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Abstract

An edge-coloured connected graphG = (V,E) is called rainbow-connected

if each pair of distinct vertices of G is connected by a path whose edges have
distinct colours. The rainbow connection number of G, denoted by rc(G), is
the minimum number of colours such that G is rainbow-connected. In this
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paper we prove that rc(G) ≤ k if |V (G)| = n and |E(G)| ≥
(

n−k+1

2

)

+ k − 1
for all integers n and k with n − 6 ≤ k ≤ n − 3. We also show that this
bound is tight.

Keywords: rainbow-connected graph, rainbow colouring, rainbow connec-
tion number.
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1. Introduction

We use [1] for terminology and notation not defined here and consider finite and
simple graphs only.

An edge-coloured connected graph G is called rainbow-connected if each pair
of distinct vertices of G is connected by a rainbow path, that is, by a path whose
edges have pairwise distinct colours. Note that the edge colouring need not to be
proper. The rainbow connection number of G, denoted by rc(G), is the minimum
number of colours such that G is rainbow-connected.

This concept of rainbow connection in graphs was introduced by Chartrand
et al. in [5]. An easy observation is that if G has n vertices then rc(G) ≤ n− 1,
since one may colour the edges of a given spanning tree of G with different colours
and colour the remaining edges with one of the already used colours. Chartrand
et al. determined the precise rainbow connection number of several graph classes
including complete multipartite graphs [5]. The rainbow connection number has
been studied for further graph classes in [2] and for graphs with fixed minimum
degree in [2, 10, 15].

There are different applications for such edge colourings of graphs. One in-
teresting example is the secure transfer of classified information between agencies
(see, e.g.[6]).

The computational complexity of rainbow connectivity has been studied in
[3, 11]. It is proved that the computation of rc(G) is NP-hard ([3, 11]). In fact,
it is already NP-complete to decide whether rc(G) = 2. It is also NP-complete
to decide whether a given edge-coloured graph (with an unbounded number of
colours) is rainbow-connected [3]. More generally, it has been shown in [11] that
for any fixed k ≥ 2 it is NP-complete to decide whether rc(G) = k.

For the rainbow connection numbers of graphs the following results are known
(and obvious).

Proposition 1. Let G be a connected graph of order n. Then

(1) 1 ≤ rc(G) ≤ n− 1,

(2) rc(G) ≥ diam(G),

(3) rc(G) = 1 if and only if G is complete,

(4) rc(G) = n− 1 if and only if G is a tree.
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2. Rainbow Connection and Size of Graphs

In [9] the following problem was introduced.

Problem 2. For all integers n and k with 1 ≤ k ≤ n− 1 compute and minimize

the function f(n, k) with the following property: If |V (G)| = n and |E(G)| ≥
f(n, k), then rc(G) ≤ k.

The following lower bound for f(n, k) has been shown.

Proposition 3 [9]. For n and k with 1 ≤ k ≤ n − 1 it holds that f(n, k) ≥
(

n−k+1

2

)

+ k − 1.

This lower bound is tight what can be seen by the construction of a graph Gk as
follows: Take a Kn−k+1 − e and denote the two vertices of degree n− k− 1 with
u1 and u2. Now take a path Pk by vertices labeled w1, w2, . . . , wk and identify
the vertices u2 and w1. The resulting graph Gk has order n and size |E(Gk)| =
(

n−k+1

2

)

+ k − 2. For its diameter we obtain d(u1, wk) = diam(Gk) = k + 1 =
rc(Gk).

Problem 4. Determine all values of n and k such that

f(n, k) =

(

n− k + 1

2

)

+ k − 1.(1)

It has been shown in [9] that f(n, k) =
(

n−k+1

2

)

+ k − 1 for k = 1, 2, n − 2, and
n− 1 and in [12] for k = 3 and 4. This is summarized in the following theorem.

Theorem 5. For all integers n and k with k = 1, 2, 3, 4, n− 2, n− 1 it holds that

f(n, k) =
(

n−k+1

2

)

+ k − 1.

The main result of this paper is the solution of Problem 4 for all graphs of order
n for k satisfying n− 6 ≤ k ≤ n− 3.

