ON THE RAINBOW CONNECTION OF CARTESIAN PRODUCTS AND THEIR SUBGRAPHS

Sandi Klavžar
Faculty of Mathematics and Physics, University of Ljubljana Jadranska 19, 1000 Ljubljana, Slovenia
and
Faculty of Natural Sciences and Mathematics, University of Maribor Koroška 160, 2000 Maribor, Slovenia
e-mail: sandi.klavzar@fmf.uni-lj.si

AND

Gašper Mekiš
Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana
e-mail: gasper.mekis@gmail.com

Abstract

Rainbow connection number of Cartesian products and their subgraphs are considered. Previously known bounds are compared and non-existence of such bounds for subgraphs of products are discussed. It is shown that the rainbow connection number of an isometric subgraph of a hypercube is bounded above by the rainbow connection number of the hypercube. Isometric subgraphs of hypercubes with the rainbow connection number as small as possible compared to the rainbow connection of the hypercube are constructed. The concept of c-strong rainbow connected coloring is introduced. In particular, it is proved that the so-called Θ-coloring of an isometric subgraph of a hypercube is its unique optimal c-strong rainbow connected coloring.

Keywords: rainbow connection, strong rainbow connection, Cartesian product of graphs, isometric subgraph, hypercube.
2010 Mathematics Subject Classification: 05C15, 05C76, 05C12.

1. Introduction

The concept of rainbow connection was introduced just a few years ago by Chartrand, Johns, McKeon, and Zhang [4] but it already received amazing attention. For instance, the recent survey [11] of Li and Sun on the topic contains a list of 56 references. Let us briefly mention a sample of the related research directions.

In the seminal paper [4], the rainbow connection number $\operatorname{rc}(G)$ as well as the strong rainbow connection number $\operatorname{src}(G)$ of a connected graph G were introduced. Among other results, these two graphs invariants were determined for cycles, wheels, complete bipartite graphs, and complete multipartite graphs. As a consequence, the difference $\operatorname{src}(G)-\operatorname{rc}(G)$ can be arbitrarily large. In [3] it is proved that the invariants are intrinsically difficult, in fact even deciding whether $\operatorname{rc}(G)=2$ holds for a graph G is an NP-complete problem. On a positive note, Kemnitz and Schiermeyer [8] proved that most of graphs of order n, diameter two and clique number at least $n-3$ have rainbow connection number two, and list all the exceptions. Some more bad news: to find out whether a given edge coloring is a rainbow connected coloring is also an NP-complete problem [3]. Bounds on the rainbow connection number of graphs in terms of minimum degree and other graph parameters are given in $[2,9,12]$.

Very recently, two groups of authors independently considered the rainbow connection of graph products $[1,5]$. More precisely, the first of these papers deals with Cartesian, lexicographic and strong products, while the latter treats direct, strong and lexicographic products. So all standard graph products (see [6] for the theory of these products) have been addresses by now. Additional results on graph operations, including graph products, were reported in [10].

In this paper, we are interested in the rainbow connection number of Cartesian products of graphs with the emphasis on the question what can be said about their subgraphs. In Section 3, we present and compare known upper bounds and demonstrate that there is no hope for some general bounds on the rainbow connection number of (isometric) subgraphs of Cartesian products. On the other hand, for the simplest products-hypercubes-the situation is different. We treat hypercubes in Section 4 where it is shown that the rainbow connection number of an isometric subgraph of a hypercube is bounded above by the rainbow connection number of the hypercube. Using bipartite wheels, we show that there exist isometric subgraphs of hypercubes with rainbow connection number arbitrarily smaller than the rainbow connection number of the hypercube. In the final section the concept of c-strong rainbow connected coloring is introduced and studied. This is in part motivated by the fact that the c-strong rainbow connection number of an isometric subgraph of an arbitrary Cartesian product graph is bounded above by one of the products.

2. Preliminaries

In this section, we collect definitions and concepts needed in the rest of the paper. All the graphs considered will be simple, finite, and connected.

An edge coloring of a connected graph G is a rainbow connected coloring if for any two vertices of G there is a path between them whose edges have pairwise different colors. Such paths are called rainbow paths and G is called rainbow connected. The smallest number of colors needed to make G rainbow connected is the rainbow connection number $\operatorname{rc}(G)$ of G. If, in the above definitions, the paths considered are shortest paths, we speak of the strong rainbow connected coloring, strong rainbow connected graphs, and the strong rainbow connection number $\operatorname{src}(G)$ of G.

