
Discussiones Mathematicae
Graph Theory 33 (2013) 261–275
doi:10.7151/dmgt.1650

INDEPENDENT DETOUR TRANSVERSALS IN

3-DEFICIENT DIGRAPHS
1

Susan van Aardt, Marietjie Frick

and

Joy Singleton

Department of Mathematical Sciences

University of South Africa

P.O. Box 392, Unisa, 0003, South Africa

e-mail: vaardsa@unisa.ac.za
marietjie.frick@gmail.com
singlje@unisa.ac.za

Abstract

In 1982 Laborde, Payan and Xuong [Independent sets and longest directed

paths in digraphs, in: Graphs and other combinatorial topics (Prague, 1982)
173–177 (Teubner-Texte Math., 59 1983)] conjectured that every digraph
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Discrete Math. 289 (2004) 169–173] showed that the conjecture holds for
digraphs with independence number two. A digraph is p-deficient if its order
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detour transversal. This paper explores the existence of independent detour
transversals in 3-deficient digraphs.
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1. Introduction

Let D be a digraph with vertex set V (D) and arc set A(D). The number of
vertices of D is called its order and denoted by n(D). For any nonempty subset
S of V (D), 〈S〉 denotes the subdigraph of D induced by S. The cardinality of S
is denoted by |S|.

If v is a vertex in a digraph D, we denote the sets of out-neighbours and in-

neighbours of v by N+(v) and N−(v) and the cardinality of these sets by d+(v)
and d−(v), respectively. The neighbourhood of v, denoted by N(v) is defined by
N(v) = N+(v)∪N−(v) and the degree of v inD is defined as d(v) = d+(v)+d−(v).
The closed neighbourhood of v, denoted by N [v] is defined by N [v] = N(v)∪{v}.
If N [v] = V (D), we call v a universal vertex of D. We denote V (D) − N [v] by
No(v).

A directed path (cycle) in a digraph will simply be called a path (cycle). A
path (cycle) of order m is called an m-path (m-cycle). A detour in D is a longest
path in D and the detour order of D, denoted by λ(D), is the order of a detour
in D. Following Galeana-Sánchez and Gómez [8], we denote the sets of initial
and terminal vertices of detours in D by L+(D) and L−(D), respectively. If v is
a vertex in D, then the order of a longest path starting at v is denoted by sD(v)
and the order of a detour ending at v is denoted by eD(v). The detour deficiency
of D is defined as p(D) = n(D) − λ(D). A digraph with detour deficiency p is
called p-deficient. The circumference c(D) of D is the order of a longest cycle in
D.

A digraph D is called traceable if it contains a hamiltonian path (a path con-
taining all vertices of D). A digraph D is hamiltonian if it contains a hamiltonian

cycle (a cycle containing all vertices of D).

A digraph D is strong (or strongly connected) if for every two distinct vertices
x and y of D there is a path from x to y. A maximal strong subdigraph of D
is called a strong component of D. The strong components of D have an acyclic

ordering, i.e. they may be labeled D1, D2, . . . , Dt such that if there is an arc from
Di to Dj , then i ≤ j (cf. [3], p. 17). If X and Y are distinct strong components
in D such that some vertex in X dominates a vertex in Y , then vertices in Y are
said to lie below X and vertices in X are said to lie above Y .

An oriented graph is a digraph that is obtained from a simple graph by
assigning a direction to each edge, i.e. it is a digraph that has no 2-cycles. An
orientation of a complete graph is called a tournament.

An independent set (or stable set) in D is a set of pairwise nonadjacent
vertices. The independence number (or stability number) of D, denoted by α(D),
is the maximum integer k such that D has an independent set of cardinality k.
Suppose S is a set of vertices in a digraph D. Then S is a dominating set of D
if for every x ∈ V (D) − S there is a y ∈ S such that yx ∈ A(D). The set S
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is an absorbant set of D if for every x ∈ V (D) − S there is a y ∈ S such that
xy ∈ A(D).

An independent detour transversal in D, denoted by IDT, is an independent
set that intersects every longest path in D. For undefined concepts we refer the
reader to [3].

In 1982 Laborde, Payan and Xuong [11] conjectured that every digraph has
an IDT. The conjecture (which we refer to as the LPX Conjecture) clearly holds
for every digraph having an independent dominating set or an independent ab-
sorbant set. Richardson [12] proved that every digraph without odd cycles has
an independent dominating set, and consequently the LPX Conjecture holds for
digraphs without odd cycles. In [9] Galeana-Sánchez and Rincón-Mej́ıa presented
a number of sufficient conditions for a digraph to have an IDT.

We note that the LPX Conjecture is a particular case of the Directed Path
Partition Conjecture (DPPC) (see [1]) which states: For every digraph D and
every pair of positive integers λ1 and λ2, such that λ(D) = λ1+λ2, there exists a
partition (V1, V2) of the vertex set V (D) such that λ(〈Vi〉) ≤ λi, for i = 1, 2. Bang-
Jensen, Nielsen and Yeo [4] showed that the DPPC, and consequently the LPX
Conjecture (which is the case of the DPPC where λ1 = 1) holds for special classes
of digraphs which are generalizations of tournaments. In [8] Galeana-Sánchez
and Gómez also showed that line digraphs as well as certain generalizations of
tournaments possess an independent set that intersects every non-augmentable
path and hence every longest path.