The proof of this result consists of several parts. First, we prove for 2-
connected graphs G of order n and size at least

(

n−k+1

2

)

+ k− 1 that rc(G) ≤ k if
n−5 ≤ k ≤ n−3. In the second step we prove this for k = n−6 and 2-connected
graphs G where the case n = 11 and k = 6 covers most effort. Finally, we prove
in the third step the statement for n− 6 ≤ k ≤ n− 3 and connected graphs that
are not 2-connected.

Recently an improved upper bound for the rainbow connection number of
2-connected graphs has been shown.

Lemma 6 [7]. Let G be a 2-connected graph with n vertices. Then rc(G) ≤ ⌈n
2
⌉.

Theorem 7. If G is a 2-connected graph with |V (G)| = n and |E(G)| ≥
(

n−k+1

2

)

+ k − 1, then rc(G) ≤ k if n− 5 ≤ k ≤ n− 3 or if k = n− 6 and n ≥ 12.
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Proof. We may assume that k ≥ 5 since (1) holds for 1 ≤ k ≤ 4. This implies
n ≥ 8 if k = n− 3 and thus rc(G) ≤ ⌈n

2
⌉ ≤ n− 4 < n− 3,

n ≥ 9 if k = n− 4 and thus rc(G) ≤ ⌈n
2
⌉ ≤ n− 4,

n ≥ 10 if k = n− 5 and thus rc(G) ≤ ⌈n
2
⌉ ≤ n− 5,

n ≥ 11 if k = n− 6 and thus rc(G) ≤ ⌈n
2
⌉ ≤ n− 6 for all n ≥ 12.

3. f(11, 5) = 25

In the proof of the next theorem we will use the following result.

Lemma 8 [4]. Let G be a connected graph with δ(G) ≥ 2 and D be a dominating

set of G such that G[D] is connected. Then rc(G) ≤ rc(G[D]) + 3.

Let an rc colouring of a graph G be an edge colouring such that G is rainbow-
connected.

Lemma 9. Let G be a connected graph with a partition of its vertex set V (G)
into two subsets V1, V2 such that G[V1] and G[V2] are both connected and V1 is a

dominating set in G. If rc(G[V1]) ≤ k and rc(G[V2]) ≤ l for integers k, l ≥ 1 then

rc(G) ≤ max{k, l}+ 1.

Proof. Take an rc colouring of G[V1] with k colours and an rc colouring of G[V2]
with l colours and colour all edges between V1 and V2 with an additional colour.
Then G is rainbow-connected and therefore rc(G) ≤ max{k, l}+ 1.

Theorem 10. Let G = (V,E) be a 2-connected graph of order |V | = 11, size

|E| = 25 and maximum degree ∆(G) ≥ 7. Then rc(G) ≤ 5.

Proof. If ∆(G) = 10 then G contains a dominating vertex and hence rc(G) ≤ 3
by Lemma 8. If ∆(G) = 9 then G contains a dominating K2 and therefore
rc(G) ≤ 1 + 3 = 4. If ∆(G) = 8 then G always contains a dominating P3 and
hence rc(G) ≤ 2 + 3 = 5.

Suppose now that ∆(G) = 7. Let w be a vertex with d(w) = 7 and let
F = G[N [w]] and H = G[V \N [w]] which implies |V (H)| = 3.

First assume that H ∼= 3P1 or H ∼= P2 ∪ P1. If there is a vertex w1 ∈ N(w)
such that NH(w1) = V (H) then the vertices w and w1 induce a dominating P2

implying that rc(G) ≤ 1+3 = 4 < 5. If there are two vertices w1, w2 ∈ N(w) such
that NH(w1)∪NH(w2) = V (H) then (w1, w, w2) is a dominating P3 implying that
rc(G) ≤ 2 + 3 = 5. Otherwise, |E(F,H)| ≤ 7. Then |E(F )| ≥ 25− (7 + 1) = 17
and so rc(F ) ≤ 3 by Theorem 5. Take an rc colouring of F with colours 1, 2, 3. If
H ∼= 3P1 then colour all edges incident with a vertex of H with colours 4 and 5
such that each colour occurs at least once at every vertex of H. If H ∼= P2 ∪ P1,
say V (P2) = {u1, u2}, V (P1) = {u3}, then colour the edge u1u2 with colour 1, all
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other edges incident to u1 or u2 with colour 4, and all edges incident to u3 with
colour 5 to obtain a rainbow colouring of G with 5 colours.

Next assume that H ∼= K3. Then there is a dominating P3 implying rc(G) ≤
2 + 3 = 5 by Lemma 8.