The Cartesian product $G \square H$ of graphs G and H has the vertex set $V(G) \times$ $V(H)$. Vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ of $G \square H$ are adjacent whenever $g g^{\prime} \in E(G)$ and $h=h^{\prime}$, or $g=g^{\prime}$ and $h h^{\prime} \in E(H)$. The subgraph of $G \square H$ induced on vertices $\{(g, h) \mid g \in V(G)\}$ is a G-layer (through h). H-layers are defined analogously. Clearly, G-layers and H-layers are isomorphic to G and H, respectively. The Cartesian product operation is commutative and associative and hence, the Cartesian product of more factors is well-defined. The simplest multiple Cartesian products $\square_{i=1}^{d} K_{2}$ are known as hypercubes Q_{d}. The Cartesian product of graphs is connected if and only if all of its factors are connected.

Recall that the k-wheel $W_{k}, k \geq 3$, is the graph obtained from C_{k} by adding a vertex and connecting it to every vertex of C_{k}. For $k \geq 3$, the bipartite wheel $B W_{k}$ is the graph obtained from the k-wheel W_{k} by subdividing each of the edges of the outer cycle of W_{k} with one vertex. In particular, $B W_{3}$ is the graph obtained from Q_{3} be removing one of its vertices and $B W_{4}=P_{3} \square P_{3}$.

The graph distance considered is the standard shortest paths distance. By $\operatorname{ecc}(v)=\max \left\{d_{G}(u, v) \mid u \in V(G)\right\}$ we denote the eccentricity of a vertex $v \in$ $V(G)$. The diameter of $G, \operatorname{diam}(G)$, is the length of a longest shortest path, in other words, $\operatorname{diam}(G)=\max \{\operatorname{ecc}(v) \mid v \in V(G)\}$. Note that

$$
\operatorname{diam}(G) \leq \operatorname{rc}(G) \leq \operatorname{src}(G)
$$

The radius of G is defined as $r(G)=\min \{\operatorname{ecc}(v) \mid v \in V(G)\}$.
A subgraph H of connected graph G is isometric if $d_{H}(u, v)=d_{G}(u, v)$ holds for all $u, v \in V(H)$. If additionally every shortest u, v-path lies completely in H, we say that H is a convex subgraph of $G . G$ is a partial cube if for some integer d, G is an isometric subgraph of Q_{d}. Edges $u v$ and $u^{\prime} v^{\prime}$ of G are in relation Θ if $d\left(u, u^{\prime}\right)+d\left(v, v^{\prime}\right) \neq d\left(u, v^{\prime}\right)+d\left(u^{\prime}, v\right)$. Relation Θ is reflexive, symmetric, but generally not transitive. Winkler [13] proved that a (connected) graph G is a partial cube if and only G is a bipartite graph with transitive relation Θ. Hence for partial cubes G, relation Θ partitions $E(G)$ into equivalence classes that will be referred as Θ-classes. The least number d needed for a partial cube G to
isometrically embed into Q_{d} is the isometric dimension $\operatorname{idim}(G)$ of G. Finally, a graph is a median graph if, for any triple of its vertices u, v, w, there exists a unique vertex that lies on a shortest u, v-path, on a shortest u, w-path and on a shortest v, w-path. It is well-known that median graphs are partial cubes.

3. Cartesian Products and their Subgraphs

In this section we present two known upper bounds for the rainbow connection number of Cartesian products, compare the two bounds, and address the problem if there is a relation between the rainbow connection number of a Cartesian product and its subgraphs. We state all results for two factors since generalizations to more factors are straightforward due to the associativity of the Cartesian product and since the distance in a product is just the sum of distances between the projections onto factors.

Let ℓ_{G} and ℓ_{H} be edge colorings of graphs G and H, respectively. Then the coloring $\ell_{G \square H}$ defined with $\ell_{G \square H}\left((g, h)\left(g^{\prime}, h\right)\right)=\ell_{G}\left(g g^{\prime}\right)$ if $g g^{\prime} \in E(G)$ and $\ell_{G \square H}\left((g, h)\left(g, h^{\prime}\right)\right)=\ell_{H}\left(h h^{\prime}\right)$ if $h h^{\prime} \in E(H)$ will be called a product coloring (of $G \square H$ with respect to ℓ_{G} and $\left.\ell_{H}\right)$. In other words, a product coloring inherits colorings of layers from the colorings of the corresponding factors.

