∗, y]+C , [v, y
∗]+C , and [u∗, x]+C have length 1 (i.e.
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ux∗, v∗y, vy∗, u∗x ∈ E(G)). Since G is planar and 3-connected, there exists a
neighbour of u on [v, u∗]+C different from u∗ (otherwise, the set {x∗, u∗} would be
a 2-cut of G, with contradiction), which contradicts the minimality of dC(u

∗, v).

That means, G = K4 or G contains Q3 as a spanning subgraph. In the second
case let X,Y ⊆ V (Q3) = V (G) be the bipartition of Q3. If G ⊆ KX(G) then
4 = h(Q3) ≤ h(G) ≤ h(KX(G)) ≤ 4 by Proposition 2, Corollary 19, and Theorem
22, thus h(G) = 4. Otherwise, if G′ = Q3 ∪ {x1x2, y1y2 |xi ∈ X, yi ∈ Y, i = 1, 2}
is a subgraph of G, then h(G) ≥ h(G′) = 8, which completes the proof.
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