Finally, assume that H ∼= P3 with P3 = (u1, u2, u3). If w1u2 ∈ E(G) for a
vertex w1 ∈ N(w) then {w,w1, u2} is a dominating set implying that rc(G) ≤
2+3 = 5. Hence we may assume that N(u2)∩N(w) = ∅. Then N(ui)∩N(w) 6= ∅
for i = 1 and i = 3 since G is 2-connected. If w1u1, w1u3 ∈ E(G) for a vertex
w1 ∈ N(W ) then {w,w1, u1} is a dominating set implying that rc(G) ≤ 2+3 = 5.

Hence we may assume that N(u1) ∩ N(u3) ∩ N(w) = ∅. Then |E(F )| ≥
25 − (7 + 2) = 16. Let dF (ui) = di for i = 1, 3 and 1 ≤ d1 ≤ d3. Then d1 ≤ 3.
Let X = {u1, u2} and Y = V (G) \ X. Then G[X] and G[Y ] are connected, Y
dominates X, and |E(G[Y ])| ≥ 25 − 5 = 20. We then obtain rc(G[Y ]) ≤ 4 by
Theorem 5, and thus Lemma 9 implies that rc(G) ≤ 5.

We will use the following lemma, which is just a special case of a very strong
theorem characterizing k-connected graphs proven independently by Győri [8]
and Lovász [14].

Lemma 11. If G = (V,E) is a 2-connected graph of order n, then for every pair

of vertices v1, v2 and for every pair of positive integers n1, n2 with n1 + n2 = n
there exists a partition of V into two subsets V1, V2 such that v1 ∈ V1, v2 ∈ V2,

|V1| = n1, |V2| = n2 and the induced graphs G[V1], G[V2] are connected.

Theorem 12. Let G = (V,E) be a 2-connected graph of order |V | = 11, size

|E| = 25, maximum degree ∆(G) ≤ 6, and minimum degree δ(G) = 2. Then

rc(G) ≤ 5.

Proof. Let w ∈ V (G) be a vertex with d(w) = 2 and w1, w2 be its two neigh-
bours. Then d(wi) ≤ 6 for i = 1, 2 since ∆(G) ≤ 6. By Lemma 11 there is a
partition of V into two subsets V1, V2 such that w ∈ V1, |V1| = 2, |V2| = 9 and
the induced graphs G[V1], G[V2] are connected. We conclude that |E(G[V2])| ≥
25 − 7 = 18. Hence rc(G[V2]) ≤ 4 by Theorem 5. Clearly, rc(G[V1]) = 1 < 4
and V2 is a dominating set in G which induces a connected subgraph. Therefore,
rc(G) ≤ 5 by Lemma 9.

To organize the proof of the next theorem we provide a couple of lemmas. The
following facts are just special cases of Theorem 5.

Proposition 13. Let G1 be a connected graph of order 5 and G2 be a connected

graph of order 6. Then

(1) rc(G1) ≤ 3 if |E(G1)| ≥ 5,

(2) rc(G1) ≤ 2 if |E(G1)| ≥ 7,
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(3) rc(G2) ≤ 3 if |E(G2)| ≥ 8,

(4) rc(G2) ≤ 2 if |E(G2)| ≥ 11.

Lemma 14. Let G = (V,E) be a 2-connected graph of order 11, size 25 and

δ(G) ≥ 3. Then there exists a partition of the vertex set V into two sets, X and

Y, such that |X| = 5 and |Y | = 6, the graphs G1 = G[X] and G2 = G[Y ] are
connected, G2 is of size at least 6.

Proof. By Lemma 11 there exists a partition of V into sets X and Y such
that |X| = 5, |Y | = 6 and G1 = G[X], G2 = G[Y ] are connected, and hence
|E(G1)| ≥ 4, |E(G2)| ≥ 5. If |E(G2)| ≥ 6, then we are done, so assume that
|E(G2)| = 5, hence G2 is a tree. Let y be a leaf of G2. Since δ(G) ≥ 3, y must
have at least two neighbours in X, and thus Y \ {y} and X ∪ {y} form a desired
partition of V .