In 2004 Havet [10] proved the following result.

Theorem 1 [10]. Every digraph D with independence number at most 2 has an

IDT.

The next result is a direct consequence of Theorem 1.

Corollary 2. If D is a digraph and p(D) ≤ 2, then D has an IDT.

Proof. If α(D) ≤ 2, then according to Theorem 1, D has an IDT.

Now suppose α(D) ≥ 3. Let S be an independent set with 3 vertices. It then
follows that |V (D − S)| = n− 3 < λ(D) and hence S is an IDT of D.

It is therefore natural to consider the existence of IDTs in 3-deficient digraphs.
Obviously, every p-deficient digraph with independence number greater than p
has an IDT. Thus another consequence of Havet’s Theorem is the following.

Corollary 3. If D is a 3-deficient digraph with α(D) 6= 3, then D has an IDT.

In view of Corollary 3, the restriction of the LPX Conjecture to 3-deficient di-
graphs should be considerably easier to settle than the general conjecture.



264 S. van Aardt, M. Frick and J. Singleton

In Section 2 we present some elementary but useful results concerning IDTs in
digraphs, and in Section 3 we present some sufficient conditions for the existence
of IDTs in 3-deficient digraphs. Our main result is that if D is a strong 3-deficient
digraph with circumference at least n(D) − 5, then D has an IDT. However,
proving the LPX Conjecture for 3-deficient digraphs seems more difficult than
expected— even for digraphs of small order. Therefore, in Section 4, we restrict
our attention to 3-deficient oriented graphs. We show that those of order at most
8 have IDTs. We also show that every strong 3-deficient oriented graph of order
at most 10 has an IDT.

2. General Results

We begin this section by stating some results on detours that will be used fre-
quently. First, we have an easy observation.

Observation 4. Suppose D is a digraph and H and F are two subdigraphs of D
such that V (H) ∩ V (F ) = ∅. Let v ∈ V (H) and w ∈ V (F ). If vw ∈ A(D), then
eH(v) + sF (w) ≤ λ(D).

The following two lemmas are direct consequences of this observation.

Lemma 5 (The Lollipop Lemma [5]). Let C be a cycle in a digraph D and let

P = v1v2 . . . vp be a path in D− V (C). If v1 has an in-neighbour on C or vp has

an out-neighbour on C, then λ(D) ≥ n(C) + n(P ).

Lemma 6. Suppose D is a digraph and w ∈ V (D). If D − {w} has a detour

P = v1 . . . vivi+1 . . . vλ of D, then

(i) w /∈ N−(v1),

(ii) w /∈ N+(vλ),

(iii) w /∈ N+(vi) ∩N−(vi+1).

Corollary 7. Suppose D is a digraph with a detour P . If x /∈ V (P ), then

No
P (x) 6= ∅.

It is a well known fact that every semi-complete digraph (i.e. every digraph with
independence number 1) is traceable. Chen and Manalastas [7] extended this
result as follows.

Theorem 8 [7]. Every strong digraph with independence number at most 2 is

traceable.

The following extension of Theorem 8 is given in [2].
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Theorem 9 [2]. If D is a connected digraph with at most two strong components

and α(D) ≤ 2, then D is traceable.

Next we present some elementary but useful sufficient conditions for the existence
of IDTs in digraphs. The first result follows from Corollary 7.

Lemma 10. Suppose I is an independent set in a digraph D. If N(w) = V (D)−I
for some w ∈ I, then I is an IDT of D. In particular, if D has a universal vertex

x, then {x} is an IDT of D.

Lemma 11. Let D be a p-deficient digraph and suppose I is an independent set

in D with p vertices. If there is an x ∈ V (D) − I such that ∅ 6= N−(x) ⊆ I or

∅ 6= N+(x) ⊆ I, then I is an IDT of D.

Proof. Suppose that I is not an IDT of D. Then the subdigraph D − I has a
hamiltonian path P . If v is not the initial vertex of P , then v has an in-neighbour
on P , so N−(v) 6⊆ I. If v is the initial vertex of P , then v has no in-neighbour in
I, so either N−(v) = ∅ or N−(v) 6⊆ I. A similar argument holds with respect to
out-neighbours of vertices on P .

For digraphs that are not strong we need the following results.

Lemma 12. For any digraph D the following hold.

(i) Suppose x and y are two vertices in different strong components of D that

are both in L+(D) (or both in L−(D)). Then x and y are nonadjacent.

(ii) Suppose D has a hamiltonian strong component X and P is a detour of D
that starts in X. Then V (X) ⊆ V (P ).

Proof. (i) Suppose x, y ∈ L+(D) and xy ∈ A(D). Let P be a detour of D with
y as initial vertex. If x and y are in different strong components of D, then x lies
above y, so P does not contain x and hence xP is a path of order greater than
λ(D).

