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Abstract

A DD2-pair of a graph G is a pair (D,D2) of disjoint sets of vertices of G
such that D is a dominating set and D2 is a 2-dominating set of G. Although
there are infinitely many graphs that do not contain a DD2-pair, we show
that every graph with minimum degree at least two has a DD2-pair. We
provide a constructive characterization of trees that have a DD2-pair and
show that K3,3 is the only connected graph with minimum degree at least
three for which D ∪D2 necessarily contains all vertices of the graph.
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1. Introduction

In this paper we continue the study of graph theoretic problems in the com-
plement of a dominating set. Domination and its variations in graphs have been
studied by many authors. A set D of vertices in a graph G = (V,E) is a dominat-

ing set if every vertex in V \D has a neighbor in D, while D is a total dominating

set if every vertex in V has a neighbor in D. For k a positive integer, D is a
k-dominating set if every vertex in V \ D has at least k neighbors in D. The
book by Haynes, Hedetmiemi, and Slater [3] surveyed much of the work that has
been done on the subject of domination and its variations.

Ore [9] observed that any graph without isolated vertices always contains a
pair of disjoint dominating sets. However, Zelinka [12] showed that one cannot
guarantee three disjoint dominating (or total dominating) sets in a graph by
simply requiring the minimum degree of the graph to be large enough. Thus,
studying graphs whose vertex sets admit a partition into two dominating sets is
of interest. With that context in mind we now make the following definition. A
dominating pair of a graph G is a pair (D1, D2) of disjoint dominating sets D1

and D2 in G. In 2008, Hedetniemi, Hedetniemi, Laskar, Markus, and Slater [2]
initiated the study of the disjoint domination number of G which they defined as
γγ(G) = min{|D1| + |D2|: (D1, D2) is a dominating pair of G}. Recently, there
has been much work on this parameter, including for example in [2, 4, 5, 6].

Henning and Southey [7] showed that the vertex set of every connected graph
with minimum degree at least two, with the exception of a 5-cycle, can be parti-
tioned into a dominating set and a total dominating set. A DT-pair of a graph G
is a pair (D,T ) of disjoint sets of vertices of G such that D is a dominating set and
T is a total dominating set of G. The parameter γγt(G) = min{|D|+ |T |: (D,T )
is a DT-pair of G}. This parameter has been studied for example in [6, 8, 10]. In
particular, it is shown in [6] that if G is a graph with minimum degree at least
three, then γγt(G) < n, unless G is the Petersen graph.

In this paper, we consider a DD2-pair of a graph G which is a pair (D,D2)
of disjoint sets of vertices of G such that D is a dominating set and D2 is a
2-dominating set of G. In contrast to Ore’s positive observation that every graph
with no isolated vertex contains two disjoint dominating sets, there are infinitely
many graphs with no isolated vertex that do not contain a DD2-pair. For exam-
ple, if G is the graph obtained by adding a pendant edge to each vertex of an
arbitrary graph F (such a graph G is the called the corona or 2-corona of F in
the literature), then G has no DD2-pair.

We call a graph that has a DD2-pair a DD2-graph and in this case make
the following definition. If G is a DD2-graph, then let γγ2(G) = min{|D| +
|D2|: (D,D2) is a DD2-pair of G}.
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2. Trees with a DD2-pair

As observed earlier, not every graph is a DD2-graph. Our first aim is to provide
a constructive characterization of DD2-trees. In general, describing and proving
the correctness of constructive characterizations can become quite involved. We
will employ the method of labelings that was introduced by Dorfling et al. [1], and
has since been used successfully by a number of authors. For example, see [8, 11].

A labeling of a graph G is a partition S = (SA, SB) of V (G). The label or
status of a vertex v, denoted sta(v), is the letter x ∈ {A,B} such that v ∈ Sx.
The key to our constructive characterization is to find a labeling of the vertices
that indicates the role each vertex plays in the set associated with each of the
parameters.

By a labeled-P3, we shall mean a P3 with the central vertex labeled A and
the two leaves labeled B. Let T be the minimum family of labeled trees that
contains a labeled-P3 and can be obtained by repeated application of the four
operations O1, O2, O3 and O4 listed below, which extend a labeled tree (T, S)
by attaching a tree to the vertex v ∈ V (T ). These four operations O1, O2, O3

and O4 are illustrated in Figure 1.

• Operation O1. Let v be a vertex with sta(v) = A. Add a vertex u and the
edge vu, and let sta(u) = B.

