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Abstract

Barnette conjectured that each planar, bipartite, cubic, and 3-connected
graph is hamiltonian. We prove that this conjecture is equivalent to the
statement that there is a constant ¢ > 0 such that each graph G of this class
contains a path on at least ¢|V(G)| vertices.
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We use [4] for terminology and notation not defined here and consider finite
simple graphs only.

Barnette’s Conjecture, first announced in [1] and later in [6], is part of a
series of conjectures stating that all members of certain graph classes contain
hamiltonian cycles. In [19], Tait conjectured that all planar, cubic, 3-connected
graphs are hamiltonian. If this conjecture would be true then a short and elegant
proof of the Four-Colour Theorem would follow. Tait’s Conjecture was disproved
by Tutte in [20] by constructing a counterexample. In [21], Tutte conjectured
that all cubic, 3-connected, bipartite graphs are hamiltonian. Horton showed
[9, 5] that also this conjecture is false. A counterexample to the following Bar-
nette’s Conjecture would be a simultaneous counterexample to both the Tait’s,
and Tutte’s Conjectures.

A Barnette graph is a planar, bipartite, cubic, and 3-connected graph. The
famous and longstanding Barnette’s Conjecture is the following

Conjecture 1 (Barnette). Fach Barnette graph is hamiltonian.
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There is an interesting survey on conjectures being equivalent to Barnette’s Con-
jecture by Hertel [8]. The list of such equivalences presented here is by far not
complete.

In their book on graph coloring problems, Jensen and Toft [10] ask the fol-
lowing question and mention that Barnette’s conjecture is true if and only if the
answer to this question is affirmative.

Let G be a simple 3-colorable planar graph. Is it possible to partition the
vertezr set of G into two subsets so that each induces an acyclic subgraph of G ?

This is an example of an equivalent formulation of Barnette’s Conjecture, where
both parts of the proof of the equivalence—necessity and sufficience—are not
trivial. The proof is a consequence of the results of Krél [15, 16] and Stein
17, 18].

The following equivalent formulations of Barnette’s Conjecture strengthen
this conjecture in the sense that if such a formulation is true then trivially Bar-
nette’s Conjecture is true and the main part of the proof of their equivalence is
the converse direction. These results can be found in the papers of Hertel [7, §]
and Kelmans [11, 12, 13, 14].

Theorem 1 (Kelmans). Barnette’s Conjecture holds if and only if for any arbi-
trary face in a Barnette graph, there is a hamiltonian cycle which passes through
any two arbitrary edges on that face.

Theorem 2 (Kelmans). Barnette’s Conjecture holds if and only if for any ar-
bitrary face in a Barnette graph, and for any arbitrary edges e; and ez on that
face, there is a hamiltonian cycle which passes through e1 and avoids es.

Theorem 3 (Hertel). Barnette’s Congecture holds if and only if in any Barnette
graph, any arbitrary path of length 3 is part of some hamiltonian cycle.

In this paper, we formulate a statement concerning the length of a longest path in
a Barnette graph which is seemingly weaker than Barnette’s Conjecture, i.e. this
condition is obviously true if Barnette’s Conjecture is true. Actually, Theorem 4
states that both are equivalent.

Theorem 4. Barnette’s Conjecture is true if and only if there is a constant ¢ > 0
such that each Barnette graph G contains a path on at least c|V (G)| vertices.

Proof. If Barnette’s Conjecture is true then, with ¢ = 1, each Barnette graph G
contains a path on at least ¢|V(G)| vertices.

In [2], it is proved that a cubic and 3-connected graph G contains a cycle on
at least % vertices if G contains a path on k vertices.

Thus, it is sufficient to show that if there is a constant ¢ > 0 such that each
Barnette graph G contains a cycle on at least ¢|V (G)| vertices, then Barnette’s

Conjecture is true.
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For contradiction, we assume that Barnette’s Conjecture is not true and let G
be a plane embedding of a non-hamiltonian Barnette graph on k vertices. Fur-
thermore, let x be an arbitrary vertex of G, y, z, and u be the neighbors of x in
G, and H be the graph obtained from G by removing x. The vertices y, z, and
u have degree 2 in H and belong to the boundary of a common face F' of H. In
the sequel let H be embedded into the plane such that F' is the outer face of H.

We define an infinite sequence {G;},7 > 0 of plane graphs as follows: Let G
be an embedding of the graph of the cube and for ¢ > 0 let G;41 be obtained
from G; by successively replacing each vertex of G; by a copy of H, where the
operation of replacing a vertex v of G; by a copy of H is shown in the following
figure. The inverse operation we denote by shrinking H to v, i.e. G; is obtained
from G;41 by shrinking all copies of H in G;41.

y —

It is easy to see that all graphs G; are Barnette graphs. If n(G;) denotes the
number of vertices of G;, then n(Go) = 8 and n(G,11) = (k — 1)n(G;), hence,
n(G;) =8 (k —1)" for i > 0.

Since H has k — 1 vertices and because G is non-hamiltonian, each path of
H connecting two vertices in {y, z, u} contains at most k — 2 vertices. Consider a
longest cycle C of Gi11. If a copy H' of H in G171 has a non-empty intersection
with C, then this intersection is a path of H' connecting two vertices of {y, z,u}
and, therefore, containing at most k—2 vertices of H'. The cycle D obtained from
C by shrinking all copies of H in G;41 is a cycle of G; and the number of vertices
of D is the number of copies of H in G;41 having a non-empty intersection with
C. If ¢(G;) is the number of vertices of a longest cycle of G;, then ¢(Gy) = 8 and
c(Gip1) = [V(O)| < (k—2)|V(D)| < (k—2)e(G5), consequently, ¢(G;) < 8-(k—2)
for ¢ > 0.

Since lim C(G"_) = 0, there is no constant ¢ > 0 such that each Barnette
1—00 n(Gy)
graph G contains a cycle on at least ¢|V(G)| vertices. |
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