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Abstract

Let F be a forest of order n. It is well known that if F 6= Sn, a star of
order n, then there exists an embedding of F into its complement F . In this
note we consider a problem concerning the uniqueness of such an embedding.
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1. Introduction

We shall use standard graph theory notation. We consider only finite, undirected
graphs of order n = |V (G)| and size e(G) = |E(G)|. All graphs will be assumed
to have neither loops nor multiple edges.

We shall need some additional definitions in order to formulate the results.
If a graph G has order n and size m, we say that G is an (n,m) graph.

Assume now that G1 and G2 are two graphs with disjoint vertex sets. The
union G = G1 ∪ G2 has V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2).
If a graph G is the union of n (≥ 2) disjoint copies of a graph H, then we write
G = nH.

For our next operation, the conditions are quite different. Let now G1 and
G2 be graphs with V (G1) = V (G2) and E(G1) ∩ E(G2) = ∅. The edge sum

G = G1 ⊕G2 has V (G) = V (G1) = V (G2) and E(G) = E(G1) ∪ E(G2).

1The research of the second author was partially supported by the Polish Ministry of Science

and Higher Education
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An embedding of G (in its complement G) is a permutation σ on V (G) such that
if an edge xy belongs to E(G), then σ(x)σ(y) does not belong to E(G).

In other words, an embedding is an (edge-disjoint) placement (or packing) of
two copies of G into a complete graph Kn.

The following theorem was proved, independently, in [1], [2] and [5].

Theorem 1. Let G = (V,E) be a graph of order n. If |E(G)| ≤ n − 2, then G

can be embedded in its complement G.

The example of the star Sn = K1,n−1 shows that Theorem 1 cannot be improved
by raising the size of G. However, if a tree is not a star then it is embeddable.
This fact was first observed by H.J. Straight (unpublished). The version given
below comes from [8].

Theorem 2. Let T be a non-star tree. Then there exists a cyclic permutation

on V (T ) being an embedding of T .

As an immediate consequence of above theorems we get the following corollary.

Corollary 3. Let F be a non-star forest. Then there exists a cyclic permutation

on V (F ) being an embedding of F .

Let us consider now the problem of the uniqueness. First, we have to precise
what we mean by distinct embeddings.

Let σ be an embedding of the graph G = (V,E). We denote by σ(G) the
graph with the vertex set V and the edge set σ∗(E) where the map σ∗ is induced
by σ. Since, by definition of an embedding, the sets E and σ∗(E) are disjoint we
may form the graph G⊕ σ(G) (called the resulting graph for σ).

Two embeddings σ1, σ2 of a graph G are said to be distinct if the graphs G⊕
σ1(G) and G⊕σ2(G) are not isomorphic. A graph G is called uniquely embeddable

if for all embeddings σ of G, all graphs G⊕ σ(G) are isomorphic. Of course, if a
graph is edgeless, it is uniquely embeddable. So, we shall assume that all graphs
considered in this paper have at least one edge. The next theorem, proved in [9],
characterizes all (n, n− 2) (n ≥ 3) graphs that are uniquely embeddable.

Theorem 4. Let G be a graph of order n, n ≥ 3, and size e(G) = n − 2.
Then either G is not uniquely embeddable or G is isomorphic to one of the seven

following graphs: K2 ∪K1, 2K2, K3 ∪ 2K1, K3 ∪K2 ∪K1, K3 ∪ 2K2, 2K3 ∪ 2K1.

Remark. The formulation of the above theorem in [9] contains a mistake; actu-
ally, the graph G = C4 ∪ 2K1 is not uniquely embeddable.

The problem of the uniqueness was considered ([12]) also in the case of cycles.
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Figure 1. Uniquely embeddable forests.

Theorem 5. Let Cn be a cycle of order n. The cycles C3 and C4 are not em-

beddable. The cycles C5 and C6 are uniquely embeddable. For n ≥ 7 there exist

at least two distinct embeddings of Cn.

The aim of this note is to consider the problem for acyclic graphs. We need some
additional definitions in order to formulate the result. By double star S(p, q) we
mean a tree obtained from two stars Sp+1 and Sq+1 by joining their centers by
an edge. (This edge is called central). A double star S(1, q) will be denoted also
by S′

n (n ≥ 4, n = q + 3). Let us observe that S′

4 = P4, a path of length three.
We have the following characterization of uniquely embeddable forests.

