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Abstract

Let D be a digraph, V (D) and A(D) will denote the sets of vertices and
arcs of D, respectively. A digraph D is transitive if for every three distinct
vertices u, v, w ∈ V (D), (u, v), (v, w) ∈ A(D) implies that (u,w) ∈ A(D).
This concept can be generalized as follows: A digraph is k-transitive if for
every u, v ∈ V (D), the existence of a uv-directed path of length k in D
implies that (u, v) ∈ A(D). A very useful structural characterization of
transitive digraphs has been known for a long time, and recently, 3-transitive
digraphs have been characterized.

In this work, some general structural results are proved for k-transitive
digraphs with arbitrary k ≥ 2. Some of this results are used to characterize
the family of 4-transitive digraphs. Also some of the general results remain
valid for k-quasi-transitive digraphs considering an additional hypothesis. A
conjecture on a structural property of k-transitive digraphs is proposed.

Keywords: digraph, transitive digraph, quasi-transitive digraph, 4-transitive
digraph, k-transitive digraph, k-quasi-transitive digraph.
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1. Introduction

In this work, D = (V (D), A(D)) will denote a finite digraph without loops or
multiple arcs in the same direction, with vertex set V (D) and arc set A(D). For
general concepts and notations we refer the reader to [1], [3] and [6], particularly
we will use the notation of [6] for walks, ifW = (x0, x1, . . . , xn) is a walk and i < j
then xiWxj will denote the subwalk (xi, xi+1, . . . , xj−1, xj) of W . Union of walks
will be denoted by concatenation or with ∪. For a vertex v ∈ V (D), we define the
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out-neighborhood of v in D as the set N+
D (v) =

{

u ∈ V (D)
∣

∣(v, u) ∈ A(D)
}

; when
there is no possibility of confusion we will omit the subscript D. The elements
of N+(v) are called the out-neighbors of v, and the out-degree of v, d+D(v), is the
number of out-neighbors of v. Definitions of in-neighborhood, in-neighbors and
in-degree of v are analogously given. We say that a vertex u reaches a vertex v in
D if a directed uv-directed path (a path with initial vertex u and terminal vertex
v) exists in D. An arc (u, v) ∈ A(D) is called asymmetrical (resp. symmetrical)
if (v, u) /∈ A(D) (resp. (v, u) ∈ A(D)).

If D is a digraph and X,Y ⊆ V (D), then an XY -arc is an arc with initial
vertex in X and terminal vertex in Y . If X ∩ Y = ∅, then X → Y will denote
that (x, y) ∈ A(D) for every x ∈ X and y ∈ Y . Again, if X and Y are disjoint,
then X ⇒ Y will denote that there are not Y X-arcs in D. When X → Y and
X ⇒ Y , we will simply write X 7→ Y . If D1, D2 are subdigraphs of D, we will
abuse notation to write D1 → D2 or D1D2-arc, instead of V (D1) → V (D2) or
V (D1)V (D2)-arc, respectively. Also, if X = {v}, we will abuse notation to write
v → Y or vY -arc instead of {v} → Y or {v}Y -arc, respectively. Analogously, if
Y = {v}.

A digraph is strongly connected (or strong) if for every u, v ∈ V (D), there
exists a uv-directed path, i.e., a directed path with initial vertex u and terminal
vertex v. A strong component (or component) of D is a maximal strong subdi-
graph of D. The condensation of D is the digraph D⋆ with V (D⋆) equal to the
set of all strong components of D, and (S, T ) ∈ A(D⋆) if and only if there is
an ST -arc in D. Clearly D⋆ is an acyclic digraph (a digraph without directed
cycles), and thus, it has both vertices of out-degree equal to zero and vertices of
in-degree equal to zero. A terminal component of D is a strong component T of
D such that d+D⋆(T ) = 0. An initial component of D is a strong component S of
D such that d−D⋆(S) = 0.

A biorientation of the graph G is a digraph D obtained from G by replacing
each edge {x, y} ∈ E(G) by either the arc (x, y) or the arc (y, x) or the pair of
arcs (x, y) and (y, x). A semicomplete digraph is a biorientation of a complete
graph. An orientation of a graph G is an asymmetrical biorientation of G; thus,
an oriented graph is an asymmetrical digraph. A tournament is an orientation
of a complete graph. An orientation of a digraph D is a maximal asymmetrical

subdigraph of D. The complete orientation of a graph G is the digraph
←→
G

obtained by replacing each edge xy ∈ E(G) by the arcs (x, y) and (y, x). A
complete digraph is a complete biorientation of a complete graph. A digraph D
is cyclically k-partite if there exists a partition {V0, V1, . . . , Vk−1} of V (D) such
that every arc of D is a ViVi+1-arc (mod k).