Let G = (V,E) be a 2-connected graph of order 11, size 25 and δ(G) ≥ 3. Our
aim is to give a rainbow colouring of the edges of G with five colours. Let X,Y
be a partition as in Lemma 14. Then by Theorem 5 four colours, say 1, 2, 3, 4,
suffice for an rc colouring of G1 and G2, respectively. The fifth colour, say 5, will
be used for the edges of the set E(X,Y ), the set of edges between vertices of X
and vertices of Y . If X dominates Y or Y dominates X then we are done by
Lemma 9. If this is not the case then denote by X ′ the set of those vertices of
X that are not connected with Y , and, similarly, denote by Y ′ the set of those
vertices of Y that are not connected with X. Since G is 2-connected, we have
1 ≤ |X ′| ≤ 3 and 1 ≤ |Y ′| ≤ 4. Moreover, since δ(G) ≥ 3, the vertices in X ′ and
Y ′ are of degree at least three in G1 = G[X] and G2 = G[Y ], respectively.

Let f be an rc colouring of the graph G1 with X ′ 6= ∅. A colour of an edge
of a rainbow path connecting a vertex of X ′ with any vertex of X \X ′ is called
transit. We are interested in the minimum number of transit colours sufficient
to go from every vertex of X ′ to any (i.e., at least one) vertex of X \ X ′ by a
rainbow path using these colours. The minimum is taken over all possible rc
colourings of G1 with (at most) four colours. This number will be denoted by
t(X ′). We define analogously t(Y ′), where the minimum is taken over all possible
rc colourings of G2 with four colours. Evidently, if |X ′| = 1, then t(X ′) = 1.

Lemma 15 (Transit Lemma). Let G be a 2-connected graph of order 11, size 25
and δ(G) ≥ 3, and let X,Y be a partition of V as in Lemma 14 with G1 = G[X]
and G2 = G[Y ]. Then there is an rc colouring of G with five colours if

(1) t(X ′) + rc(G2) ≤ 4 or

(2) rc(G1) + t(Y ′) ≤ 4.

Proof. We shall prove only (1). The proof of (2) is analogous. Let f1 be an rc
colouring of G1 that minimizes the parameter t(X ′) and let f2 be an rc colouring
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of G2 that minimizes the parameter rc(G2). Without loss of generality, we may
assume that the colours used as transit colours in G1 and the colours used by f2
form disjoint sets. Let now x be a vertex of X ′. By definition of t = t(X ′) we
are able to reach the set X ′′ = X \X ′ (from x ∈ X ′) by a rainbow path of length
at most t, i.e., using at most t colours. Next, we go to a vertex y ∈ Y by an
edge belonging to E(X,Y ), i.e., coloured by the fifth colour. From y we are able
to reach all remaining vertices of Y using at most rc(G2) colours. If x ∈ X \X ′

then we go directly to Y .

In order to apply the transit lemma above, we shall first estimate the parameter
t in distinct cases.

Lemma 16. Let G1 be a connected graph of order 5 with vertex set X and let

X ′ be a nonempty subset of X. Suppose that all vertices of X ′ are of degree at

least three in G1.

(1) If |X ′| = 2, then t(X ′) = 1 and |E(G1)| ≥ 5.

(2) If |X ′| = 3, then t(X ′) ≤ 2 and |E(G1)| ≥ 6.

Proof. The claimed size of |E(G1)| is simply a consequence of the fact that every
vertex in X ′ is of degree at least 3, while every vertex in X ′′ = X \X ′ must have
degree at least 1 by connectedness of G1.

Assume first that |X ′| = 2 and X ′ = {x1, x2}, hence |E(G1)| ≥ 5. Then,
since d(x1), d(x2) ≥ 3, x1 and x2 must have a common neighbour, say x, such
that x1, x, x2 lie on a common cycle, i.e., a triangle if x1 and x2 are adjacent, or
a square otherwise. Thus we may temporarily remove the edge xx2 and find an
rc colouring of the remaining graph with four colours. Then it is sufficient to use
the same colour for xx2 as is used for xx1 to obtain an rc colouring of G1 with
t(X ′) = 1.

Suppose then that |X ′| = 3 and X ′ = {x1, x2, x3}, hence |E(G1)| ≥ 6. Then,
since d(x1), d(x2), d(x3) ≥ 3, it is easy to see that there must exist x ∈ X ′′ forming
a triangle with two vertices of X ′. Indeed, this is obvious if X ′ induces a complete
graph in G1. Otherwise, if, e.g.(without loss of generality) x1x2 ∈ E(G1) and
x2x3 /∈ E(G1), then x1 must have a neighbour x ∈ X ′′, while x2 is adjacent with
both vertices from X ′′ (in particular with x). Then, analogously as above, we
first fix an rc colouring of G1 with the edge xx2 removed, and then colour xx2
with the colour of xx1. Since x3 must have at least one neighbour in X ′′, the
proof is completed.