Theorem 6. Let F be a non-star forest of order n having at least one edge. Then

either F is not uniquely embeddable or F is isomorphic to one of the following

graphs: K2 ∪K1, 2K2, 3K2, S(2, 2) or S′

n, for n ≥ 4.
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See Figure 1 where the uniquely embeddable forests F as well as the corresponding
resulting graphs F ⊕ σ(F ) are illustrated. Note, that in the last case, for n = 4,
F = P4 and F ⊕ σ(F ) = K4.

The proof of Theorem 6 is given in the next sections. Section 2 contains the
case of trees, while Section 3 deals with the general case.

Remark. The main references of the paper and of other packing problems are
the following survey papers: [13], [10] or [11].

2. Trees

2.1. Trees of diameter at least five

Let T be a tree. Let us consider first the case where diam(T) ≥ 5. Denote by X

the set of leaves of T (i.e. vertices of degree one in T ). We put T ′ = T −X. Since
the diameter of T is at least five, T ′ is not a star. Therefore, by Theorem 2, T ′ is
embeddable. Moreover, there exists a cyclic packing permutation of T ′. Denote
it by σ′.

We shall consider now two extensions of this permutation to a packing per-
mutation of T . The first one is defined as follows: we put σ1(v) = σ′(v) for
v ∈ V −X, and σ1(v) = v for v ∈ X. Since σ′ has no fixed points, σ is a packing
of T . Let us observe that the graph T ⊕ σ1(F ) has exactly |X| vertices of degree
two; all vertices of V −X have in the graph T ⊕ σ1(T ) degrees at least four.

The permutation σ2 is defined in an analogous way. However, we do not
remove all end-vertices of T but all but one, say x. More precisely, if x is a leaf
of T , we define X ′ as the set of all leaves of T except for x. The permutation σ2
is defined as follows: we put σ2(v) = σ′′(v) for v ∈ V − X ′, and σ2(v) = v for
v ∈ X ′ where σ′′ is a cyclic packing permutation of T ′′ = T −X ′. As above, since
σ′′ has no fixed points, σ2 is a packing of T . This time, the graph T ⊕ σ2(T ) has
exactly |X| − 1 vertices of degree two; all vertices of V − X ′ have in the graph
T ⊕ σ2(T ) degrees at least three.

Hence, the graphs T ⊕ σ1(T ) and T ⊕ σ2(T ) are not isomorphic.

2.2. Trees of diameter four

Consider now the case of trees of diameter four. Denote by aa1cb1b the consecu-
tive vertices of (one of) the longest paths in T . Denote by X the set of all leaves
of T except for a and b.

If X is empty then T is just a path on five vertices. Two different packings
of such a path is given in Figure 2.

If X is not empty then define the tree T ′ by T ′ = T − X. It is easy to see
that the tree T ′ consists of the path joining a and b and (maybe) of some vertices
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Figure 2. Two distinct embeddings of P5.
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Figure 3. A cyclic packing of T ′ (Subsection 2.2).

of degree one (in T ′, but not in T ) connected by an edge to the vertex c. Denote
them (if exist) by c1, . . . , ck.

Since T ′ contains a path on five vertices, T ′ is not a star and by Theorem 2
there is a cyclic packing of T ′. An example of such a cyclic permutation, defined
by σ′ = (acbb1ck . . . c1a1), is given in Figure 3.

Let us observe that both vertices of degree one (in T ) are mapped (by σ′) on
vertices of degree at least two in T . Now, we extend σ′ to a packing permutation
of T in the following way: we put σ1(v) = σ′(v) for v ∈ V − X, and σ1(v) = v

for v ∈ X. As above, since σ′ has no fixed points, σ is a packing of T . Again, let
us observe that the graph T ⊕ σ1(F ) has exactly |X| vertices of degree two; all
vertices of V −X have in the graph T ⊕ σ1(F ) degrees at least three.

The permutation σ2 is defined as follows: We put X ′′ = X ∪ {b}. Then,
T ′′ = T − X ′′ contains a path of length three. Therefore, T ′′ is packable. If σ′′

denotes the cyclic permutation of T ′′ then by σ2 we mean a permutation obtained
from σ′′ by adding fixed points from X ′′. As above, it is easy to see that σ2 is a
packing of T with the graph T ⊕ σ2(T ) having exactly |X|+ 1 vertices of degree
two.