Let D be a digraph with vertex set V (D) = {v1, v2, . . . , vn} and H1, H2, . . . ,
Hn be vertex disjoint digraphs. The composition of digraphs D[H1, H2, . . . , Hn]
is the digraph having

⋃n
i=1 V (Hi) as its vertex set and arc set

⋃n
i=1A(Hi) ∪
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{

(u, v)
∣

∣u ∈ V (Hi), v ∈ V (Hj), (vi, vj) ∈ A(D)
}

. If D = H[S1, S2, . . . , Sn] and
none of the digraphs S1, . . . , Sn has an arc, then D is an extension of H. The

dual (or converse) of D,
←−
D is the digraph with vertex set V (

←−
D) = V (D) and

such that (u, v) ∈ A(
←−
D) if and only if (v, u) ∈ A(D).

A classical result states that a digraph D is transitive if and only if D =
T [D1, D2, . . . , Dn], where Di is a complete digraph for 1 ≤ i ≤ n and T is
an acyclic, transitive digraph. It is clear that T = D⋆ and the digraphs Di

are the strong components of D. Using this characterization theorem it can
be proved, e.g., that every transitive digraph has a (k, l)-kernel for every pair
of integers k ≥ 2, l ≥ 1; or that the Laborde-Payan-Xuong conjecture holds
for every transitive digraph. Recently, strong 3-transitive digraphs have been
characterized in [9]: A strong 3-transitive digraph is either complete, complete
bipartite or a directed 3-cycle with none, one or two symmetrical arcs. Also, a
thorough description of the interaction between strong components of 3-transitive
digraphs has been given.

The families of k-transitive digraphs, along with the k-quasi-transitive di-
graphs were introduced in [8]. A digraph D is k-quasi-transitive if the exis-
tence of a uv-directed path of length k implies the existence of (u, v) ∈ A(D) or
(v, u) ∈ A(D). Clearly, a 2-quasi-transitive digraph is a quasi-transitive digraph
in the usual sense. In [8], structural results on k-transitive and k-quasi-transitive
digraphs are obtained and used to prove, e.g., that every k-transitive digraph has
an n-kernel for n ≥ k and that, for even k, every k-quasi-transitive digraph has an
n-kernel for n ≥ k+2. For k = 2, Bang-Jensen and Huang proved, in [2], a recur-
sive characterization of quasi-transitive digraphs. For k = 3, Galeana-Sánchez,
Goldfeder and Urrutia characterized strong 3-quasi-transitive digraphs in [7]; also,
the interaction between strong components of a 3-quasi-transitive digraph is com-
pletely described by Wang and Wang in [10]. The aforementioned characteriza-
tion theorems have been used to prove many results concerning these families of
digraphs, e.g, that the Laborde-Payan-Xuong is valid for 3-quasi-transitive di-
graphs; that every 3-quasi-transitive digraph has a 4-kernel; to characterize the
3-transitive digraphs having a kernel; to find a cycle of maximum length in a
quasi-transitive digraph in polynomial time, to prove that every quasi-transitive
digraph has a (k, l)-kernel for every pair of integers k ≥ 4, l ≥ 3 or k = 3 and
l = 2.

The aim of the present work is to prove a characterization theorem for 4-
transitive digraphs that, hopefully, will find as many applications as its anteces-
sors. Also, we hope to bring some light on the structure of k-transitive digraphs
for arbitrary k ≥ 5. Let us observe that every digraph is k-transitive for large
enough k. So, characterizing k-transitive digraphs for every k ∈ Z

+ is equivalent
to characterizing every existing digraph. In view of this situation, proving that a
property holds for every digraph is equivalent to proving that the property holds
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for every k-transitive digraph for every k ≥ 2.

2. Preliminary Results

We begin with a rather trivial observation which will be very useful through this
work.

Remark 1. A digraph D is k-(quasi)-transitive if and only if
←−
D is k-(quasi)-

transitive.

We also need a pair of propositions from [8] in order to prove some of our results
not only for k-transitive digraphs, but for k-quasi-transitive digraphs as well.

Proposition 2. Let k ≥ 2 be even, D a k-quasi-transitive digraph and u, v ∈
V (D) such that a uv-directed path exists. Then:

(1) If d(u, v) = k, then d(v, u) = 1.

(2) If d(u, v) = k + 1, then d(v, u) ≤ k + 1.

(3) If d(u, v) ≥ k + 2, then d(v, u) = 1.

Proposition 3. Let k ≥ 3 be odd, D a k-quasi-transitive digraph and u, v ∈ V (D)
such that a uv-directed path exists. Then:

(1) If d(u, v) = k, then d(v, u) = 1.

(2) If d(u, v) = k + 1, then d(v, u) ≤ k + 1.

(3) If d(u, v) ≥ k + 2 is odd, then d(v, u) = 1.

(4) If d(u, v) ≥ k + 3 is even, then d(v, u) ≤ 2.

