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Abstract

A graph is called 1-planar if there exists a drawing in the plane so that
each edge contains at most one crossing. We study maximal 1-planar graphs
from the point of view of properties of their diagrams, local structure and
hamiltonicity.
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1. Introduction

Throughout this paper, we consider connected graphs without loops or multiple
edges; we use the standard graph terminology by [1]. The graphs are represented
by drawings in the plane, with vertices being distinct points and edges being arcs
that join the points corresponding to their endvertices; the arcs are supposed to
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be simple, not containing vertex points in their interiors, and there is no point of
the plane which is an interior point of more than two arcs.

A graph G is called planar if there exists its drawing D(G) in the plane so
that no two edges of D(G) have an internal point (a crossing) in common; the
drawing D(G) with this property is called a plane graph.

There are several different approaches generalizing the concept of planarity.
One of them allows, in a drawing of a graph, a given constant number of crossings
per edge. Particularly, if there exists a drawing D(G) of a graph G in the plane
in such a way that each edge of D(G) contains at most one crossing, then G is
called 1-planar. These graphs were first introduced by Ringel [10] in connection
with the simultaneous vertex/face colouring of plane graphs (note that the graph
of adjacency/incidence of vertices and faces of a plane graph is 1-planar).

In this paper, we concentrate on properties of maximal 1-planar graphs.
Recall that a graph G from a family G of graphs is maximal if G+uv 6∈ G for any
two nonadjacent vertices u, v ∈ V (G). Pach and Tóth ([9], see also [3]) proved
that each 1-planar graph on n vertices has at most 4n− 8 edges and this bound
is attained for every n ≥ 12. An n-vertex 1-planar graph is called optimal if it
has 4n− 8 edges.

Our results demonstrate that optimal 1-planar graphs are, in certain aspects,
similar to maximal planar graphs, however, there are several remarkable differ-
ences. In Section 2, we prove that optimal 1-planar graphs are hamiltonian; this
is in sharp contrast with the family of maximal planar graphs where exist an
infinite sequence {Gi}

∞

i=1 of plane triangulations such that, for each i, every cycle

of Gi has length at most c|V (Gi)|
log 2

log 3 (see [8]). On the other hand, optimal 1-
planar graphs have similar local structure as maximal planar ones – we prove that
each large enough optimal 1-planar graph contains a k-vertex path whose weight
(i.e. the sum of degrees of its vertices) is at most 8k − 1, and each large enough
maximal 3-connected 1-planar graph contains a k-vertex path with degrees of its
vertices being bounded above by 10k; these results are analogous to the results
in [7] (each hamiltonian plane graph containing a k-vertex path contains also a
k-vertex path of weight at most 6k − 1) and [2] (each 3-connected plane graph
that contains a k-vertex path, contains also a k-vertex path with all vertices of
degrees at most 5k). In Section 3, we study bounds on the number of edges of
an n-vertex maximal 1-planar graph; we give constructions showing that there
exist maximal 1-planar graphs on n vertices which have about cn edges, where
8
3 ≤ c ≤ 4. Finally, we present several open problems related to this topic.

For the purpose of proving the results of this paper, we use specialized nota-
tion of [3] and [5]. Given a 1-planar graph G and its 1-planar drawing D = D(G),
the associated plane graph D× is the plane graph obtained from D by turning
all crossings to new 4-valent vertices; these new vertices are called false vertices,
other vertices of D× are true.



On Properties of Maximal 1-planar Graphs 739

2. The Results

First, we prove an auxiliary result on the structure of the associated plane graphs
of 1-planar drawings of an optimal 1-planar graph:

Lemma 1. For any optimal 1-planar graph G, there exists a 1-planar drawing

such that its associated plane graph is 4-connected.