Thus, the packings σ1 and σ2 are distinct.
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2.3. Trees of diameter three

Consider finally the case where T has diameter three. In other words, T is a
double star S(p, q). Denote by a and b two vertices of T = S(p, q) of degree at
least two and by a1, . . . , ap (respectively by b1, . . . , bq) the leaves adjacent to a

(respectively to b). Let us start with the case where p ≥ 2 and q ≥ 2.

First observe that the central edge ab is a total edge in T , i.e. the vertices
a and b are adjacent to all remaining vertices of T . This implies, in particular,
that in a packing the edge ab cannot be mapped on a pair of vertices having a
common neighbour. Therefore, if σ is a packing of T , then the central edge ab

should be mapped onto non-edge of the form {ai, bj} for some i, j. Without loss
of generality, we may assume that σ({a, b}) = {a1, b1}. Next, it is easy to see
that if one of central vertices is mapped on a1, then a leaf adjacent to it should
be mapped on b and if it is mapped on b1, then a leaf adjacent to it should
be mapped on a. In consequence, four vertices {a, b, a1, b1} have to induce K4

in T ⊕ σ(T ). Two of them are of degree p + 2 and two are of degree q + 2 in
T ⊕ σ(T ). The remaining vertices of T ⊕ σ(T ) will be of degree two. So, it is
impossible to distinguish two packings of a double star by considering only the
degree sequences.

The following notion will be useful in the description of the structure of the
graph T ⊕ σ(T ). Let G be a graph and let x ∈ V (G) be a vertex of degree two.
Denote by x1, x2 the neighbours of x. The pair of vertices {x1, x2} is called a
base of x.

We define now two packing permutations for T in the following way:

σ1(a) = a1, σ1(b) = b1, σ1(a1) = b, σ1(b1) = a, σ1(ai) = ai for i ≥ 2,
σ1(bi) = bi for i ≥ 2. It is easy to see that in the graph T ⊕ σ1(T ) there are only
two edges being bases of vertices of degree two: aa1 and bb1.

The second permutation is defined with a supplementary condition that q ≥
3. We put: σ2(a) = a1, σ2(b) = b1, σ2(a1) = b, σ2(b1) = a, σ2(a2) = b2,
σ2(b2) = a2, σ2(ai) = ai for i ≥ 3 (if exists), σ2(bi) = bi for i ≥ 3. The base of a2
(which is of degree two in T ⊕ σ2(T )) is the edge ab1. The base of b2 (which is of
degree two in T ⊕ σ2(T )) is the edge a1b. Finally, the base of b3 (which is also of
degree two in T ⊕ σ2(T )) is the edge bb1. Thus, the set of all bases in T ⊕ σ2(T )
contains at least three edges. We conclude, that the above defined packings are
distinct.

We left to the reader the checking of the fact, that the double star S(2, 2) is
uniquely embeddable.

Examine now the case where T is a double star S(1, q). Let σ be a packing
permutation of T . As above, without loss of generality, we may assume that
σ({a, b}) = {a1, b1}. So, we have two possibilities.

1) σ(a) = a1. Then σ(b) = b1, σ(a1) = b and without loss of generality, we
may assume that σ(b1) = a. Now, the set of all remaining leaves adjacent to b
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have to be mapped on itself. Thus all vertices of degree two in T ⊕σ(T ) are based
on the same edge bb1. In the case q = 1, S(1, q) is just a path on four vertices,
P4. Then, T ⊕ σ(T ) = K4 contains no vertices of degree two.

2) σ(a) = b1. Then σ(b) = a1, σ(a1) = a and without loss of generality, we
may assume that σ(b1) = b. As above, the set of all remaining leaves adjacent
to b have to be mapped on itself. Thus all vertices of degree two in T ⊕ σ(T ) (if
exist) are based on the same edge ba1. In the case q = 1, T ⊕ σ(T ) = K4.

Evidently, in both cases we get isomorphic graphs. This finishes the part of
the proof concerning trees.