The proofs of Proposition 4 and Corollaries 5, 6 and 7, are almost the same for k-
transitive and k-quasi-transitive digraphs. Only the proofs for k-quasi-transitive
digraphs will be written, but it is clear that the same arguments can be followed
for the k-transitive case when the reachability conditions (appearing between
parentheses in the proposition and corollaries) are dropped.

Proposition 4. Let k ≥ 2 be an integer, D a k-transitive (k-quasi-transitive)
digraph and C = (v0, v1, . . . , vn−1, v0) a directed cycle in D with n ≥ k. If

v ∈ V (D) \ V (C) is such that (v, v0) ∈ A(D) (and v ⇒ C), then v → S = {vi
∣

∣i ∈
(k − 1)Zn}.

Proof. Let us observe that if (v, x1, x2, . . . , xk) is a directed path in D with xk ∈
V (C), by the k-quasi-transitivity of D, (v, xk) ∈ A(D) or (xk, v) ∈ A(D). But,
since v ⇒ C, we have that (xk, v) /∈ A(D). Thus, (v, xk) ∈ A(D). Let us assume
without loss of generality that V (C) = Zn, and hence C = (0, 1, . . . , n− 1, 0). It
can be derived inductively that (v,m(k−1)) ∈ A(D) for 0 ≤ m ≤ n−1. We have
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by hypothesis that (v, 0) ∈ A(D). For the inductive step it suffices to consider the
arc (v,m(k−1)) ∈ A(D) and the directed path (v,m(k−1),m(k−1)+1, . . . ,m(k−
1)+(k−1)) of length k in D. Again, by the k-quasi-transitivity of D and v ⇒ C
we can conclude that (v,m(k − 1) + (k − 1)) = (v, (m + 1)(k − 1)) ∈ A(D). So,
(v, x) ∈ A(D) for every x ∈ (k − 1)Zn.

Some corollaries can be obtained from Proposition 4.

Corollary 5. Let k ≥ 2 be an integer, D a k-transitive (k-quasi-transitive) di-

graph and C an n-cycle with n ≥ k and (n, k − 1) = 1. If v ∈ V (D) \ V (C) is

such that a vC-arc exists in D (and v ⇒ C), then v → C.

Proof. Let us recall that (n, k − 1) = 1 implies (k − 1)Zn = Zn. The result is
then clear from Proposition 4.

Corollary 6. Let k ≥ 2 be an integer, D a k-transitive (k-quasi-transitive)
digraph and C = (v0, v1, . . . , vn−1, v0) a directed cycle in D with n ≥ k. If

v ∈ V (D) \ V (C), (v, x1, . . . , xm−1, v0) is a vv0-directed path in D (and C does

not reach v in D), then v → S = {vi
∣

∣i ∈ (k − 1)Zn + (k −m)}.

Proof. Since C does not reach v in D, it is clear from Propositions 2 and 3
that d(v, C) ≤ k − 1. So, we may choose d(v, C) = m ≤ k − 1. Consider the
directed path (v, x1, . . . , xm−1, v0, . . . , vk−m) of length k in D. It follows from the
k-quasi-transitivity and the fact that (vk−m, v) /∈ A(D), that (v, vk−m) ∈ A(D).
In virtue of Proposition 4, we can conclude that (v, vr(k−1)+(k−m)) ∈ A(D) for
every 0 ≤ r ≤ n (mod n).

Corollary 7. Let k ≥ 2 be an integer, D a k-transitive (k-quasi-transitive) di-

graph and C an n-cycle with n ≥ k and (n, k − 1) = 1. If v ∈ V (D) \ V (C) is

such that a vC-directed path exists in D (and C does not reach v in D), then

v → C.

Proof. It follows directly from Corollaries 5 and 6.

The following proposition and its corollary will be useful to describe the interac-
tion between strong components of a k-quasi-transitive digraph.

Proposition 8. Let k−1 be a prime, D a k-transitive (k-quasi-transitive) digraph
and C1 = (v0, v1, . . . , vk−2, v0) a (k − 1)-cycle in D.

(1) If 2 ≤ n ≤ k − 2 and C2 = (u0, u1, . . . , un−1, u0) is an n-cycle in D − C1

such that (u0, v0) ∈ A(D) (and C2 ⇒ C1), then C2 → C1.

(2) If C2 = (u0, u1, . . . , uk−2, u0) is a (k−1)-cycle in D−C1 such that (u0, v0) ∈
A(D) (and C2 ⇒ C1), then (ui, vi) ∈ A(D) for every 0 ≤ i ≤ k − 2.
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Proof. Let C2=(u0, u1, . . . , un−1, u0) be an n-cycle inD−C1 such that (u0, v0) ∈
A(D) and 2≤ n≤ k−2. Clearly, sinceD is k-quasi-transitive, (ui, ui+1, . . . , u0, v0,
v1, . . . , vk−(n−i+1)) is a directed path of length k in D and C2 ⇒ C1, then
(ui, vk−(n−i+1)) ∈ A(D) for i ∈ {1, 2, . . . , n − 1}. It will suffice to prove that
u0 → C1, a similar argument can be used to prove that ui → C1 for each
1 ≤ i ≤ n− 1.