• Operation O2. Let v be a vertex with sta(v) = B. Add a path u1u2 and
the edge vu1. Let sta(u1) = A and sta(u2) = B.

• Operation O3. Let v be a vertex with sta(v) = B. Add a path u1u2u3 and
the edge vu1. Let sta(u1) = sta(u3) = B and sta(u2) = A.

• Operation O4. Let v be a vertex with sta(v) = A. Add a path u1u2u3 and
the edge vu2. Let sta(u1) = sta(u3) = B and sta(u2) = A.

O1: tA tB&%
'$

O2: tB tA tB&%
'$

O3: tB tB tA tB&%
'$

O4: tA tA tB
tB�

�
��

H
H
HH&%

'$

Figure 1. The four operations O1, O2, O3 and O4.

We recall that a rooted tree distinguishes one vertex r called the root. For each
vertex v 6= r of T , the parent of v is the neighbor of v on the unique r–v path,
while a child of v is any other neighbor of v. We let C(v) denote the set of
children of v. A vertex of degree one is called a leaf and its neighbor is called a
support vertex. We shall need the following observation.
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Observation 1. If T is a DD2-tree and (D,D2) is a DD2-pair in T , then every

leaf belongs to D2 while every support vertex belongs to D.

As remarked in the introductory section, there are infinitely many trees that do
not contain a DD2-pair as may be seen by taking the corona of an arbitrary tree.
We are now in a position to establish the following constructive characterization
of DD2-trees that uses labelings.

Theorem 2. The DD2-trees are precisely those trees T such that (T, S) ∈ T for

some labeling S.

Proof. Suppose first that T is a tree and (T, S) ∈ T for some labeling S. By
construction, we observe that every vertex of status B is adjacent to a vertex
of status A, while every vertex of status A is adjacent to at least two vertices
of status B. Thus, (SA, SB) is a DD2-pair in T , and so T is a DD2-tree. This
establishes the sufficiency.

To prove the necessity, we proceed by induction on the order n ≥ 3 of a
DD2-tree T . If n = 3, then T = P3 and (T, S) ∈ T , where S is the labeling of
a labeled-P3. This establishes the base case. For the inductive hypothesis, let
n ≥ 4 and assume that for every DD2-tree T ′ of order less than n there exists a
labeling S′ such that (T ′, S′) ∈ T .

Let T be a DD2-tree of order n. Let (D,D2) be a DD2-pair in T . We now
root the tree T at a leaf, r, of a longest path (of length diam(T )) in T . Necessarily,
r is a leaf. Let u be a vertex at maximum distance from r. Necessarily, u is a
leaf. Let v be the parent of u, let w be the parent of v. If w 6= r, let x be the
parent of w. Since u is at maximum distance from the root r, every child of v is
a leaf. By Observation 1, we observe that C(v) ⊆ D2 and v ∈ D. In particular,
u ∈ D2.

Suppose that dT (v) ≥ 3. Then, v has at least dT (v) − 1 ≥ 2 leaf-neighbors
in T . Since n ≥ 4, v has at least three neighbors in T . If dT (v) ≥ 4 or if
dT (v) = 3 and w ∈ D2, then we consider the tree T ′ = T − u. The partition
(D,D2\{u}) is a DD2-pair in T ′, and so T ′ is a DD2-tree. Applying the inductive
hypothesis to T ′, there exists a labeling S′ = (S′

A, S
′

B) such that (T ′, S′) ∈ T . By
Observation 1, v ∈ S′

A. Thus, we can restore the tree T by applying Operation O1

to T ′. Therefore, (T, S) ∈ T , where S is the labeling (S′

A, S
′

B ∪ {u}). Hence we
may assume that dT (v) = 3 and w ∈ D. Let C(v) = {u, u′}.

We now consider the tree T ′ = T − {u, u′, v}. The partition (D \ {v}, D2 \
{u, u′}) is a DD2-pair in T ′, and so T ′ is a DD2-tree. Applying the inductive
hypothesis to T ′, there exists a labeling S′ = (S′

A, S
′

B) such that (T ′, S′) ∈ T .
If w ∈ S′

A, then we can restore the tree T by applying Operation O4 to T ′.
If w ∈ S′

B, then we can restore the tree T by first applying Operation O2 to
T ′ and then Operation O1. Therefore, (T, S) ∈ T , where S is the labeling
(S′

A ∪ {v}, S′

B ∪ {u, u′}).
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Hence if dT (v) ≥ 3, then (T, S) ∈ T for some labeling S. Hence we may assume
that dT (v) = 2, for otherwise the desired result follow. By Observation 1, the
vertex w ∈ D2.