3. Forests with Several Components

3.1. Forests with two components

A forest of order n having two components is an (n, n − 2) graph, so, by Theo-
rem 4, only two such forests, K2 ∪ K1 and 2K2, are uniquely embeddable. An
independent proof of this fact can be found in [6].

3.2. Forests with three components

Let F = T1 ∪ T2 ∪ T3 with |T1| ≤ |T2| ≤ |T3|.

Suppose first, that T1 is an isolated vertex. If the forest F ′ = T2∪T3, having
two components, is not uniquely embeddable, then it has at least two distinct
embeddings which can be easily extended to distinct embeddings of F .

If not, then by the previous case, either F ′ = K1 ∪K2 or F ′ = 2K2. In both
cases it is easy to define two distinct packing permutation such that the resulting
graph F ⊕σ(F ) contains either P3 or 2K2, in the first case, or F ⊕σ(F ) contains
either P5 or C4, in the second case, respectively.

So, we can assume that T1 contains at least one edge. Consider first the
case where one of trees Ti, i = 1, 2, 3, is embeddable. Then, we are done if
the remaining part of F is not uniquely embeddable, i.e. is not of the form
K2 ∪ K2. But K2 ∪ K2 is an embeddable forest. So, actually, the only case
where the existence of two distinct packing is not obvious is the case where the
embeddable tree (it should be T3) is uniquely embeddable. In this case, one of
possible resulting graph is evidently the graph having two components, one of
them being a cycle C4 obtained as the result of packing K2 ∪K2 with itself and
second of them being the graph T3 ⊕ σ(T3). Another resulting graph, having
only one component, is now easy to define: we use two independent vertices of
K2∪K2 (one vertex of each K2) to draw the second copy of T3 and two remaining
vertices of K2∪K2 and two (not yet used) vertices of T3 to draw the second copy
of K2 ∪K2.
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So, we are left with the case where all three trees are stars, Sp, Sq, Sr, say, with
1 ≤ p ≤ q ≤ r, p+ q+ r+3 = n. Denote by x0, y0, z0 the central vertices of these
stars, and by x1, y1, z1 one of their leaves, respectively.

The first packing permutation σ1 is defined as follows: σ1(x0) = y0, σ1(y0) =
z0, σ1(z0) = x0 while the leaves of all stars are fixed points. It is easy to see that
the resulting graph F ⊕ σ1(F ) has three vertices of degree p+ q, q + r and r + p

and p+ q + r vertices of degree two.
The second packing permutation σ2 is defined as follows: σ2(x0) = y1,

σ2(y0) = z1, σ2(z0) = x1, σ2(x1) = x0, σ2(y1) = y0, σ2(z1) = z0 while the
remaining leaves of all stars are fixed points. It is easy to see that the resulting
graph F ⊕ σ2(F ) has two vertices of degree p + 1, two vertices of degree q + 1,
two vertices of degree r + 1, and p+ q + r − 3 vertices of degree two.

Therefore, two resulting graphs F ⊕σ1(F ) and F ⊕σ2(F ) can be isomorphic
only in the case where p = q = 1. Then, both of these graphs have two vertices
of degree r + 1 while remaining vertices are of degree two. If r ≥ 2 then two
vertices of maximum degree in F ⊕ σ1(F ), z0 and σ(z0) are independent, while
two vertices of maximum degree in F ⊕ σ2(F ), z0 and σ(z0) are adjacent. Thus,
it is easy to see that the graphs F ⊕ σ1(F ) and F ⊕ σ2(F ) could be isomorphic
only in the case where p = q = r = 1, i.e. F = 3K2.

3.3. Forests with at least four components

Let F = T1 ∪ T2 ∪ · · · ∪ Tk with k ≥ 4 and |T1| ≤ |T2| ≤ · · · ≤ |Tk|. By putting
F1 = T1 ∪ T2 and F2 = T3 ∪ · · · ∪ Tk we get two forests, each of them having
at least two components. Both of them are embeddable. If at least one of them
is not uniquely embeddable, we are done. So, by previous results, k = 4 or 5
and F should be an union of isolated vertices and isolated edges and having, by
assumptions, at least one edge. For such graphs, two distinct embeddings are
easy to define.
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[10] M. Woźniak, Packing of graphs—some recent results and trends , Studies, Math.
Series 16 (2003) 115–120.
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