We will prove by induction on m that (u0, v−mn) ∈ A(D) (mod (k − 1)) for
0 ≤ m ≤ k− 2. If m < k− 2 and (u0, v−mn) ∈ A(D), then (u1, . . . , u0, v−mn, . . . ,
v−mn+(k−n)) is a directed path of length k in D. But D is k-quasi-transitive and
C2 ⇒ C1, so (u1, v−mn+(k−1)−(n−1)) ≡ (u1, v−mn−(n−1)) ∈ A(D) (mod (k − 1)).
Thus, (u0, u1, v−mn−n+1, . . . , v−mn−n+1+(k−2)) (mod (k − 1)) is a directed path
of length k in D and, by the k-quasi-transitivity and the fact that C2 ⇒ C1,
(u0, v−mn−n+1+(k−2)) ∈ A(D) (mod (k − 1)). But −mn − n + 1 + (k − 2) =
−mn − n + 1 + (k − 1) − 1 ≡ −mn − n + 1 − 1 = −mn − n = −(m + 1)n
(mod (k− 1)). Thus, (u0, v−(m+1)n) ∈ A(D). The desired result follows from the
Principle of Mathematical Induction and the fact that (k− 1,−n) = 1, and then,
−n generates Zk−1.

For (2) we can observe that, if (ui, vi) ∈ A(D), then (ui+1C2ui)∪(ui, vi, vi+1)
is a directed path of length k in D. But, D is k-quasi-transitive and C2 ⇒ C1,
so (ui+1, vi+1) ∈ A(D). It follows inductively that (ui, vi) ∈ A(D) for every
0 ≤ i ≤ k − 2.

Corollary 9. Let k− 1 be a prime, D a k-transitive (k-quasi-transitive) digraph
and C1 = (v0, v1, . . . , vk−2, v0) a (k − 1)-cycle in D.

(1) If 2 ≤ n ≤ k − 2 and C2 = (u0, u1, . . . , un−1, u0) is an n-cycle in D − C1

such that C2 reaches C1 (and C1 does not reach C2) in D, then C2 → C1.

(2) If C2 = (u0, u1, . . . , uk−2, u0) is a (k−1)-cycle in D−C1 such that u0 reaches

v0 with a directed path of length m ≤ k − 1 (and C1 does not reach C2) in

D, then (ui, vi+(k−m)) ∈ A(D)(mod(k − 1)) for every 0 ≤ i ≤ k − 2.

Proof. It is straightforward from Proposition 8.

We finalize this section with a proposition, intending to give a general idea of
the structure of a k-transitive digraph more than serving as a tool to prove the
characterization of 4-transitive digraphs.

Proposition 10. Let k ≥ 2 be an integer, D a k-transitive digraph and C =
(v0, v1, . . . , vn−1, v0) an n-cycle in D such that n ≥ k + 2 and d = (n, k − 1) =
k − 1. If H = D[V (C)], then H contains a d-cycle extension as a spanning

subdigraph. Moreover, {Vi}
d
i=1 is the cyclical partition of V (H), where Vi =

{

vj
∣

∣j ≡ i (mod d)
}

.
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Proof. Once again, we may assume without loss of generality that V (C) =
V (H) = Zn. So, C = (0, 1, . . . , n− 1, 0). It suffices to prove, by induction on m,
that (i, i+m(k − 1) + 1) ∈ A(D) for every 0 ≤ m < n

d
. For m = 0, we have that

(i, i+1) ∈ A(C) ⊆ A(D). So, let us assume that (i, i+m(k− 1)+ 1) ∈ A(D) for
some m <

(

n
d
− 1

)

, then (i, i+m(k−1)+1, i+m(k−1)+2, . . . , i+m(k−1)+k)
is a directed path in D of length k. Hence, (i, i +m(k − 1) + k) = (i, i + (m +
1)(k− 1)+ 1) ∈ A(D), because D is k-transitive. Thus, we have proved that i→
{

(i+ 1) +md
∣

∣0 ≤ m < n
d

}

=
{

j ∈ Zn

∣

∣j ≡ i+ 1(mod d)
}

= Vi+1. Therefore, if
x ∈ Vi, then x→ Vi+1 for 0 ≤ i < k − 1 or x→ V0 for i = k − 1.

3. 4-transitive Digraphs

The results of this section are directed to the characterization theorem.

Proposition 11. Let D be a 4-transitive digraph and C = (v0, v1, . . . , vn−1, v0)

an n-cycle in D such that n ≥ 7 and (n, 3) = 1. Then D[V (C)] ∼=
←→
Kn.