Given graphs G and H equipped with disjoint optimal rainbow connected colorings, Li and Sun [10] noticed that the product coloring of $G \square H$ gives

$$
\begin{equation*}
\operatorname{rc}(G \square H) \leq \operatorname{rc}(G)+\operatorname{rc}(H) \tag{1}
\end{equation*}
$$

They also observed that the bound is tight, we state this fact for the later reference.

Proposition 1 [10]. Let G and H be graphs with $\operatorname{rc}(G)=\operatorname{diam}(G)$ and $\operatorname{rc}(H)=$ diam (H). Then $\operatorname{rc}(G \square H)=\operatorname{rc}(G)+\operatorname{rc}(H)$.

Proof. Using (1) and the fact that $\operatorname{diam}(G \square H)=\operatorname{diam}(G)+\operatorname{diam}(H)$ we have: $\operatorname{diam}(G)+\operatorname{diam}(H)=\operatorname{diam}(G \square H)$ $\leq \operatorname{rc}(G \square H) \leq \operatorname{rc}(G)+\mathrm{rc}(H)=\operatorname{diam}(G)+\operatorname{diam}(H)$
hence the assertion.
On the other hand, Basavaraju et al. [1] proved the following upper bound:

$$
\begin{equation*}
\operatorname{rc}(G \square H) \leq 2 r(G \square H) \tag{2}
\end{equation*}
$$

To prove (2), a construction more involved than the one to obtain (1) is required. The next result demonstrates tightness of (2):

Proposition 2 [1]. Let G and H be graphs with $\operatorname{diam}(G)=2 r(G)$ and $\operatorname{diam}(H)=$ $2 r(H)$. Then $\operatorname{rc}(G \square H)=2 r(G \square H)$.

Proof. Similarly as in the proof of Proposition 1, the fact $r(G \square H)=r(G)+$ $r(H)$ and (2) yield:

$$
\begin{aligned}
\operatorname{diam}(G)+\operatorname{diam}(H) & =\operatorname{diam}(G \square H) \leq \operatorname{rc}(G \square H) \leq 2 r(G \square H) \\
& =2 r(G)+2 r(H)=\operatorname{diam}(G)+\operatorname{diam}(H)
\end{aligned}
$$

and we are done.
Proposition 2 in particular implies that for any $n, m \geq 2$,

$$
\operatorname{rc}\left(K_{1, n} \square K_{1, m}\right)=4
$$

This example shows that (2) can be arbitrarily better than (1). Indeed, inequality (1) asserts that $\operatorname{rc}\left(K_{1, n} \square K_{1, m}\right) \leq n+m$.

On the other hand, (2) can also be worse than (1). To see this, consider any graphs G and H with $\operatorname{diam}(G)=r(G)=\operatorname{rc}(G)$ and $\operatorname{diam}(H)=r(H)=$ $\operatorname{rc}(H)$. Then Proposition 1 implies that (1) gives the exact result $\operatorname{rc}(G \square H)=$ $r(G)+r(H)$, while (2) asserts $\mathrm{rc}(G \square H) \leq 2 r(G)+2 r(H)$. For a simple concrete example consider products of complete graphs for which $\operatorname{rc}\left(K_{n} \square K_{m}\right)=2$.

We turn now our attention to subgraphs of Cartesian products and pose a question whether we can bound $\operatorname{rc}(X)$ in terms of $\operatorname{rc}(G \square H)$, provided X is a subgraph of $G \square H$. Clearly, $\operatorname{rc}(X)$ can be arbitrarily smaller than $\operatorname{rc}(G \square H)$. But it can also be arbitrarily bigger, as the example of Figure 1 shows. There P_{20} is a subgraph of $P_{5} \square P_{4}, \operatorname{rc}\left(P_{20}\right)=19$, and $\operatorname{rc}\left(P_{5} \square P_{4}\right)=\operatorname{rc}\left(P_{5}\right)+\operatorname{rc}\left(P_{4}\right)=7$ by Proposition 1. Of course, the example easily generalizes to $P_{n} \square P_{m}$ for any n and m.