Suppose that dT (w) ≥ 3. Let v′ ∈ C(w) \ {v}. If v′ is a leaf, then by
Observation 1, v′ ∈ D2. But then v′ is not dominated by D, a contradiction.
Hence, dT (v

′) ≥ 2. By our choice of the vertex u, every child of v′ is a leaf. As
shown above, we may assume that dT (v

′) = 2. Let u′ be the child of v′. Then,
u′ is a leaf. By Observation 1, u′ ∈ D2 and v′ ∈ D. We now consider the tree
T ′ = T−{u′, v′}. The partition (D\{v′}, D2\{u

′}) is a DD2-pair in T ′, and so T ′

is a DD2-tree. We remark that since T ′ contains the three vertices u, v and w, we
have n(T ′) ≥ 3. Applying the inductive hypothesis to T ′, there exists a labeling
S′ = (S′

A, S
′

B) such that (T ′, S′) ∈ T . Necessarily, w ∈ S′

B, and we can therefore
restore the tree T by applying Operation O2 to T ′. Therefore, (T, S) ∈ T , where
S is the labeling (S′

A ∪ {v′}, S′

B ∪ {u′}). Hence if dT (w) ≥ 3, then (T, S) ∈ T
for some labeling S. Hence we may assume that dT (w) = 2, for otherwise the
desired result follow.

Suppose that x ∈ D. We now consider the tree T ′ = T−{u, v}. The partition
(D \ {v}, D2 \ {u}) is a DD2-pair in T ′, and so T ′ is a DD2-tree. Applying
the inductive hypothesis to T ′, there exists a labeling S′ = (S′

A, S
′

B) such that
(T ′, S′) ∈ T . Since w is a leaf of T ′, we have that w ∈ S′

B, and we can therefore
restore the tree T by applying Operation O2 to T ′. Therefore, (T, S) ∈ T , where
S is the labeling (S′

A ∪ {v}, S′

B ∪ {u}). Hence we may assume that x /∈ D. If
x /∈ D2, we simply add x to D2. Hence we may assume that x ∈ D2.

We now consider the tree T ′ = T − {u, v, w}. The partition (D \ {v}, D2 \
{u,w}) is a DD2-pair in T ′, and so T ′ is a DD2-tree. Applying the inductive
hypothesis to T ′, there exists a labeling S′ = (S′

A, S
′

B) such that (T ′, S′) ∈ T . If
x ∈ S′

A, we can restore the tree T by first applying Operation O1 to T ′ and then
Operation O2. If x ∈ S′

B, we can restore the tree T by applying Operation O3 to
T ′. Therefore, (T, S) ∈ T , where S is the labeling (S′

A ∪ {v}, S′

B ∪ {u,w}).

By Theorem 2, if T is a DD2-tree, then (T, S) ∈ T for some labeling S. However
we remark that such a labeling is not necessarily unique. Perhaps the simplest
example is to take T = P9 and note that T can be obtained from a labeled-P3

by applying operation O2 three times or T can be obtained from a labeled-P3 by
applying operation O3 twice.

3. Minimum Degree at Least Two

Although not every graph is a DD2-graph, if we restrict the minimum degree to
at least two, then γγ2(G) is well defined as the following result shows.
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Theorem 3. If G is a graph with minimum degree at least two, then G is a

DD2-graph.

Proof. Let G = (V,E) be a graph with minimum degree at least two. Let D be
a maximal independent set in G. Then, D is a dominating set, while V \D is a
2-dominating set in G. Thus, (D,V \D) is a DD2-pair in G.

By Theorem 3, γγ2(G) is well defined, implying that γγ2(G) ≤ |V (G)|. Next we
study graphs G satisfying γγ2(G) = |V (G)|. A characterization of such graphs
seems difficult to obtain since there are several families each containing infinitely
many graphs that satisfy this equation. For example, take any graph or multi-
graph with minimum degree at least 3 and subdivide every edge at least once.

A second infinite class of examples can be constructed in the following way.
Let G be obtained from an arbitrary graph F as follows: For each vertex v of F ,
add a path v1v2v3v4v5 and join v to v1, v3 and v5. Finally subdivide every edge of
the original graph F at least once. Each such graph G satisfies γγ2(G) = |V (G)|.
An example of such a graph G is illustrated in Figure 2, where here the original
graph F is a path P3 and every edge of F is subdivided four times.