Proof. We will assume without loss of generality that V (C) = Zn, then C =
(0, 1, . . . , n − 1, 0). Clearly, (n − 1, 0, 1, 2, 3) is a directed path of length 4 in D,
thus (n − 1, 3) ∈ A(D). But also, since n ≥ 7, C ′ = 3C(n − 1) ∪ (n − 1, 3) is a
directed cycle of length n− 3 ≥ 4. Let us observe that n− 3 ≡ n (mod 3), thus,
(n − 3, 3) = 1. We can use Corollary 7 and Remark 1 to conclude that i → C ′

and C ′ → i for every i ∈ {0, 1, 2}. Then, (0, 3, 4, 5, 2) is a directed path of length
4 in D, hence, the 4-transitivity of D implies that (0, 2) ∈ A(D). We have proved
that (0, i) ∈ A(D) for every i ∈ V (C) \ {0}. By the symmetries of C we can

conclude that D[V (C)] ∼=
←→
Kn.

Proposition 12. If D is a 4-transitive digraph and S a strong component of D
containing a directed n-cycle such that n ≥ 7 and (n, 3) = 1, then S is a complete

digraph.

Proof. Let C be an n-cycle such that n ≥ 7 and (n, 3) = 1, contained in a
strong component S of D. By Proposition 11, D[V (C)] is a complete digraph.
Also, in virtue of Corollary 7, Remark 1 and the fact that S is strong, for every
v ∈ V (S) \ V (C), it can be observed that v → V (C) and V (C) → v. Let
x, y, z ∈ V (C) be arbitrarily chosen, then, for every u, v ∈ V (S) \ V (C), we have
that (u, x, y, z, v) is a directed path of length 4 in D. Since D is 4-transitive, we
can conclude that (u, v) ∈ A(D). Thus, S is a complete digraph.

Proposition 13. If D is a 4-transitive digraph and S a strong component of D
with |V (S)| ≥ 6 and containing a directed 5-cycle, then S is a complete digraph.
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Proof. Let C = (0, 1, . . . , 4, 0) be a 5-cycle of S. Since (5, 3) = 1, using again
Corollary 7, Remark 1 and the fact that S is strong, for every v ∈ V (S) \ V (C),
it can be observed that v → V (C) and V (C) → v. If |V (S)| ≥ 7, then we can
consider u, v ∈ V (S) \ V (C), and the directed path (u, 0, 1, 2, v) of length 4 in
D. Thus, (u, v) ∈ A(D) and (0, u, v, 1, 2, . . . , 4, 0) is a 7-cycle in S, then, by
Proposition 12, S is a complete digraph. So, let us suppose that |V (S)| = 6.
We may consider the 5-cycle Ci = (v, i+ 1, i+ 2, i+ 3, i+ 4, v) for every i ∈ Z5.
Clearly, i /∈ V (Ci) and (v, i), (i, v) ∈ A(D). We can derive from Corollary 5 and
Remark 1 that i→ Ci and Ci → i for each i ∈ Z5. Thus, S is a complete digraph.

Proposition 14. If D is a 4-transitive digraph and S a strong component of D
with |V (S)| ≥ 5 and containing a directed 4-cycle, then S is a complete digraph.

Proof. Let C = (0, 1, 2, 3, 0) be a 4-cycle of S. Since (4, 3) = 1, in virtue of
Corollary 7, Remark 1 and the fact that S is strong, for every v ∈ V (S) \ V (C),
it can be observed that v → V (C) and V (C) → v. Since |V (S)| ≥ 5, there is at
least one v ∈ V (S) \ V (C), so, (0, v, 1, 2, 3, 0) is a 5-cycle in S. If |V (S)| ≥ 6,
by Proposition 13, the desired result follows. If |V (S)| = 5, for each i ∈ Z4,
Ci = (v, i + 1, i + 2, i + 3, v) is a directed 4-cycle. Since (i, v), (v, i) ∈ A(D) for
i ∈ Z4, by Corollary 5 and Remark 1 we can conclude that i → Ci and Ci → i.
The desired conclusion is then reached.

Now, the previous propositions of this section can be condensed in the following
lemma.

Lemma 15. Let D be a strong 4-transitive digraph with |V (D)| ≥ 5 and C an

n-cycle of D such that (n, 3) = 1. If n 6= 2 and D is not a symmetrical 5-cycle,
then D is a complete digraph.

Proof. Since n 6= 2 and (n, 3) = 1, then n ≥ 4. If n 6= 5, then the result follows
from Propositions 12 and 14. If n = 5, and |V (D)| ≥ 6, the result follows from
Proposition 13. If n = 5 and |V (D)| = 5, since every 5-cycle in a 4-transitive
digraph is symmetrical and D is not a symmetrical 5-cycle, C must have at least
one diagonal. But, for each diagonal of C, a 4-cycle exists in D. So, again, the
result follows from Proposition 14.