Figure 1. The product $P_{5} \square P_{4}$.

Hence, not much can be said about general subgraphs of Cartesian products. But what if X is an isometric subgraph of $G \square H$? Also in this case, $\operatorname{rc}(X)$ can be arbitrarily bigger than $\operatorname{rc}(G \square H)$, see the next section.

Finally, note that considering convex subgraphs gives no new information because convex subgraphs of Cartesian products are precisely subproducts that project onto convex subgraphs of the factors [7].

4. Isometric Subgraphs of Hypercubes

The message of the previous section was that not much can be said in general about the rainbow connection number of (isometric) subgraphs of Cartesian products. For the simplest Cartesian products-hypercubes-the situation is different:

Proposition 3. Let G be an isometric subgraph of Q_{n}. Then $\operatorname{rc}(G) \leq \operatorname{rc}\left(Q_{n}\right)=$ n.

Proof. Clearly, $\operatorname{rc}\left(Q_{1}\right)=1$. For $n \geq 2$ the assertion $\operatorname{rc}\left(Q_{n}\right)=n$ follows by an inductive use of Proposition 1.

Let now G be an isometric subgraph of Q_{n}. Color Q_{n} by the product coloring, where each of its factors K_{2} is colored with a private color and let G be equipped with the induced coloring. Let $u, v \in V(G)$. Then, as G is isometric in Q_{n}, there exists a shortest u, v-path in G, say P, that lies completely in Q_{n}. As P is a geodesic, the product coloring of Q_{n} assigns different colors to its edges. Hence G is rainbow connected and we have used at most n colors.

Corollary 4. Let G be a partial cube with $\operatorname{idim}(G)=\operatorname{diam}(G)$. Then $\operatorname{rc}(G)=$ $\operatorname{idim}(G)$.

Proof. Combine the fact that $\operatorname{rc}(G) \geq \operatorname{diam}(G)$ with Proposition 3.
We continue with a specific class of partial cubes that will enable us to answer a question raised in Section 3.

Lemma 5. For any $k \geq 4, \operatorname{rc}\left(B W_{k}\right)=4$.
Proof. Denote the central vertex of $B W_{k}$ with x. For $i=1, \ldots, k$ let y_{i} be a neighbor of x (in ordered way through the cycle), and z_{i} the vertex of degree 2 between y_{i} and y_{i+1}, where $i+1$ is meant cyclically. It is easy to see, that $\operatorname{diam}\left(B W_{k}\right)=4$ for $k \geq 4$. To complete the proof we thus need to construct a rainbow connected coloring of $B W_{k}$ using four colors.

Suppose first k is even. Color the edges $x y_{i}$ with color 3 if i is odd, and with color 4 otherwise. Edges $y_{i} z_{i}$ and $y_{i} z_{i-1}$ get color 1 for odd i, for even i they get color 2 . Any of the non-neighbors $\left(z_{i}\right)$ of x can be reached from x using either colors 4 and 2 or colors 3 and 1 . Let $1 \leq i<j \leq k$. Now find a rainbow path between y_{i} and y_{j}. If i and j are of different parity, then we can take a path via x using colors 3 and 4. Otherwise, take the path $y_{i}, x, y_{j-1}, z_{j-1}, y_{j}$ (a path of colors $3,4,2,1$ or $4,3,1,2)$. Next, take z_{i} and z_{j}. Then $z_{i}, y_{i+1}, x, y_{j+1}, z_{j}$ is a rainbow path if i and j are of different parity, otherwise we can take the path $z_{i}, y_{i+1}, x, y_{j}, z_{j}$. The only case left is when we take y_{i} and z_{j}, where $1 \leq i, j \leq k$.

Then the path y_{i}, x, y_{t}, z_{j} is a rainbow path, where y_{t} is the neighbor of z_{j} with t of different parity as i.