(ii) Let P ′ be the subpath of P contained in X and let z be the terminal
vertex of P ′. Since X has a hamiltonian cycle, z is the terminal vertex of a
hamiltonian path Q of X. If V (X) 6⊆ V (P ′), then a path with more vertices than
P is obtained by replacing P ′ with Q.

In [1] it is shown that a digraph D for which 〈L+(D)〉 has an independent domi-
nating set (〈L−(D)〉 has an independent absorbant set), has an IDT. Combining
this result with that of Richardson [12] mentioned in Section 1 we have the fol-
lowing.

Lemma 13. Suppose D is a digraph. If 〈L+(D)〉 or 〈L−(D)〉 contains no odd

cycles, then D has an IDT.
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We now prove the following more general result.

Lemma 14. A digraph D has an IDT if D satisfies one of the following.

(i) If X is a strong component of D that contains a vertex of L+(D), then X is

hamiltonian or 〈L+(D) ∩ V (X)〉 has an independent dominating set.

(ii) If X is a strong component of D that contains a vertex of L−(D), then X is

hamiltonian or 〈L−(D) ∩ V (X)〉 has an independent absorbant set.

Proof. If D satisfies (i), we construct a subset S of L+(D) as follows.
Consider every strong component X of D that contains vertices of L+(D).

If X is hamiltonian, put exactly one vertex of V (X) ∩ L+(D) into S. If X is
nonhamiltonian, then put all the vertices in an independent dominating set of
〈L+(D) ∩ V (X)〉 into S. By Observation 12(i), S is an independent set.

Let λ be the detour order of D. If S is not an IDT of D, let P be a λ-path
in D − S with initial vertex a and let X be the strong component containing a.
If X is hamiltonian then Lemma 12(ii) implies that V (X) ⊆ V (P ). However,
V (X) 6⊆ V (D − S), since S contains a vertex of X. Thus X is nonhamiltonian
and hence S contains an independent dominating set of 〈L+(D) ∩ V (X)〉. But
then a is dominated by a vertex s in S, so sP is a path of order λ + 1. This
contradiction proves that S is an IDT of D.

If D satisfies (ii), we use a symmetric argument to construct an IDT of D
that is contained in L−(D).

Corollary 15. If D is a digraph that has no IDT, then D contains a nonhamil-

tonian strong component X such that 〈L+(D) ∩ V (X)〉 has an odd cycle and a

nonhamiltonian strong component Y such that 〈L−(D)∩V (Y )〉 has an odd cycle

(X and Y may be the same component).

3. IDTs in 3-deficient Digraphs

We now focus our attention on 3-deficient digraphs and present some sufficient
conditions for such digraphs to have IDTs.

Lemma 16. Let D be a 3-deficient digraph and suppose x and y are two nonad-

jacent vertices of D. Then an independent set I of D is an IDT of D if one of

the following holds.

(i) d+(x) ≥ 1, d+(y) ≥ 1 and N+(x) ∪N+(y) ⊆ I,

(ii) d−(x) ≥ 1, d−(y) ≥ 1 and N−(x) ∪N−(y) ⊆ I,

(iii) d−(x) ≥ 1, d+(y) ≥ 1 and N−(x) ∪N+(y) ⊆ I.

Proof. We prove (i). The proofs of (ii) and (iii) are similar. If |I| ≥ 4, then I
is an IDT of D since λ(D − I) ≤ n(D − I) ≤ n − 4 < λ(D). If |I| = 3, then
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Lemma 11 implies that I is an IDT of D. Now suppose |I| = 1, say I = {w}. If
w is a universal vertex of D, then I is an IDT of D by Lemma 10. If w is not
a universal vertex of D, let z ∈ No(w). Then {w, z} is an independent set and
N+(x) ∪N+(y) ⊆ {w, z}. Thus we need only consider the case where |I| = 2.

Suppose I is not an IDT of D. Then D − I contains a λ-path P . Since
n(D − I) = λ(D) + 1, at least one of x and y, say x, is in P . But x has no
out-neighbours in D − I, so x is the terminal vertex of P . However, by our
assumption, x has an out-neighbour, say z, in I and hence Pz is a (λ+ 1)-path
in D.

Lemma 17. Suppose D is a strong 3-deficient digraph of order n. Then D has

an IDT if |No(w)| ≤ 2 for some vertex w ∈ V (D).

Proof. The case |No(w)| = 0 follows immediately from Lemma 10.
Suppose |No(w)| = 1. Then there exists a vertex x ∈ V (D) such that

I = {x,w} is an independent set. Then, according to Lemma 10, I is an IDT of
D.