Lemma 17. Let G2 be a connected graph of order 6 and size ≥ 6 with vertex set

Y and let Y ′ be a nonempty subset of Y . Suppose that all vertices of Y ′ are of

degree at least three in G2.

(1) If |Y ′| = 2, then t(Y ′) = 1.
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(2) If |Y ′| = 3, then t(Y ′) ≤ 2.

(3) If |Y ′| = 4, then t(Y ′) ≤ 3.

Proof. First, note that if G2 contains a triangle, we may construct an rc colour-
ing of the edges of G2 with four colours as follows. We contract the edges of this
triangle (ignoring multiple edges and loops), then we choose an rc colouring of the
resulting connected graph of order 4 with colours 2, 3, 4, subsequently we reverse
the contraction process returning to the original graph G2 (where the meanwhile
ignored multiple edges copy the colour of their retained corespondents), and fi-
nally we colour the edges of the triangle with colour 1. If, on the other hand, G2

contains a square, we analogously construct an rc colouring by contracting the set
of edges of this square, then using colours 3, 4 for the resulting graph, and finally
colouring the edges of the square alternately 1, 2, 1, 2 (and putting arbitrary of
the colours on the possibly remaining edges).

Suppose |Y ′| = 2, Y ′ = {y1, y2}. Since d(y1), d(y2) ≥ 3 then, if y1y2 /∈ E(G2),
G2 contains a square with (opposite) vertices y1, y2. Then the assertion follows
by the contraction construction above. If, on the other hand, y1y2 ∈ E(G2)
then, if G2 contains a triangle or a square including y1 and y2, we are again
done by the construction above. Otherwise, N(y1) and N(y2) are disjoint (hence
|N(y1) \ {y2}| = 2 and |N(y2) \ {y1}| = 2) and there are no edges between
N(y1) \ {y2} and N(y2) \ {y1}. Since |E(G2)| ≥ 6, the vertices from N(y1) \ {y2}
or (symmetrically) N(y2) \ {y1} must form an edge in G2. Then colour the edges
incident to y1 but not to y2 with colours 1 and 2, also the edges incident to
y2 but not to y1 with colours 1 and 2, the edge connecting the two vertices of
N(y1) \ {y2} (or of N(y2) \ {y1}) with colour 3, and the edge y1y2 with colour 4.

Suppose now that |Y ′| = 3 and Y ′ = {y1, y2, y3}. If Y ′ induces a triangle in
G2, then we apply the contraction construction above using this triangle. Then
from every yi we can reach Y ′′ = Y \ Y ′ by (optionally) first going through an
edge coloured with 1 and then through any (previously fixed) edge joining Y ′ and
Y ′′. Otherwise, since d(y1), d(y2), d(y3) ≥ 3, it is very easy to verify that G2

must contain a triangle with two vertices from Y ′ or a square with two elements
from Y ′ as opposite vertices, hence we are done by the contraction construction
above.

Let finally |Y ′| = 4, Y ′ = {y1, y2, y3, y4} and Y ′′ = Y \Y ′ = {y5, y6}. Without
loss of generality, assume that d(y6) ≤ d(y5). Then it is easy to verify that the
graph G2 − y6 is connected and has size at least 5 (since d(y1), d(y2), d(y3),
d(y4) ≥ 3), hence, by Proposition 13, we may choose an rc colouring using colours
1, 2, 3 which implies t(Y ′) ≤ 3. Then we are done by using colour 4 on the edges
incident to y6.

Theorem 18. Let G = (V,E) be a 2-connected graph of order |V | = 11, size

|E| = 25, and minimum degree δ(G) ≥ 3. Then rc(G) ≤ 5.
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Proof. Let X,Y be a partition as in Lemma 14 with X ′, Y ′ being the subsets
of those vertices from X, Y which have no neighbours in Y , X, respectively. Set
X ′′ = X \ X ′, Y ′′ = Y \ Y ′. If X ′ = ∅ or Y ′ = ∅, then the result is obvious.
Assume then that |X ′| ≥ 1, |Y ′| ≥ 1 (|X ′| ≤ 3, |Y ′| ≤ 4 since G is 2-connected).
We will consider four cases with respect to the size of |Y ′|.