Let now k be odd. As above, edges $y_{i} z_{i}$ and $y_{i} z_{i-1}$ get color 1 for odd i, for even i they get color 2 . For $1 \leq i<k$, edge $x y_{i}$ gets color 3 if i is odd, and color 4 otherwise. We color the remaining edge $x y_{k}$ with color 2 . With the same arguments as in the case when k is even it follows that we have a rainbow path between any two vertices in $B W_{k}-\left\{z_{k-1}, y_{k}, z_{k}\right\}$. The path $z_{k-1}, y_{k-1}, x, y_{1}, z_{k}$ is a rainbow path. Hence it remains to see, that there exists a rainbow path between any vertex from $B W_{k}-\left\{z_{k-1}, y_{k}, z_{k}\right\}$ and any vertex from $\left\{z_{k-1}, y_{k}, z_{k}\right\}$. Clearly, from y_{k} we can achieve any vertex in $B W_{k}-\left\{z_{k-1}, y_{k}, z_{k}\right\}$ by going to x (color $2)$ and then using the colors 3,1 or 4 . From z_{k-1} (resp. z_{k}) we can reach y_{i} with colors $1,2,3$ or $1,2,4$ and we can reach z_{i} with colors $2,4,3,1$ (resp. 1, 3, 4, 2).

Consider products $B W_{k} \square B W_{k}, k \geq 4$. Then Lemma 5 and Proposition 1 imply that $\operatorname{rc}\left(B W_{k} \square B W_{k}\right)=8$. On the other hand, $K_{1, k}$ is an isometric subgraph of $B W_{k} \square B W_{k}$ with $\operatorname{rc}\left(K_{1, k}\right)=k$, which demonstrates that, in general Cartesian products the rainbow connection number of an isometric subgraph can be arbitrarily bigger than the one of the product.

In view of Proposition 3 we now ask, how big can the difference between $\operatorname{rc}(G)$ and $\operatorname{rc}\left(Q_{n}\right)$ be, where G is isometric in Q_{n} and $\operatorname{idim}(G)=n$. (The answer is trivial if we would not require $\operatorname{idim}(G)=n$.) We have:

Theorem 6. For every $d \geq 4$ and for every $k \geq d$, there exists a median graph G with $\operatorname{diam}(G)=d=\operatorname{rc}(G)$ and $\operatorname{idim}(G)=k$.

Proof. Lemma 5 gives $\operatorname{rc}\left(B W_{k-(d-4)}\right)=4$. Connect an endvertex of a path on $d-4$ vertices with one of the vertices of degree two in $B W_{k-(d-4)}$ to construct a graph G. By this operation G is still a median graph with $\operatorname{idim}(G)=$ $\operatorname{idim}\left(B W_{k-(d-4)}\right)+d-4=k$ and $\operatorname{diam}(G)=d$. Now take any 4 -coloring of $B W_{k-(d-4)}$ that makes $B W_{k-(d-4)}$ rainbow connected and color the remaining edges in G each with its own (new) color. By this way G obviously gets rainbow connected where d colors are used.

Figure 2. Generators of median graphs of diameter 3.
The assumption $d \geq 4$ in Theorem 6 is unavoidable. First note that the only median graphs with $\operatorname{diam}(G)=2$ are C_{4} and $K_{1, n}$ and that $\operatorname{rc}\left(K_{1, n}\right)=\operatorname{idim}\left(K_{1, n}\right)=$
$n-1$. For $d=3$, it can be shown that all median graphs G of diameter 3 can be constructed as follows. Either $G=Q_{3}$ or G can be obtained from one of the left three graphs from Figure 2 by attaching to the black vertices an arbitrary number of pendant vertices and by attaching to adjacent black vertices an arbitrary number of pendant squares.
It is straightforward to see that, by attaching pendant vertices and pendant squares, the rainbow connection number rises. So there is no infinite family (in the sense that we can move isometric dimension arbitrary far away from diameter) of median graphs with diameter and with rainbow connection number equal to 3.

5. Strong Rainbow Connected Colorings

We now turn to strong rainbow connected colorings and consider the example from Figure 3. The factors C_{4} and K_{2} are equipped with strong rainbow connected colorings, however the product coloring produces an isometric subgraph of $C_{4} \square K_{2}$ that is not (strong) rainbow connected.

Figure 3. The product $C_{4} \square K_{2}$.