Suppose |No(w)| = 2. Then there exist vertices x, y ∈ V (D) such that x, y /∈
N(w). If x and y are nonadjacent, then according to Lemma 10, I = {x, y, w}
is an IDT of D. Now suppose xy ∈ A(D) and that D does not have an IDT.
Let U = 〈N−(w)〉 and Z = 〈N(w) − N−(w)〉. We first observe the following.
Suppose P = v1v2 . . . vλ is a λ-path in D − {x,w} or in D − {y, w}. If vi ∈ U ,
then vi+1 /∈ Z, otherwise v1 . . . viwvi+1 . . . vλ is a (λ+1)-path in D. Also v1 /∈ Z,
otherwise wP is a (λ+1)-path in D and vλ /∈ U , otherwise Pw is a (λ+1)-path.

Suppose V (Z) = ∅. Then D−{y, w} has a λ-path which ends at x. But then
Py is a (λ+1)-path in D. Thus we may assume V (Z) 6= ∅. Then D−{x,w} has
a λ-path P = PuyPz, where Pu and Pz are paths in U and Z, respectively and
where Pz can be ∅. Also D − {y, w} has a λ-path Q = QuxQz, where Qu and
Qz are paths in U and Z, respectively and Qz 6= ∅. If |V (Pu)| = |V (Qu)|, then
QuxyPz is a (λ + 1)-path in D. On the other hand, if |V (Pu)| > |V (Qu)|, then
PuwQz is a (λ+ 1)-path in D. Similarly if |V (Pu)| < |V (Qu)|, then QuwPz is a
(λ+ 1)-path in D.

We now show that the LPX Conjecture holds for strong 3-deficient digraphs with
circumference at least n− 5.

Theorem 18. Let D be a strong 3-deficient digraph. If c(D) ≥ n − 5, then D
has an IDT.

Proof. Assume that D does not have an IDT. By Lemma 5 and since λ(D) =
n − 3 and α(D) = 3 it follows that c(D) ≤ n − 5. Now suppose c(D) = n − 5.
Let C = v1v2 . . . vn−5v1 be a circumference cycle in D and let X = D − V (C).

Suppose X contains a cycle CX of order greater than 2. Then since D is
strong there is an arc or a path from a vertex on C to a vertex on CX . But then
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by Lemma 5, λ(D) ≥ n(C) + n(CX) ≥ n− 5 + 3 = n− 2. Hence X contains no
cycle of order greater than 2.

First we show that λ(X) ≤ 2. Assume λ(X) ≥ 3 and let P = x1x2 . . . xλ be a
detour of X. Since D is strong there is an xi − xi−1 path in D for i ∈ {2, . . . , λ}.
But since n(CX) ≤ 2 for any cycle CX in X and sX(xi) ≥ 3, i = 1, . . . , λ − 2
and eX(xi) ≥ 3, i = 3, . . . , λ, it follows from Lemma 5 that xixi−1 ∈ A(D) for
i = 2, . . . , λ. Then clearly, since there are no cycles of order greater than 2 in X
and λ(X) ≥ 3, x1 and xλ are nonadjacent. We now choose a vertex y ∈ V (X)
such that y = x3 if λ(X) = 5, and y ∈ V (X) − V (P ) if λ(X) < 5 and let
Y = {x1, xλ, y}. Then Y is an independent set and since no vertex on C is a
neighbour of x1 or xλ and α(D) = 3, it follows that V (C) ⊆ N(y). But, since C
is a longest cycle in D, no successor of an in-neighbour of y is an out-neighbour
of y; hence V (C) is either contained in N−(y) or in N+(y). By symmetry, we
may assume that V (C) ⊆ N−(y). But then it follows from Lemma 5 and the
fact that sX(x3) ≥ 3 that y 6= x3 (i.e. λ(X) < 5 and y ∈ V (X) − V (P )). Then
sX(xi) ≥ 2 for every xi ∈ V (P ). Also, since D is strong there is a y − xi path in
D. But again from Lemma 5 we have a contradiction.

Thus λ(X) ≤ 2. But since α(D) = 3, λ(X) ≥ 2 and therefore λ(X) = 2.
It is also easy to see that since α(D) = 3 and λ(X) = 2, there is at most one
component of X of order 1.

First suppose every component of X has order at least two. Then we may as-
sume w.l.o.g. that V (X) = {u1, u2, u3, w1, w2} and {u1w1, u3w1, u2w2} ⊆ A(X).
Let U = {u1, u2, u3} and W = {w1, w2}. Then U ⊆ L+(X) and W ⊆ L−(X),
and both U and W are independent sets. Moreover, since λ(X) = 2, u1 has
no in-neighbours in X and hence, since D is strong, there exists a vi ∈ V (C)
such that vi ∈ N−(u1). But then vi+1 ∈ L+(D). Since U is an independent set
of cardinality 3, vi+1 has a neighbour in U . If vi+1 has an in-neighbour in U ,
then either we get an (n− 4)-cycle (if u1vi+1 ∈ A(D)), or if say u2vi+1 ∈ A(D),
then u2vi+1vi+2 . . . viu1w1 is an (n − 2)-path. Hence, vi+1 ∈ N−(U) and again
vi+2 ∈ L+(D). Continuing this argument it follows that V (C) ⊆ N−(U). But
then no vertex of V (C) is in N+(W ) otherwise we either get a cycle of order
greater than c(D) or a path of order greater than λ(D). Hence N+(w1) = ∅ and
therefore D is not strong.