Figure 2. A graph G satisfying γγ2(G) = |V (G)|.

Surprisingly, when we increase the degree condition from two to three, then there
is only one graph G with γγ2(G) = |V (G)|.

Theorem 4. Let G be a connected graph with δ(G) ≥ 3. Then, γγ2(G) = |V (G)|
if and only if G = K3,3.

Proof. Let G = (V,E) be a connected graph of order n. If G = K3,3, then it is
straightforward to verify that γγ2(G) = n. Suppose, then, that γγ2(G) = n. We
show that necessarily G = K3,3. Let (A,B) be a partition of V into two sets with
the maximum number of edges between the two sets. Then each vertex v ∈ V has
at least dG(v)/2 neighbors in the other set, since otherwise the vertex v can be
moved to the other set. Thus each vertex has at least as many neighbors in the
other set than in its own set. (We remark that this well-known fact is attributed
to Lovász or Erdős.) Since G has minimum degree at least three, this implies
that both A and B are 2-dominating sets in G.

If G is not a bipartite graph, then at least one of the sets A and B is not
independent in G. We may assume that v ∈ A is adjacent to at least one other
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vertex in A. But then (A\{v}, B) is a DD2-pair, and so γγ2(G) ≤ |A|+ |B|−1 =
n − 1, a contradiction. Hence, G is bipartite with partite sets A and B. In
particular, we note that each of A and B is a 3-dominating set.

Let v ∈ A and let Nv = {v1, v2, v3} be a set of three neighbors of v. Then,
Nv ⊆ B. Let A′ = (A \ {v}) ∪ {v1, v2} and let B′ = (B \ Nv) ∪ {v}. Then,
|A′| = |A| + 1 and |B′| = |B| − 2, and so |A′| + |B′| = n − 1. By construction
the set A′ is a 2-dominating set of G. If B′ is a dominating set of G, then
γγ2(G) ≤ |A′| + |B′| = n − 1, a contradiction. Hence, B′ is not a dominating
set. Thus there must exist a vertex v′ ∈ A \ {v} such that N(v′) = Nv. In
particular, dG(v

′) = 3. This is true for every vertex v of A. Therefore for every
vertex v ∈ A, there exists a vertex v′ ∈ A \ {v} with dG(v

′) = 3 such that v
and v′ have three common neighbors in B. Analogously, for every vertex v ∈ B,
there exists a vertex v′ ∈ B \ {v} with dG(v

′) = 3 such that v and v′ have three
common neighbors in B. In particular, we note that each of A and B has a
vertex of degree 3 in G. Choosing the vertex v ∈ A to have degree exactly three
in G, there therefore exists a vertex v′ ∈ A such that N(v) = N(v′) = Nv, where
Nv = {v1, v2, v3}.

We now consider the vertex v1 and let u ∈ N(v1) \ {v, v′}. Then there is
a vertex w ∈ B \ {v1} such that N(w) = {v, v′, u}. Renaming v2 and v3, if
necessary, we may assume that w = v2. There is therefore a vertex z ∈ B \ {v2}
such that N(z) = {v, v′, u}. Renaming v1 and v3, if necessary, we may assume
that z = v1. Thus, N(v1) = N(v2) = {v, v′, u} and N(v) = N(v′) = {v1, v2, v3}.

We now consider the set A∗ = (A \ {v, v′}) ∪ {v3} and B∗ = (B \ {v2, v3}) ∪
{v, v′}. Then, |A∗| = |A| − 1 and |B∗| = |B|, and so |A1|+ |B1| = n− 1. Since G
is bipartite with partite sets A and B, and since δ(G) ≥ 3, each vertex in B \{v3}
is adjacent to at least one vertex of A \ {v, v′} ⊂ A∗. Further both v and v′ are
adjacent to v3 ∈ A∗. Hence every vertex not in A∗ is adjacent to at least one
vertex of A∗, implying that A∗ is a dominating set. If u is not adjacent to v3 or
if d(u) ≥ 4, then B∗ is a 2-dominating set and γγ2(G) ≤ |A∗| + |B∗| = n − 1,
a contradiction. Hence, u is adjacent only to v1, v2, and v3. Analogously, v3 is
adjacent only to u, v and v′. Hence since G is connected, G = K3,3.
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