This example motivates us to introduce the following concepts. A coloring of the edges of a graph G is a complete strong rainbow connected coloring, c-strong rainbow connected coloring for short, if every shortest path is a rainbow path. Having a c-strong rainbow connected coloring of G we say that G is c-strong rainbow connected. The smallest number of colors needed to make G c-strong rainbow connected is the c-strong rainbow connection number $\overline{\operatorname{src}}(G)$ of G. Note that defining an analogous concept for the rainbow connection is not interesting, as then only the coloring where every edge has its own color would make a graph completely rainbow connected. Clearly,

$$
\operatorname{diam}(G) \leq \operatorname{rc}(G) \leq \operatorname{src}(G) \leq \overline{\operatorname{src}}(G)
$$

The appropriateness of the c-strong rainbow connected colorings for Cartesian product is demonstrated with the following:

Proposition 7. For any (connected) graphs G and H and any isometric subgraph X of $G \square H$,

$$
\overline{\operatorname{src}}(X) \leq \overline{\operatorname{src}}(G \square H) \leq \overline{\operatorname{src}}(G)+\overline{\operatorname{src}}(H)
$$

Proof. Let G and H be c-strong rainbow connected colored with r and s disjoint colors, respectively. Then the product coloring is a c-strong rainbow connected coloring of $G \square H$ using $r+s$ colors. Indeed, this follows from the fact that a shortest path in $G \square H$ projects (under the projection on G) onto a shortest path in G and projects (under the projection on H) onto a shortest path in H, cf. [7]. Moreover, the same argument also implies that $\overline{\operatorname{src}}(X) \leq \overline{\operatorname{src}}(G \square H)$ because the induced coloring of X (being embedded into $G \square H$) is also a c-strong rainbow connected coloring using at most $r+s$ colors.

Just as for rainbow connection, we can also say more about c-strong rainbow connected colorings for isometric subgraph of hypercubes. Before we state the result, let us introduce some related notation.

For an edge $a b$ of a partial cube G we will denote with $\Theta(a b)$ the Θ-class of G containing $a b$. Removing the edges $\Theta(a b)$ from G, two connected components $W_{a b}$ (containing the vertices that are closer to a than to b) and $W_{b a}$ (containing the vertices that are closer to b than to a) are obtained. The subgraphs of $W_{a b}$ and $W_{b a}$ containing the vertices that have a neighbor in $W_{b a}$ and $W_{a b}$ are denoted with $U_{a b}$ and $U_{b a}$, respectively. Given a partial cube G, the Θ-coloring is the coloring of the edges of G with Θ-classes.

Theorem 8. Let G be a partial cube. Then $\overline{\operatorname{src}}(G)=\operatorname{idim}(G)$. Moreover, the Θ-coloring is a unique optimal c-strong rainbow connected coloring of G.

Proof. Since no two edges on a shortest path belong to the same Θ-class of G, the Θ-coloring yields $\overline{\operatorname{src}}(G) \leq \operatorname{idim}(G)$.

Let c be an arbitrary c-strong rainbow connected coloring of G using $\overline{\operatorname{src}}(G)$ colors. Fix $a b \in E(G)$. Let $x y$ be an arbitrary edge in $W_{a b}$. The latter graph is a convex subgraph in G, hence every shortest x, a-path (y, a-path, resp.) lies completely in $W_{a b}$ (it may happen that, for instance, $x=a$). The equality $d(x, a)=d(y, a)$ is not possible, as then we would have an odd cycle in G which cannot happen in a partial cube. Thus, without loss of generality, we may assume $d(x, a)<d(y, a)$. Denote with P a shortest x, a-path. Then y, x, P, b is a shortest y, b-path since $U_{a b} \cong U_{b a}, U_{a b}\left(U_{b a}\right.$, resp.) is a convex subgraph in $W_{a b}\left(W_{b a}\right.$, resp.) and the edges between $U_{a b}$ and $U_{b a}$ form a perfect matching representing exactly the edges of $\Theta(a b)$. It follows that $c(x y) \neq c(a b)$. The case when $x y$ is an edge in $W_{b a}$ is analogous. Therefore, no two edges of different Θ-classes
can have the same color in any c-strong rainbow connected coloring. Hence, $\overline{\operatorname{src}}(G) \geq \operatorname{idim}(G)$.
For the uniqueness just observe that, if we would have used in some Θ-class more than one color, then we would need, for the whole graph, strictly more than $\operatorname{idim}(G)$ colors.

As already mentioned, the difference between $\operatorname{diam}(G)$ and $\operatorname{rc}(G)$ can be arbitrarily large. We now show that the same is true for $\operatorname{src}(G)$ and $\overline{\operatorname{src}}(G)$.