Hence exactly one component of X has order 1. Let x be the vertex of this
component. Then X − x contains two vertex disjoint paths u1w1 and u2w2. Let
U = {u1, u2} and W = {w1, w2}. Since λ(X) = 2 it follows that U ∪ {x} and
W ∪ {x} are independent sets. We now prove the following two claims.

Claim 1. Each of u1 and u2 has an in-neighbour on C and each of w1 and w2

has an out-neighbour on C.

Proof. Suppose N−(ui)∩V (C) = ∅ for some ui ∈ U . Then N−(ui) ⊂ (W ∪{x})
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and by Lemma 11, D has an IDT. Similarly, if N+(wi) ∩ V (C) = ∅ for some
wi ∈ W , then N+(wi) ⊂ (U∪{x}) and again by Lemma 11 we get a contradiction.
This proves Claim 1.

Claim 2. There exist distinct vertices vk and vℓ on C such that vk ∈ N−(U) and
vℓ ∈ N+(W ).

Proof. Now suppose |N−
V (C)(U) ∪N+

V (C)(W )| = 1 and suppose vk ∈ V (C) such

that {vk} = N−
V (C)(U) ∪ N+

V (C)(W ). By Lemma 10 there exists a vertex y ∈

No(vk). Now let I = {vk, y} and let P be an (n − 3)-path in D − I. Then P
contains at least one vertex in U . Suppose ui ∈ V (P ) for some i ∈ {1, 2}. Then
ui is not an initial vertex of P otherwise vkP is (λ + 1)-path in D. Since vk is
the only in-neighbour of ui on V (C), and wi the only possible in-neighbour of ui
in X, wiui is a subpath of P . But then replacing this subpath of P with wivkui
we get a (λ+ 1)-path in D. This proves Claim 2.

Now, by relabeling the vertices of C if necessary, we may choose k and ℓ such
that 1 ≤ k < ℓ ≤ n − 5 and vk ∈ N−(U), vℓ ∈ N+(W ) and vi /∈ N−(U) and
vi /∈ N+(W ), for i = k + 1, . . . , ℓ− 1. We may assume w.lo.g. that vk ∈ N−(u1).
Then the path vk+1 . . . vn−5v1 . . . vku1w1 has order n− 3. Hence, if u2, w2 or x is
an in-neighbour of vk+1, then D has an (n− 2)-path or an (n− 1)-path, and if u1
or w1 is an in-neighbour of vk+1, then D has an (n− 4)-cycle or an (n− 3)-cycle.
These contradictions show that vk+1 has no in-neighbours in X. This implies that
vk+1 has an out-neighbour in the independent set U ∪ {x}. But, by our choice
of ℓ and k, neither u1 nor u2 is an out-neighbour of vk+1, so x ∈ N+(vk+1). A
similar argument shows that x ∈ N−(vℓ−1). But no successor of an in-neighbour
of x on C is an out-neighbour of x (otherwise D has a cycle of order n − 4),
so ℓ ≥ k + 4 and there exist r, s ∈ {k + 1, . . . , ℓ − 1} with s ≥ r + 2 such that
vr ∈ N−(x), vs ∈ N+(x) and vi ∈ No(x) for i = r + 1, . . . , s − 1. But vr+1 has
a neighbour in the independent set U ∪ {x}, so vr+1 is an out-neighbour of ui,
with i = 1 or 2. Similarly, vs−1 is an in-neighbour of wj , with j = 1 or 2. Now

Ĉ = xvsvs+1 . . . vr−1vrx is a cycle of order (n−5)−(s−r−1)+1 = n−(s−r+3)
and uivr+1 . . . vs−1wj is a path of order (s− 1)− (r+1)+ 1+2 = s− r+1. But,

by Claim 1 and the choice of k and ℓ, ui has an in-neighbour on Ĉ and hence, by
Lemma 5, λ(D) ≥ n − (s − r + 3) + (s − r + 1) = n − 2, contradicting the fact
that λ(D) = n− 3.

As a corollary of Theorem 18, we have the following sufficient condition.

Corollary 19. Suppose D is a strong 3-deficient digraph. If x ∈ V (D) such that

d(x) ≤ 3 and x does not lie in an independent set of cardinality 3, then D has an

IDT.
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Proof. By our assumption on x, the subdigraph 〈No(x)〉 has order at least n−4
and contains a spanning tournament. If 〈No(x)〉 is strong, then it is hamiltonian
and hence c(D) ≥ n− 4. But then according to Theorem 18, D has an IDT.

Now suppose 〈No(x)〉 is not strong. Then, since D is strong, some vertex
a in the first component of 〈No(x)〉 has an in-neighbour u in N(x) and some
vertex z in its last component has an out-neighbour w in N(x). Since 〈No(x)〉
contains a spanning tournament, it is traceable and each of its non-trivial strong
components is hamiltonian, so it has a hamiltonian path P with a as initial vertex
and z as terminal vertex. Hence u = w; otherwise uPw is an (n− 2)-path. But
then c(D) ≥ n− 3, so again D has an IDT.