To prove our following lemma we will need a pair of well known theorems. The
following theorem is a classic characterization of strong cyclically k-partite di-
graphs. A proof of this result can be found in [5].

Theorem 16. Let D be a strong digraph. Then D is cyclically k-partite if and

only if every directed cycle of D has length ≡ 0 (mod k).
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The following theorem was proved by Boesch and Tindell in [4]. It is a gener-
alization of the classic theorem due to Robbins stating that a graph G admits
a strong orientation if and only if G is 2-edge-connected. Let us recall that an
orientation of a digraph D is a maximal asymmetrical subdigraph of D.

Theorem 17. A digraph D admits a strong orientation if and only if D is strong

and its underlying graph UG(D) is 2-edge-connected.

With these results in mind, we are now able to prove some new lemmas.

Lemma 18. Let D be a strong 4-transitive digraph such that every directed cycle

has length ≡ 0 (mod 3). Then D is a 3-cycle extension.

Proof. If D does not have symmetrical arcs (2-cycles), then D is a cyclically
3-partite digraph by Theorem 16. But D is strong, so, for every pair of distinct
vertices vi ∈ Vi, vi+1 ∈ Vi+1 (mod 3), we have that a vivi+1-directed path exists
in D. Since D is 4-transitive, d(vi, vi+1) ≤ 3, and D is cyclically 3-partite, so
d(vi, vi+1) = 1. Then D is a 3-cycle extension.

Lemma 19. Let D be a strong 4-transitive digraph such that every directed cycle

has length ≡ 0 (mod 3), except for the symmetrical arcs. If D has circumference

≥ 3, has symmetrical arcs and UG(D) is 2-edge-connected, then D has a 3-cycle
extension with cyclical partition {V0, V1, V2} as a spanning subdigraph. Moreover,

D has circumference 3, and for every symmetrical arc (vi, vi+1) ∈ A(D), with

vj ∈ Vj for j ∈ {i, i+ 1} (mod 3), |Vi| = 1 or |Vi+1| = 1.

Proof. If UG(D) is 2-edge-connected, in virtue of Theorem 17 we may find a
strong orientation H of D. Since D has symmetrical arcs, then H is an asym-
metrical proper subdigraph of D. Thus, it follows from Theorem 16 that H is a
cyclically 3-partite spanning subdigraph of D.

We affirm that H is 4-transitive. Let (u1, u2, u3, u4, u5) be a directed path in
H. SinceD is 4-transitive, (u1, u5) ∈ A(D). Let us recall that every asymmetrical
arc of D is also in H, and for every symmetrical arc (x, y) ∈ A(D), either (x, y) ∈
A(H) or (y, x) ∈ A(H). Hence, if (u1, u5) /∈ A(H), then (u5, u1) ∈ A(H). But
H is cyclically 3-partite and, without loss of generality, we may assume that
u1 ∈ V0, thus u5 ∈ V1 and it cannot be the case that (u5, u1) ∈ A(H). Then,
H is 4-transitive and cyclically 3-partite. It follows from Lemma 18 that H is a
3-cycle extension.

Let us assume without loss of generality that (v2, v0) is a symmetrical arc
of D with vi ∈ Vi for i ∈ {0, 2} and suppose that |Vi| ≥ 2, for each i ∈ {0, 2}.
We may consider v0 6= v′0 ∈ V0 and arbitrary vertices v1 ∈ V1, v2 6= v′2 ∈ V2.
But then, (v2, v

′

0, v1, v
′

2, v0, v2) is a 5-cycle in D, contrary to our assumption. So,
|Vi| = 1, for some i ∈ {0, 2}.
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Lemma 20. Let D be a strong 4-transitive digraph such that every directed cycle

has length ≡ 0 (mod 3), except maybe for the symmetrical arcs. If D has circum-

ference ≥ 3, has symmetrical arcs, UG(D) is not 2-edge-connected and {S1, S2,
. . . , Sn} are the vertex sets of the maximal 2-edge-connected subgraphs of UG(D),
then Si = {ui} for every 2 ≤ i ≤ n, D[S1] has a 3-cycle extension with cyclical

partition {V0, V1, V2} as a spanning subdigraph and there is a vertex (without loss
of generality) v0 ∈ V0 such that (v0, uj), (uj , v0) ∈ A(D) for every 2 ≤ j ≤ n.
Moreover, D has circumference 3, |V0| = 1 and D[S1] has the structure described

in Lemma 18 or Lemma 19.

Proof. We affirm that the circumference of D is exactly 3. Suppose that a cycle
C of length greater than 3 exists in D and v ∈ V (D) \ V (C) is an arbitrarily
chosen vertex. Recalling that D is strong and in virtue of Corollary 6, there are
at least two different Cv-arcs. Clearly, all edges of UG(D) corresponding with
these arcs or with the arcs of C are contained in some cycle of UG(D) and thus,
are not bridges. In this way, for every pair of vertices u, v ∈ V (D) \ V (C), we
also found a uv-path in UG(D) passing through C and not using the edge uv.
Hence UG(D) has no bridges, which results in a contradiction.