Proof. Suppose to the contrary that there exists an optimal 1-planar graph G

such that each its 1-planar drawing produces the associated plane graph which
has vertex connectivity at most 3. By Lemma 15 of [12], G is 4-connected. Also,
by Theorem 11 of [12], there exists an 1-planar drawing D of G which can be
obtained from a 3-connected plane quadrangulation by inserting a pair of crossing
edges into each of its 4-faces. It follows that D× is a plane triangulation different
from a 3-cycle; thus, we obtain that D× has connectivity 3. Now, if S = {x, y, z}
is a 3-cut of D×, then (see Lemma 14 of [12]) x, y, z induce a separating 3-cycle
C in D×. If S consists only of true vertices of D×, then S is also a cut of G , a
contradiction. Hence, S contains a false vertex, say x. By the 1-planarity of G,
no two false vertices of D× are adjacent, thus x is the unique false vertex on C.
Since C is a separating 3-cycle of D×, it follows that, in the interior of C in D×,
there exists an edge xx′; hence, we obtain that the edges yx and xz of D× form
a crossed edge yz in D. This is, however, a contradiction with the fact that y

and z are already joined in D with an edge of C.

It is not known whether analogous result holds for maximal 1-planar graphs;
however, for 7-connected 1-planar graphs, we have

Lemma 2. For any 7-connected 1-planar graph, there exists a 1-planar drawing

such that its associated plane graph is 4-connected.

Proof. Suppose to the contrary that there exists a 7-connected 1-planar graph
G such that, for each of its 1-planar drawings D, the associated plane graph D×

has vertex connectivity at most 3. Without loss of generality, D can be chosen
to have the minimum possible number of crossings. Then, using Lemma 2.1 of
[3] on G, we obtain that D× has vertex connectivity exactly 3. Let S be a 3-cut
in D×; then D× \ S consists of exactly two components D1, D2.

Assume that S consists of t true vertices v1, . . . , vt and f false vertices
w1, . . . , wf with t+ f ≤ 3. Let wi ∈ S be a false vertex; as no two false vertices
of D× are adjacent, all four neighbours of wi are true. Let S′(wi) be the subset
of neighbours of wi defined as follows:

• if two neighbours a, b belong to D1 and another two neighbours belong to
D2, then S′(wi) = {a, b},
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• if three neighbours a, b, c belong to D1 and the remaining neighbour d be-
longs to D2, then S′(wi) = {d}.

Let S′ =
f
⋃

i=1
S′(wi) ∪

t
⋃

j=1
{vj}. From the properties of S, it follows that S′ is

a vertex cut in G. By the construction of S′, we conclude that |S′| ≤ 6, a
contradiction to the 7-connectivity of G.

Theorem 3. Each optimal 1-planar graph is Hamiltonian.

Proof. Let G be an optimal 1-planar graph (hence, it has more than six vertices).
Then, by Lemma 1, there exists a 1-planar drawing D of G such that D× is 4-
connected; hence, by Tutte’s theorem, D× contains a Hamilton cycle C. Let x be
a false vertex of D× and xy, xz be edges of C incident with x. If xy, xz are not
incident with a same 3-face of D×, then yz is an edge of G. Otherwise, by the
maximality of G, y and z are also connected by an edge which does not belong to
C. Therefore in the edge set of C, each pair of edges incident with a false vertex
of D× may be replaced by an edge of G in such a way that the resulting set of
edges induces a Hamilton cycle in G.

Note that, from the proof above, it follows that, for each optimal 1-planar graph
G, there exists a drawing D and a Hamilton cycle of G which is not self-crossing
in D. This proof, together with Lemma 2 (applied to 7-connected maximal 1-
planar graphs) gives an analogy of Whitney theorem (see [14]) on hamiltonicity
of 4-connected plane triangulations:

Corollary 4. Each maximal 7-connected 1-planar graph is Hamiltonian.