Case 1. |Y ′| = 4. Consider first the case where |X ′| = 1 or |X ′| = 2. Then
t(X ′) = 1 by Lemma 16. If rc(G2) ≤ 3, we are done by Lemma 15. So, we may
assume that either rc(G2) ≤ 3 and |X ′| ≥ 3 or rc(G2) = 4.

If rc(G2) ≤ 3 and |X ′| ≥ 3, then |E(X,Y )| ≤ 4 (since |Y ′| = 4) and, in conse-
quence, |E(G2)| ≥ 11 (since |E(G1)| ≤ 10). Then rc(G2) ≤ 2 by Proposition 13.
So, we can apply Lemma 15(1) since t(X ′) ≤ 2.

If, on the other hand, rc(G2) = 4, then |E(G2)| ≤ 7 by Proposition 13.
Since |E(X,Y )| ≤ 8 (because of |X ′| ≥ 1) we have |E(G1)| = 10, i.e., G1

∼= K5.
Then rc(G1) = 1. Moreover, by Lemma 17, t(Y ′) ≤ 3, hence we are done by
Lemma 15(1).

Case 2. |Y ′| = 3. Then t(Y ′) ≤ 2, and, if rc(G1) ≤ 2, then we are done by
Lemma 15(2). So, assume that rc(G1) ≥ 3. Then, in particular, |E(G1)| ≤ 6 by
Proposition 13.

Consider first the case |X ′| = 3. Then |E(G1)| + |E(X,Y )| ≤ 12, which
implies that |E(G2)| ≥ 13. But then rc(G2) ≤ 2 by Proposition 13 and, since
t(X ′) ≤ 2, we can again apply Lemma 15(1).

Now suppose that |X ′| = 2. Then t(X ′) = 1 by Lemma 17 and we are done
if rc(G2) ≤ 3. If not, then rc(G2) = 4 and |E(G2)| ≤ 7 by Proposition 13. But
then |E(G1)| ≥ 9, and hence rc(G1) ≤ 2 again by Proposition 13. Thus we are
done by Lemma 15(2).

Finally, consider the case |X ′| = 1 (which implies t(X ′) = 1). Let X ′ = {a}
and denote by x one of its neighbours, x ∈ X ′′. As above, we are done if rc(G2) ≤
3. So, suppose that rc(G2) = 4. By Proposition 13 we have |E(G2)| ≤ 7. Thus
|E(G1)| ≥ 6. If |E(G1)| ≥ 7, then rc(G1) ≤ 2 and, since t(Y ′) ≤ 2, we are
done. So, |E(G1)| = 6, and thus the set E(X ′′, Y ′′) has all possible edges. In
consequence, x is connected by an edge to all vertices in Y ′′, and the result
follows.

Case 3. |Y ′| = 2. Then t(Y ′) = 1 by Lemma 17 and we are done if rc(G1) ≤ 3.
So, assume that rc(G1) = 4. Thus G1 is a tree, |E(G1)| = 4. But then, by
Lemma 16, |X ′| = 1. Let X ′ = {a} and Y ′ = {b, c}. By Lemma 17 we may
choose an rc colouring of G2 with four colours such that we have two edges
by1, cy2 with y1, y2 ∈ Y ′′ coloured the same (in particular we may have y1 = y2).
As above, we are done if rc(G2) ≤ 3. So, suppose that G2 has less than 8 edges.
Then there are at least 14 edges between X and Y . So, we can have at most two
edges ‘missing’ in E(X ′′, Y ′′), hence at least one of (at least) three neighbours of
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a, say x ∈ X ′′, is joined to both y1 and y2, and the result follows.

Case 4. |Y ′| = 1. Let Y ′ = {b} and denote by y any neighbour of b, y ∈ Y ′′.
As above, we are done if rc(G1) ≤ 3. So, assume that rc(G1) = 4. Thus G1 is a
tree, and hence |X ′| = 1 by Lemma 16. Say X ′ = {a}. Since d(a) ≥ 3, for each
vertex x of X ′′ there is a path of length at most 2 (i.e., with at most 2 colours
in any rainbow colouring of the tree G1) from this vertex x to a. On the other
hand, by the definition of Y ′, at least one vertex from X ′′ is joined to y, and
again the result follows.