Since the circumference of D is 3, we can consider a 3-cycle C in D. Let S1 be
the vertex set of the maximal 2-edge-connected subgraph of UG(D) containing C.
It is easy to observe that D[S1] is strong. Let u, v ∈ S1, since D is strong, there
is a uv-directed path P in D. If (x, y) is a bridge of UG(D) and (x, y) is an arc of
P , then, it follows from the maximality of UG(D)[S1] that (y, x) must also be an
arc of P , contradicting that P is a path. We can conclude that V (P ) ⊆ S1 and
hence, D[S1] is strong. But, being D[S1] strong, 4-transitive and with UG(D[S1])
2-edge-connected, depending on the existence of symmetrical arcs inD[S1] we can
apply Lemma 18 or Lemma 19 toD[S1]. Either way, D[S1] has a 3-cycle extension
as a spanning subdigraph with cyclical partition {V0, V1, V2} and the structure
described in Lemma 18 or Lemma 19. Moreover, recalling that the circumference
of D is 3, we can assume without loss of generality that V0 = {v0}, otherwise, a
cycle of length greater than 3 would exist in D.

Let {S1, . . . , Sn} be the vertex sets of the maximal 2-edge-connected sub-
graphs of UG(D). If i 6= 1, it can be proved that D[Si] is strong with the same
argument used to prove that D[S1] is strong. If |Si| > 1 for some 2 ≤ i ≤ n,
then D[Si] must contain a directed cycle of length 2 or 3. But, since D is strong,
it would follow from Corollary 9 that at least two different S1Si-arcs exist in D,
contradicting that S1 and Si are the vertex maximal 2-edge connected subgraphs
of UG(D). Hence, Si = {ui} for every 2 ≤ i ≤ n.

Now, let P be a uiS1-directed path of minimum length for 2 < i ≤ n. If
ℓ(P ) > 1, then ℓ(P ) = 2 or ℓ(P ) = 3. If ℓ(P ) = 2, then there exists uj such
that 1 < i 6= j ≤ n and P = (ui, uj , v) for some v ∈ S1. We can assume without
loss of generality that v ∈ V1 and (v, v2), (v2, v0) ∈ A(D) for some v2 ∈ V2 and
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Figure 1. Digraphs of the families described in Lemmas 19 and 20.

v0 ∈ V0. Hence, (ui, uj , v, v2, v0) is a directed path of length 4 in D, and the
4-transitivity of D implies that (ui, v0) ∈ A(D), contradicting the minimality
of P . An analogous reasoning can be followed in the case that ℓ(P ) = 3, so
it must be the case that d(ui, S1) = 1. By means of dualization (Remark 1),
it can be shown that d(S1, ui) = 1 for every 2 ≤ i ≤ n. Since ui ∈ Si 6= S1,
for every 2 ≤ i ≤ n, and each Sj , 1 ≤ j ≤ n is the vertex set of a maximal
2-edge connected subdigraph of UG(D), there must exist a single v ∈ S1 such
that (ui, v), (v, ui) ∈ A(D).

We have already assumed, without loss of generality, that |V0| = 1. Let
us suppose that |V1| ≥ 2 and (v1, ui), (ui, v1) ∈ A(D) for some 2 ≤ i ≤ n and
v1 ∈ V1. We can consider v′1 ∈ V1, v2 ∈ V2 and (v′1, v2, v0, v1, ui) a directed path in
D. Therefore, (v′1, ui) ∈ A(D), contradicting that v1ui ∈ E(UG(D)) is a bridge
between S1 and Si. Thus, if a VjSi-arc exists in D, it must be the case that |Vj | =
1. Now, let us suppose that V1 = {v1} and (v0, ui), (ui, v0), (v1, uj), (uj , v1) ∈
A(D) for 2 ≤ i 6= j ≤ n and v2 ∈ V2. We can consider the directed path
(uj , v1, v2, v0, ui) of length 4 in D. The 4-transitivity of D implies that (uj , ui) ∈
A(D). Again, (uj , v1, v2, v0, ui, uj) is a cycle in UG(D), contradicting that Si and
Sj were different maximal 2-edge-connected subgraphs of UG(D). Thence, there
exists a unique pair (ui, vj), (vj , ui) ∈ A(D) for every 2 ≤ i ≤ n and for a unique
0 ≤ j ≤ 2 such that Vj = {vj} and (ui, vj), (vj , ui) ∈ A(D) for every 2 ≤ i ≤ n.
We can assume without loss of generality that j = 0.

Examples of digraphs described in Lemmas 19 and 20 are illustrated in Figure 1.

Definition. A double star is a tree of diameter three. It consists of an edge and
two (non-empty) bouquets of pendant edges added to the end vertices of this
edge. We denote by Dn,m a double star with bouquets consisting of n and m
pendant edges respectively (see Figure 2).