We do not know whether there is an analogy of Tutte’s theorem on hamiltonicity
of 4-connected planar graphs from [13] for the family of 1-planar graphs (though
Lemma 2 guarantees the hamiltonicity of associated plane graph of a particular
1-planar drawing of a 7-connected 1-planar graph). The following construction
shows that there are nonhamiltonian 4-connected 1-planar graphs: take the plane
drawing of the Barnette-Bosák-Lederberg graph (that is, the smallest nonhamil-
tonian cubic planar graph) and consider its perfect matching (see Figure 1a).
Replace each edge of this matching by a double edge; the obtained multigraph is
plane and 4-regular. Now, replace each 4-valent vertex with a copy of a 1-planar
drawing of the graph K3,4 with the respect to the local orientation around the
vertex being replaced (see Figure 1b and 1c). We obtain that the resulting graph
is 4-connected and 1-planar. To show that it is nonhamiltonian, we recall the
arguments in [11]: any Hamilton cycle would pass, through each copy of K3,4,
exactly once; however, this would determine a Hamilton cycle in Barnette-Bosák-
Lederberg graph, which is impossible.
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a)

b)

c)

Figure 1. The construction of 4-connected 1-planar nonhamiltonian graph.

Next, we turn our attention to local properties of maximal and Hamiltonian
1-planar graphs.

Theorem 5. Each Hamiltonian 1-planar graph on at least k vertices contains a

k-vertex path of weight at most 8k − 1.

Proof. We use an analogue of the proof of Proposition 2.1 from [7]: let G be a
Hamiltonian 1-planar graph on n > k vertices and C = v1v2 . . . vn be its Hamilton
cycle. Let Ri = vivi+1 . . . vi+k−1 ⊆ C (indices are modulo n) be a k-vertex path
in C starting in vi, and let w(Ri) be the sum of degrees of vertices of Ri. We have
∑n

i=1w(Ri) = k
∑

v∈V (G) degG(v) = 2k|E(G)| ≤ 2k(4n − 8) Hence, the average

weight of these paths is at most
2k(4n− 8)

n
= 8k −

16k

n
< 8k, so there exists

j ∈ {1, . . . , n} such that w(Rj) ≤ 8k − 1.

Corollary 6. Each optimal 1-planar graph on at least k vertices contains a k-

vertex path of weight at most 8k − 1.

There exist, for each integer k, Hamiltonian 1-planar graphs whose k-vertex paths
have weights at least 8k− 2. They can be constructed in the following way: take



742 D. Hudák, T. Madaras and Y. Suzuki

a plane graph of a 3-cube, and replace each of its faces with the l× l grid, where
l > k (see the left graph of Figure 2 for the result of the grid replacement). Into
each 4-face of the obtained plane graph, insert a pair of crossing edges. The
resulting 1-planar graph Q+

l is Hamiltonian (it is not hard to check that Q+
l

contains, as a spanning subgraph, a 4-connected planar graph), it contains eight
vertices of degree 6 which are at distance > k; all other vertices are of degree 8.
Thus, each of its k-vertex paths is of weight at least 6 + 8(k − 1) = 8k − 2.

We do not know any example of a Hamiltonian 1-planar graph for which the
upper bound of Theorem 5 is sharp.

For maximal 1-planar graphs, we have the following analogue of Theorem 1
of [2]:

Theorem 7. Each maximal 3-connected 1-planar graph on at least 2k vertices

contains a k-vertex path P with all vertices of degree at most 10k.

Proof. Let G be a maximal 3-connected 1-planar graph having at least 2k ver-
tices; without loss of generality, we consider its 1-planar drawing D with the
minimum possible number of crossings. Then, by [3], Lemma 2.1, its associated
plane graph D× is 3-connected and contains at least 2k vertices. Thus, by [2],
Theorem 1, D× contains a 2k-vertex path P ′ with all vertices of degree at most
5 · (2k) = 10k. Let x be a false vertex of D× and xy, xz be edges of P ′ incident
with x. If xy, xz are not incident with a 3-face of D×, then yz is an edge of D.
Otherwise, the path yzx lies in the boundary of a face of D× and, by the maxi-
mality of G, y and z are also connected by an edge which does not belong to P ′.
Therefore, in the sequence of edges of P ′, each pair of edges incident with a false
vertex of G× may be replaced by an edge of G in such a way that the resulting
set of edges induces a path P in G on l vertices; as none two false vertices of D×

are adjacent, we have k ≤ l ≤ 2k. Since this procedure does not increase degrees
of vertices of P , we obtain that P contains a subpath on k vertices, each of them
having degree at most 10k.