4. G Is Not 2-connected

Lemma 19 (Bridge reduction). Let G be a connected graph, e = uw be a bridge

of G, and let G′ be the graph obtained from G by contracting the edge e. If

rc(G′) = p, then rc(G) ≤ p+ 1.

Proof. Choose an rc colouring of G′ with colours 1, 2, . . . , p. Now colour the edge
e with colour p+ 1. Then G is rainbow-connected and rc(G) ≤ p+ 1.

Theorem 20. If G is a connected graph which is not 2-connected with |V (G)| = n
and |E(G)| ≥

(

n−k+1

2

)

+ k − 1, then rc(G) ≤ k if n− 6 ≤ k ≤ n− 3.

Proof. Setting g(n, k) =
(

n−k+1

2

)

+ k − 1 and k = n− t we obtain g(n, n− t) =

n+
(

t
2

)

− 1.

The proof will be by induction on the number n of vertices. For n = t + 1
we obtain g(t+ 1, 1) =

(

t+1

2

)

= t+ 1 +
(

t
2

)

− 1.

Consider for the induction step from n to n+1 a graph G of order n+1 with
n+ 1 +

(

t
2

)

− 1 edges.

If G contains a bridge, say e, then we apply the bridge reduction of Lemma 19
and obtain |E(G′)| = (n+1+

(

t
2

)

− 1)− 1 = g(n, n− t). Hence rc(G′) ≤ n− t by
induction hypothesis and therefore rc(G) ≤ n+ 1− t by Lemma 19.

If G contains no bridge but a cut vertex, say w, then G can be decomposed into
two subgraphs G1, G2 such that V (G1) ∪ V (G2) = V (G) and V (G1) ∩ V (G2) =
{w}. Let ni = |V (Gi)| and mi = |E(Gi)| = ni + ti for i = 1, 2. Since G has no
bridges we conclude that ni ≥ 3 and ti ≥ 0 for i = 1, 2.

For each ti there exists an integer si ≥ 2 such that ti + 1 ≥
(

si
2

)

. Choose si
maximal with this property. Then ti + 1 ≤

(

si+1

2

)

− 1.

Assume that s1+s2 ≤ t. With |E(G)| = n+1+
(

t
2

)

−1 = (n1+ t1)+(n2+ t2)
we obtain
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t1 + t2 + 1 =
(

t
2

)

=
∑t−1

j=1
j ≥

∑s1+s2−1

j=1
j =

∑s1
j=1

j +
∑s1+s2−1

j=s1+1
j

>
∑s1−1

j=1
j + s1 +

∑s1+s2−1

j=s1+1
(j − (s1 − 1))

=
∑s1−1

j=1
j + (s1 − 1) +

∑s2
j=1

j

>
∑s1−1

j=1
j + (s1 − 1) +

∑s2−1

j=1
j + (s2 − 1)

=
(

s1+1

2

)

− 1 +
(

s2+1

2

)

− 1 ≥ (t1 + 1) + (t2 + 1),
a contradiction. Hence we have s1 + s2 ≥ t+ 1.

Now we apply the induction hypothesis. We have |E(Gi)| = ni + ti = ni +
(ti+1)−1 ≥ ni+

(

si
2

)

−1. Hence rc(Gi) ≤ ni−si for i = 1, 2. Choose for i = 1, 2 an
rc colouring of Gi with ni−si distinct colours where the colour sets for G1 and G2

are disjoint. Note that if si = 2 this is possible by Theorem 5 and if 3 ≤ si ≤ t
this is possible by induction if Gi is not 2-connected and by Theorems 7, 10,
12, 18 if Gi is 2-connected. This colouring is an rc colouring of G. Moreover,
rc(G) ≤ (n1 − s1) + (n2 − s2) = (n + 1) − (s1 + s2) ≤ (n + 1) − (t + 1) = n − t
which concludes the proof.

Summarizing the results of Theorems 7, 10, 12, 18, 20 we obtain together with
the remark after Proposition 3 our main theorem.

Theorem 21. For all integers n and k with n − 6 ≤ k ≤ n − 3 it holds that

f(n, k) =
(

n−k+1

2

)

+ k − 1.

It would be an interesting task to determine additional values of n and k (beside
those of Theorems 5 and 21) such that f(n, k) =

(

n−k+1

2

)

+ k − 1. Of course,
partial results can be obtained by applying Lemma 6.
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