4. IDTs in 3-deficient Oriented Graphs of Small Order

We require the following two lemmas in order to prove that a strong 3-deficient
oriented graph of order at most 10 has an IDT.

Lemma 20. Let D be a strong 3-deficient oriented graph which does not have

an IDT. Let U = {u1, u2, u3} be an independent set in D and P = v1v2 . . . vλ
be an (n − 3)-path in D − U . If vt ∈ N−(v1) for some t ∈ {3, . . . , λ − 3}, then
vt+1 /∈ N+(vλ).

Proof. Suppose vt∈ N−(v1) and vt+1∈ N+(vλ). Let C
1 be the cycle v1v2 . . . vtv1

and C2 be the cycle vt+1vt+2 . . . vλvt+1. If a vertex u in U has an in-neighbour in
one of these two cycles, then u cannot have an out-neighbour in the other one;
otherwise D would have a (λ+1)-path, by Lemma 5. Hence N(u) is contained in
exactly one of the sets V (C1) and V (C2). But, since α(D) = 3, every vertex on P
is adjacent to a vertex in U . Thus we may assume w.l.o.g. that N(u1)∪N(u2) =
V (C1) and N(u3) = V (C2). Then, by Lemma 6(ii), vλ ∈ N+(u3). But then it
follows from Lemma 6 that u3 has no in-neighbour, which contradicts that D is
strong.

Lemma 21. Suppose D is a strong 3-deficient oriented graph of order n. Then

D has an IDT if one of the following holds:

(i) ∆(D) ≥ n− 3.

(ii) D has an independent set {x,w, z} such that d(w) = n − 4 and d−(w) ≤ 3
or d+(w) ≤ 3.

Proof. (i) This follows from Lemma 17.

(ii) Suppose {x,w, z} is an independent set in D such that d(w) = n − 4
and d−(w) ≤ 3 or d+(w) ≤ 3. Assume that D does not have an IDT. Then
D − {x,w, z} has a hamiltonian path P = v1v2 . . . vλ. Since d(w) = n − 4,
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there is exactly one vertex vt on P that is not in N(w) and, by Lemma 6(iii),
{v1, . . . vt−1} = N−(w) and {vt+1, . . . , vλ} = N+(w).

Now vi ∈ N−(v1) for some i ∈ {3, . . . , λ − 3}. If i ≥ t, then the path
v2v3 . . . viv1wvi+1 . . . vλ has order λ+1. Thus i ≤ t−1, i.e. v1 has an in-neighbour
in {v3, . . . , vt−1}. Similarly, vλ has an out-neighbour in {vt+1, . . . , vλ−2}. Hence
both d−(w) and d+(w) are at least 3 and one of them equals 3.

Now suppose d−(w) = 3. Then t = 4 and v3 ∈ N−(v1). Then each of
the vertices v1, v2, v3 is an initial vertex of a λ-path in D − {v4, x, z}. Thus
{v1, v2, v3, w} has no in-neighbours in {v4, x, z}.

Also, if i ≥ 4, then vi /∈ N−({v1, v2, v3, w}), otherwise the path v4 . . . viQw
vi+1 . . . vλ, whereQ is a 3-path in the cycle v1v2v3v1, has order λ+1. Consequently
{v1, v2, v3, w} has no in-neighbours in D−{v1, v2, v3, w}. Hence D is not strong,
a contradiction.

Similarly, d+(w) = 3 leads to a contradiction.
Thus D has an IDT.

Theorem 22. Suppose D is a strong 3-deficient oriented graph of order n ≤ 10.
Then D has an IDT.

Proof. Assume D does not have an IDT. Let U = {u1, u2, u3} ⊂ V (D) be an
independent set. Then D − U contains an (n − 3)-path and P = v1v2 . . . vn−3.
Since D is strong it follows from Lemma 6 that N−(v1)∩V (P ) 6= ∅ and N+(vλ)∩
V (P ) 6= ∅. It follows easily from Theorem 18 that we need only consider n ≥ 9.

For n = 9 and λ(D) = 6, it follows from Theorem 18 and Lemma 20 that
N−(v1) ∩ V (P ) = ∅ and N+(v6) ∩ V (P ) = ∅.

We now consider n = 10 and λ(D) = 7, and note, from Lemma 21, that
∆(D) ≤ 6. It follows from symmetry, Theorem 18 and Lemma 20 that we
need only consider the cases where v3 ∈ N−(v1) and v5 ∈ N+(v7); and where
v4 ∈ N−(v1) ∩N+(v7).