3. Number of Edges of Maximal 1-planar Graphs

In the following, let M(G, n) and m(G, n) denote the maximum and the minimum
number of edges of a maximal n-vertex graph from the family G. For the family
P of 1-planar graphs, we have, by [9], M(P , n) = 4n− 8 for n ≥ 12. The results
of [12] (see also [4]) complete the information on maximal 1-planar graphs for
n ≤ 11; it is shown that M(P , n) = 4n− 9 for n ∈ {7, 9}, M(P, n) = 4n − 8 for
n ∈ {8, 10, 11} and M(P , n) =

(

n
2

)

for n ≤ 6.

Unlike the family P of planar graphs (where all n-vertex maximal graphs have
the same number 3n − 6 of edges), there exist integers n for which m(P , n) 6=
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M(P, n). The first examples of maximal 1-planar n-vertex graphs with less than
4n− 8 edges were given in [12] (also in [4]) for n = 3k, k ≥ 3: take the Cartesian
product of a 3-cycle and a k-vertex path and, into each of its 4-cycles, insert a
pair of chords. The resulting graph is maximal 1-planar and has 4n− 9 edges. In
[4], it was also shown that the graph K7 − E(K1,3) is maximal 1-planar.

Our main result is the following:

Theorem 8. For each rational number p
q
∈

[

8
3 , 4

]

, there exist infinitely many

integers n such that, for each of them, there exists a 2-connected maximal 1-
planar graph on n vertices having p

q
(n− 2) edges.

Proof. We construct the desired maximal 1-planar graph Hp,q in the following
way: for any r ≥ 1, put k = (p − 2q)r and consider the 1-planar drawing of the
graph Q+

k (defined in the previous section). This graph has 6k2 + 2 vertices and

24k2 edges (of which 12k2 are not crossed). Next, put α = 6(4q−p)
p−2q and select any

αk2 distinct non-crossed edges of Q+
k . For each such edge xy, add a new vertex

z and new edges xz, yz (see Figure 2).

Figure 2. The construction of Hp,q: a plane subgraph of Q+

k and

the crossed edges in one k × k grid.

The resulting graph Hp,q is 2-connected and 1-planar, has n = 6k2 + 2 + αk2

vertices and 24k2 + 2αk2 = 24+2α
6+α

n− 4α+48
6+α

= p
q
n− 2p

q
edges.

It remains to show thatHp,q is maximal 1-planar graph. Since 24k2 = 4(6k2+
2)− 8, the graph Q+

k is optimal. Moreover, by Corollary 4 of [12], this graph has
the unique 1-planar drawing in the plane; by a routine check, we can verify that
no two non-adjacent vertices of Hp,q can be joined by an edge without violating
the condition of 1-planarity.

Note that the graphs Hp,q constructed in the previous proof have connectivity 2;
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this brings the question whether an analogy of this theorem for maximal 1-planar
graphs of higher connectivity can be formulated, or how low can be the leading
coefficient in the edge number (expressed in terms of the vertex number) of these
graphs. For 3-connected case, we can construct an infinite family of maximal
1-planar n-vertex graphs with 29

8 n− 15
2 edges. The construction begins with the

plane graph H on Figure 3 which was considered in [6] as an example of a so
called PN-graph, being defined as a 3-connected planar graph with the property
that each of its drawings in the plane is either a plane graph, or at least one edge
is crossed more than once.

Figure 3. A PN-graph.

By Whitney’s theorem (see [1], Theorem 4.3.2), the plane drawing of any PN-
graph is unique.