Proposition 9. For any $n \geq 4, \overline{\operatorname{src}}\left(W_{n}\right)=\lceil n / 2\rceil$.
Proof. Denote the central vertex of W_{n} with x and the vertices of the outer cycle consecutively with $y_{1}, y_{2}, \ldots, y_{n}$. Any two nonadjacent vertices y_{i} and y_{j} are at distance 2 (which is the diameter of W_{n}), hence in this case the edges $x y_{i}$ and $x y_{j}$ must have different colors. In other words, the only pairs of edges incident to x that can have the same color are of the form $x y_{i}$ and $x y_{j}$, where y_{i} is adjacent to y_{j}. Thus, $\overline{\operatorname{src}}\left(W_{n}\right) \geq\lceil n / 2\rceil$. Now we need to find a coloring that attains this bound.

The edge $y_{i} y_{i+1}$ gets color 1 for odd $i<n$, for even $i<n$ it gets color 2 and the remaining edge $y_{n} y_{1}$ gets color 3 . For all i, the edge $x y_{i}$ gets color $\lceil i / 2\rceil$. Checking that this is a c-strong rainbow connected coloring is straightforward.

Recall from [4] that $\operatorname{src}\left(W_{n}\right)=\lceil n / 3\rceil$. Hence the difference $\overline{\operatorname{src}}\left(W_{n}\right)-\operatorname{src}\left(W_{n}\right)$ can be arbitrarily large. In fact, the same is true also in the class of partial cubes. To see this, consider again the bipartite wheels. Then

$$
\overline{\operatorname{src}}\left(B W_{n}\right)=\operatorname{idim}\left(B W_{n}\right)=n \quad \text { and } \quad\lceil n / 2\rceil \leq \operatorname{src}\left(B W_{n}\right) \leq\lceil n / 2\rceil+2
$$

The first inequality follows from the proof of Proposition 9. For the second one consider the following coloring. Using the notations from Lemma 5, color $x y_{i}$ with $\lceil i / 2\rceil$ and color the edges around the cycle alternatively with the remaining two colors. Checking the rainbow connectedness is easy.

Acknowledgments

The first author is also with the Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana. Work supported by the Ministry of Higher Education, Science and Technology of Slovenia under the grant P1-0297.

References

[1] M. Basavaraju, L.S. Chandran, D. Rajendraprasad and A. Ramaswamy, Rainbow connection number of graph power and graph products, manuscript (2011) arXiv:1104.4190 [math.CO].
[2] Y. Caro, A. Lev, Y. Roditty, Z. Tuza and R. Yuster, On rainbow connection, Electron. J. Combin. 15 (2008) \#R57.
[3] S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster, Hardness and algorithms for rainbow connection, J. Comb. Optim. 21 (2011) 330-347. doi:10.1007/s10878-009-9250-9
[4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[5] T. Gologranc, G. Mekiš and I. Peterin, Rainbow connection and graph products, IMFM Preprint Series 49 (2011) \#1149.
[6] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs: Second Edition (CRC Press, Boca Raton, 2011).
[7] W. Imrich, S. Klavžar and D.F. Rall, Topics in Graph Theory: Graphs and Their Cartesian Products (A K Peters, Wellesley, 2008).
[8] A. Kemnitz and I. Schiermeyer, Graphs with rainbow connection number two, Discuss. Math. Graph Theory 31 (2011) 313-320. doi:10.7151/dmgt. 1547
[9] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185-191. doi:10.1002/jgt. 20418
[10] X. Li and Y. Sun, Characterize graphs with rainbow connection number $m-2$ and rainbow connection numbers of some graph operations, manuscript (2010).
[11] X. Li and Y. Sun, Rainbow connection of graphs - A survey, manuscript (2011) arXiv:1101.5747v1 [math.CO].
[12] I. Schiermeyer, Bounds for the rainbow connection number of graphs, Discuss. Math. Graph Theory 31 (2011) 387-395.
doi:10.7151/dmgt. 1553
[13] P. Winkler, Isometric embedding in products of complete graphs, Discrete Appl. Math. 7 (1984) 221-225.

Received 8 June 2011
Revised 6 February 2012
Accepted 6 February 2012