Case 1. v3 ∈ N−(v1) and v5 ∈ N+(v7). We first prove that N+
U (v1) ∩

N−
U (v7) = ∅. Suppose u1 ∈ N+

U (v1) ∩N−
U (v7). Then u1 and v4 are nonadjacent,

since if u1 ∈ N−(v4), then v2v3v1u1v4v5v6v7 is an 8-path and if u1 ∈ N+(v4),
then v1v2v3v4u1v7v5v6 is an 8-path. W.l.o.g. we assume u2 is adjacent with v4.
Suppose v4 ∈ N+(u2). By Lemma 6, v3, v7 /∈ N−(u2). Also v1, v2 /∈ N−(u2);
otherwise v2v3v1u2v4v5v6v7 or v3v1v2u2v4v5v6v7 would be an 8-path in D. Also,
v5, v6 /∈ N−(u2); otherwise D would contain v2v3v1u1v7v5(v6)u2v4, which has
order greater than 7. Hence N−(u2) = ∅ which contradicts the fact that D is
strong. The case v4 ∈ N−(u2) is similar.

Assume that u1 ∈ N+(v1) and u3 ∈ N−(v7). We first show that v4 is
nonadjacent with both u1 and u3. Suppose v4 ∈ N−(u1) (by symmetry we need
only consider this case). Let H = 〈{v1, . . . , v4, u1}〉 and F = 〈{v5, v6, v7, u3}〉.
Since eH(u1) = 5 and sF (vi) ≥ 3 for vi ∈ V (F ), it follows from Observation 4
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and Lemma 6 that N+(u1) = {v3}. Since sF (u3) = 4 and eH(vi) < 4 only if
i = 3, v3 is the only possible in-neighbour of u3 in H. Hence by Lemma 16(iii),
v5 ∈ N−(u3). Now v2 and u1 are nonadjacent and v6 and u3 are nonadjacent.
Also since sH(v2) ≥ 4, eH(v2) = 5 and sF (u3) = eF (u3) = 4, v2 and u3 are
nonadjacent. Also sH(u1) ≥ 4, eH(u1) = 5 and sF (v6) = eF (v6) = 4, and thus
u1 and v6 are nonadjacent. This implies that v2 and v6 are both adjacent with
u2 and that they are either both in- or out- neighbours of u2. Either case leads
to a contradiction.

Hence v4 is nonadjacent with u1 and u3 and therefore v4 ∈ N(u2). First
suppose v4 ∈ N−(u2). Let H = 〈{v1, . . . , v4, u1, u2}〉 and F = 〈{v5, v6, v7, u3}〉.
We have N+(u2) ⊆ {v2, v3} and therefore eH(u1) ≥ 5. Hence N+(u1) = {v3} and
by Lemma 16(i), v2 ∈ N+(u2). Now sH(u1) ≥ 5, eH(u1) = 6, sH(u2) ≥ 5 and
eH(u2) ≥ 5, and hence by Observation 4, u1 and u2 are nonadjacent with both
v5 and v6. Hence {u1, u2, v5} is independent and thus according to Lemma 11,
v7 needs an out-neighbour in D−{u1, u2, v5}. But according to Theorem 18 and
Lemma 20 this is impossible. The case v4 ∈ N+(u2) is similar.

Case 2. v4 ∈ N−(v1)∩N+(v7). Suppose v4 is nonadjacent with two of u1, u2
and u3, say u1 and u2. Then {u1, u2, v4} is independent and thus according
to Lemma 11, v1 needs an in-neighbour and v7 needs an out-neighbour in D −
{u1, u2, v4}. But then, according to Theorem 18 and Lemmas 6 and 20, the only
possibility is that v3 ∈ N−(v1) and v5 ∈ N+(v7), so we have Case 1.

We may thus assume u1, u2 ∈ N(v4). Then d(v4) = 6. Hence, according to
Lemma 21, {v2, v4, v6} cannot be independent and consequently v2 and v6 are
adjacent. From Theorem 18 it follows that v2 ∈ N−(v6). But then v2v6v7v4v1v2
is a 5-cycle which contradicts Theorem 18.

If we now relax the condition that a 3-deficient oriented graph need be strong
then we have the following result.

Theorem 23. If D is a 3-deficient oriented graph of order at most 8, then D
has an IDT.

Proof. If D is disconnected, D obviously has an IDT, since any component X
of D either contains no detour of D or X is at most 2-deficient. If D is strong,
then D has an IDT by Theorem 22. Thus we assume that D is connected but D
has more than one strong component.

Suppose D has no IDT. Then, according to Corollary 15, D has nonhamil-
tonian strong components X and Y such that 〈L+(D) ∩ V (X)〉 contains an odd
cycle A and 〈L−(D)∩ V (Y )〉 contains an odd cycle Z. Since D is connected and
λ(D) ≤ 5, both A and Z have fewer than 5 vertices, so they are both 3-cycles.
Hence, by Lemma 5, n = 7 or 8 and A and Z are not vertex disjoint. Thus A and
Z are contained in the same strong component X of D. Let A = a1a2a3a1 and
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Z = z1z2z3z1. Then, by Lemma 2.3 (i) and (ii), no vertex above X is adjacent
to any vertex in A and no vertex in Z is adjacent to any vertex below X and
therefore |X| ≥ 4. W.l.o.g. we may also assume that D has a vertex, say v,
that lies above X in D and that v has an out-neighbour in X − V (A) (since a
symmetric argument holds when v lies below X and v has an in-neighbour in
X − V (Z)). We note the following obvious, but useful observations, the first of
which is due to Lemma 5.