Let k = 8p+2 be a large integer, and let the outerface α of H consist of ver-
tices x1, . . . , xk in clockwise order, and, similarly, let the inner face β of H of size
k consist of vertices y1, . . . , yk in clockwise order. Now, express H as the union
of k

2 copies of the plane configuration bounded by thick black edges in Figure
4 and add 13 gray dashed edges into the interior of the 12-cycle bounding this
configuration, and an extra edge between each two consecutive configurations (jo-
ining the vertex xi+3 with a neighbour of xi+1 in Figure 4, upper part). In ad-
dition, add new edges x4j+5xk−4j−4, y4j+5yk−4j−4 for j = 0, . . . , p − 2 and edges
x4i+1xk−4i−4, x4i+5xk−4i, y4i+1yk−4i−4, y4i+5yk−4i, for i = 0, . . . , p − 1 (see the
middle part of Figure 4); thus, we can express the boundary cycles of α (and simi-
larly, β) as the union of two edges x1xk, x4p+1x4p+2 and 5-vertex paths of the form
x4j+1 . . . x4j+5 or x4p+4j+2 . . . x4p+4j+6 for j = 0, . . . , p− 1. Finally, for each such
5-vertex path x4u+1 . . . x4u+5, add new edges x4u+1x4u+5, x4u+2x4u+5, x4u+2x4u+4,

x4u+3x4u+5 (see the bottom of Figure 4; also, do the same for 5-vertex paths in
the boundary cycle of β).

The resulting graph H has n = 6k = 48p + 12 vertices, and 174p + 36 =
29
8 n − 15

2 edges; from its construction, it follows that H is 3-connected and 1-
planar. As H ⊆ H and H is a PN-graph, we obtain that, in any 1-planar
drawing of H, H appears in a unique way, essentially being drawn as on Figure
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xi xi+1 xi+2 xi+3 xi+4

yj yj+1
yj+2 yj+3

x1

x5 x9 x13 x4p-3

x4p+1

x4p+2xk

x4p+6
xk-4 xk-8 xk-12

x4u+1
x4u+5

x4u+2 x4u+3
x4u+4

x2
x3

x4

Figure 4. Forming a maximal 1-planar graph from PN-graph.

3 (the only difference may be the degree of outerface of H). This enforces the
remaining gray dashed edges of H being drawn essentially as on Figure 4. We
conclude that H has a unique 1-planar drawing, and, by routine checking, it
is easy to show that any additional edge joining two nonadjacent vertices in H

violates the 1-planarity of H. Hence, H is also a maximal 1-planar graph.

We believe that the following is true.

Conjecture 9. For the family P⋆ of 3-connected maximal 1-planar graphs,

m(P⋆, n) = 18
5 n+ c, where c is a constant.

The leading coefficient 18
5 follows from the following construction (Fabrici, per-

sonal communication): take a 3-connected plane graph consisting only of trian-
gular and quadrangular faces in such a way that no two faces of the same kind are
adjacent; then, insert into each quadrangular face a pair of crossing diagonals.
This yields 1-planar graph with the desired number of edges. However, it is not
clear whether such a graph is maximal, although its drawing is maximal 1-planar:
there exist examples showing that maximal and 1-planar drawings do not always
guarantee maximal 1-planar graphs, as seen from Figure 5 (when moving the
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edge xy to another gray region, we can join vertices z, w with a new edge; the
maximality of the left drawing can be verified by hand). Based on this example,
it is possible to construct, for any integer k, a maximal 1-planar drawing which
can be redrawn in such a way that at least k new edges may be added without
violating the 1-planarity (take k copies of the left drawing of Figure 5 with miss-
ing edge uv, identify all vertices corresponding to u and, similarly, to v, and add
a new edge between vertices resulted from this identification).

u v u v

x

y

x

y

z zw

w

Figure 5. The maximal 1-planar drawing with underlying

1-planar non-maximal graph.
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