The final lemma, before the characterization theorem, deals with strong 4-transi-
tive digraph with circumference 2. As we will see, there are only two possibilities
for such digraphs.
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Figure 2. A double star D5,4.

Lemma 21. Let D be a strong 4-transitive digraph with circumference 2. Then

D is either a complete biorientation of the star K1,n, n ≥ 1 or a complete biori-

entation of the double star Dn,m.

Proof. If D is a strong digraph with circumference 2, then D is bipartite and
every arc of D is symmetrical. The former because D is strong and every directed
cycle has even length. The latter because, otherwise, if (u, v) ∈ A(D) and (v, u) /∈
A(D), then (u, v) ∪ P is a directed cycle of length ≥ 3, where P is a vu-directed

path of minimum length. Thus, UG(D) is a tree and D =
←−−−→
UG(D). Besides, by

the 4-transitivity, D (and therefore UG(D)) has diameter ≤ 3. There is only one

tree of diameter 0 (K1), but
←→
K1 does not have circumference 2. Only one tree of

diameter 1 exists (K2
∼= K1,1). The only trees of diameter 2 are the stars K1,n

with n ≥ 3. Finally, the only trees of diameter 3 are the double stars Dn,m.

And finally, the characterization theorem.

Theorem 22. Let D be a strong 4-transitive digraph. Then exactly one of the

following possibilities holds.

(1) D is a complete digraph.

(2) D is a 3-cycle extension.

(3) D has circumference 3, a 3-cycle extension as a spanning subdigraph with

cyclical partition {V0, V1, V2}, at least one symmetrical arc exists in D and

for every symmetrical arc (vi, vi+1) ∈ A(D), with vj ∈ Vj for j ∈ {i, i +
1} (mod 3), |Vi| = 1 or |Vi+1| = 1.

(4) D has circumference 3, UG(D) is not 2-edge-connected and {S1, S2, . . . , Sn}
are the vertex sets of the maximal 2-edge connected subgraphs of UG(D), with
Si = {ui} for every 2 ≤ i ≤ n and such that D[S1] has a 3-cycle extension

with cyclical partition {V0, V1, V2} as a spanning subdigraph. A vertex v0 ∈ V0

(without loss of generality) exists such that (v0, uj), (uj , v0) ∈ A(D) for every
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2 ≤ j ≤ n. Also |V0| = 1 and D[S1] has the structure described in (1) or (2),
depending on the existence of symmetrical arcs.

(5) D is a symmetrical 5-cycle.

(6) D is a complete biorientation of the star K1,n, n ≥ 3.

(7) D is a complete biorientation of the double star Dn,m.

(8) D is a strong digraph of order less than or equal to 4 not included in the

previous families.

Proof. Let us assume that D is not a symmetrical 5-cycle. If |V (D)| ≥ 5 and
D contains an n-cycle with n ≥ 4 and (n, 3) = 1, it follows from Lemma 15 that
D is complete. Suppose every cycle of D has length ≡ 0 (mod 3). If there is
no symmetrical arc, then we can conclude from Lemma 18 that D is a 3-cycle
extension. If D has cycles of length 2 and 3 then, accordingly to Lemmas 19 and
20, D has the structure described in (3) or (4) of this theorem, depending on
the edge connectivity of UG(D). If D has circumference 2 we can conclude from
Lemma 21 that D is a complete biorientation of the star K1,n with n ≥ 3 or a
complete biorientation of the double star Dn,m.

We have now covered the cases when the circumference of D is 2, when cycles
of length 2 and 3 exists, when every cycle has length ≡ 0 (mod 3), when D is a
symmetrical 5-cycle and when |V (D)| ≥ 5 and D contains an n-cycle with n ≥ 4
and (n, 3) = 1. The only remaining case is that D is a strong digraph of order
≤ 4 not included in the families described above.

Since the cases are exhaustive, the desired characterization is obtained.

4. Conclusions

The family of strong 4-transitive digraphs has been characterized in Theorem
22. Although some aspects of the interaction between strong components of a
non-strong 4-transitive digraph can be deduced from Corollaries 6, 7 and 9, a
thorough study considering the result of Theorem 22 will represent very valuable
information on this family of digraphs.

As a matter of fact, a sequel of this article is in preparation, where the afore-
mentioned study of non-strong 4-transitive digraphs will be done. The results
will be used to prove some very nice properties of this family of digraphs.

As another line of research, the results of Section 2, along with the known
structures of strong transitive and 3-transitive digraphs, bring to our attention
the following conjecture.

Conjecture 23. Let k − 1 be a prime and D a strong k-transitive digraph. If

|V (D)| ≥ k+1, D contains an n-cycle with n ≥ k, (n, k− 1) = 1 and D is not a

symmetrical (k + 1)-cycle, then D is a complete digraph.
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