Observation 1. Since X is strong, there is a path from every vertex in X−V (A)
to a vertex in A. Hence, by Lemma 5, every path in D − V (A) that ends in X
has order at most λ(D) − 3. Similarly every path in D − V (Z) that starts in
X has order at most λ(D) − 3 and consequently no detour in D contains two
consecutive vertices in D − V (X).

Observation 1 immediately implies that λ(D) = 5 and also the following.

Observation 2. N+
X (v) is independent and no 5-path in D−N+

X (v) contains v.
Hence N+

X (v) is an independent set of order at most 2 in X.

Case 1. n(X) = 4. Let V (X) − V (A) = {x}. Since X is strong but not
hamiltonian, we may assume w.l.o.g. that a1 ∈ No(x), a2 ∈ N+(x) and a3 ∈
N−(x). Now x is the only vertex in X that can be an out-neighbour of any
vertex above X, and hence a1 is the only vertex in X that can be the terminal
vertex of a 5-path of D, contradicting that Z ⊆ 〈V (X) ∩ L−(D)〉.

Case 2. n(X) = 5. Let V (X) − V (A) = {x, y} and let x ∈ N+
X (v). Since

λ(D) = 5, the digraph 〈V (X)∪{v}〉 is nontraceable and hence Theorem 9 implies
that 〈V (X)∪{v}〉 has an independent set I with |I| = 3. By Observation 2, x /∈ I
and we may therefore w.l.o.g. assume that I = {v, y, a1}. Now let P be a 5-path
in D − I. Let Q be the subpath of P that intersects X. Then by Observation 1,
P = uQw where u and w are vertices that lie above and belowX respectively. But
then u and v are nonadjacent and ux ∈ A(D). By Observation 1, N+

X (u)∪N+
X (v)

is contained in an independent set and again by Observation 1 and Lemma 16
(i), we get a contradiction.

Case 3. n(X) = 6. Since λ(X) ≤ 5, X is nontraceable. Thus, it follows
from Theorem 8 that α(X) = 3. Let U be an independent set of cardinality 3
in X. Since α(D) = 3 we may assume v is adjacent to some vertex u ∈ U and
therefore it follows from Observation 2 that u is not the only out-neighbour of
v in X and therefore d+X(v) = 2. Now let V (X) = {a1, a2, a3, u, w, x} and let
N+

X (v) = {u,w}. We also note by Lemma 5 that the graph induced by V (A)
together with any other vertex in X − V (A) cannot contain a 4-cycle.

Since u and w do not lie in an independent set of cardinality 3 in X, we may
assume w.l.o.g. that x and w are adjacent and that U = {u, x, a3}, and therefore
a3 and w are adjacent. Hence, since D is strong, NX(u) = {a1, a2} and since
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〈V (A) ∪ {u}〉 is not a 4-cycle, a2u, ua1 ∈ A(D). Then wa3 /∈ A(D) otherwise
vwa3a1a2u is a 6-path in D. But if a3w ∈ A(D), then vua1a2a3w is a 6-path in
D.

Case 4. n(X) = 7. By a similar argument as that in the previous case, we may
assume N+(v) = {u,w} where u and w are nonadjacent. Now let P = v1v2v3v4v5
be a 5-path in D − {u,w}. Then v is not on P and by Lemma 5, 〈V (P )〉 does
not contain a cycle of order greater than 3. Hence, since X is strong, v3v1, v5v3 ∈
A(D). Also, by Observation 2, every vertex on P is adjacent with at least one
vertex in {u,w}. We may therefore w.l.o.g. assume that v1u ∈ A(D). Now since
e〈P 〉(v2) = 5, v2 /∈ N−(u) ∪N−(w) and since s〈P 〉(v2) ≥ 4, v2 /∈ N+(u) ∪N+(w).
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mann, Traceability of k-traceable oriented graphs , Discrete Math. 310 (2010) 1325–
1333.
doi:10.1016/j.disc.2009.12.022

[3] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications
(Springer-Verlag, London, 2001).

[4] J. Bang-Jensen, M.H. Nielsen and A. Yeo, Longest path partitions in generalizations

of tournaments , Discrete Math. 306 (2006) 1830–1839.
doi:10.1016/j.disc.2006.03.063

[5] J.A. Bondy, Basic graph theory: Paths and circuits , in: Handbook of Combinatorics,
R.L. Graham, M. Grötschel and L. Lovász (Ed(s)), (The MIT Press, Cambridge,
MA, 1995) Vol I, p. 20.

[6] P. Camion, Chemins et circuits hamiltoniens des graphes complets , C.R. Acad. Sci.
Paris 249 (1959) 2151–2152.

[7] C.C. Chen and P. Manalastas Jr., Every finite strongly connected digraph of stability

2 has a Hamiltonian path, Discrete Math. 44 (1983) 243–250.
doi:10.1016/0012-365X(83)90188-7
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