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Abstract

Let V be a finite set and M a collection of subsets of V . Then M
is an alignment of V if and only if M is closed under taking intersections
and contains both V and the empty set. If M is an alignment of V , then
the elements of M are called convex sets and the pair (V,M) is called an
alignment or a convexity. If S ⊆ V , then the convex hull of S is the smallest
convex set that contains S. Suppose X ∈ M. Then x ∈ X is an extreme
point for X if X \ {x} ∈ M. A convex geometry on a finite set is an aligned
space with the additional property that every convex set is the convex hull
of its extreme points. Let G = (V,E) be a connected graph and U a set of
vertices of G. A subgraph T of G containing U is a minimal U -tree if T is a
tree and if every vertex of V (T ) \U is a cut-vertex of the subgraph induced
by V (T ). The monophonic interval of U is the collection of all vertices of G
that belong to some minimal U -tree. Several graph convexities are defined
using minimal U -trees and structural characterizations of graph classes for
which the corresponding collection of convex sets is a convex geometry are
characterized.
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1. Introduction

This paper is motivated by the results and ideas contained in [10, 11, 15]. We
introduce new graph convexities and show how these give rise to structural char-
acterizations of certain graph classes. For graph terminology we follow [4] and [9].
All graphs considered here are connected, finite, simple (i.e., without loops and
multiple edges), unweighted and undirected. The structural characterizations of
graphs that we describe are often given in terms of forbidden subgraphs. Let G
and F be graphs. Then F is an induced subgraph of G if F is a subgraph of G and
for every u, v ∈ V (F ), uv ∈ E(F ) if and only if uv ∈ E(G). We say a graph G is
F -free if it does not contain F as an induced subgraph. Suppose C is a collection
of graphs. Then G is C-free if G is F -free for every F ∈ C. If F is a path or cycle
that is a subgraph of G, then F has a chord if it is not an induced subgraph of
G, i.e., F has two vertices that are adjacent in G but not in F . An induced cycle
of length at least 5 is called a hole.

Let V be a finite set and M a collection of subsets of V . Then M is an
alignment (or convexity) of V if and only if M is closed under taking intersections
and contains both V and the empty set. If M is an alignment of V , then the
elements of M are called convex sets and the pair (V,M) is called an aligned

space or a convexity. If S ⊆ V , then the convex hull of S is the smallest convex
set that contains S. Suppose X ∈ M. Then x ∈ X is an extreme point for X if
X \ {x} ∈ M. The collection of all extreme points of X is denoted by ex(X). A
convex geometry on a finite set V is an aligned space (V,M) with the additional
property that every convex set is the convex hull of its extreme points. This
property is referred to as the Minkowski-Krein-Milman (MKM) property. For a
more extensive overview of other abstract convex structures see [18]. Convexities
associated with the vertex set of a graph are discussed for example in [4]. Their
study is of interest in Computational Geometry and has applications in Game
Theory [3].

Convexities on the vertex set of a graph are usually defined in terms of some
type of ‘intervals’. Suppose G is a connected graph and u, v two vertices of
G. Then a u − v geodesic is a shortest u − v path in G. Such geodesics are
necessarily induced paths. However, not all induced paths are geodesics. The
g-interval (respectively, m-interval) between a pair u, v of vertices in a graph G is
the collection of all vertices that lie on some u−v geodesic (respectively, induced
u− v path) in G and is denoted by Ig[u, v] (respectively, Im[u, v]).

A subset S of vertices of a graph is said to be g-convex (m-convex) if it
contains the g-interval (m-interval) between every pair of vertices in S. It is not
difficult to see that the collection of all g-convex (m-convex) sets is an alignment
of V . A vertex v is an extreme point for a g-convex (or m-convex) set S if and
only if v is simplicial in the subgraph induced by S, i.e., every two neighbours of
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v in S are adjacent. Of course the convex hull of the extreme points of a convex
set S is contained in S, but equality holds only in special cases. In [11] those
graphs for which the g-convex sets form a convex geometry are characterized as
the chordal 3-fan-free graphs (see Figure 1). These are precisely the chordal,
distance-hereditary graphs (see [2, 12]). In the same paper it is shown that the
chordal graphs are precisely those graphs for which the m-convex sets form a
convex geometry.

For what follows we use Pk to denote an induced path of order k. A vertex
is simplicial in a set S of vertices if and only if it is not the centre vertex of an
induced P3 in in the subgraph 〈S〉 induced by S. Jamison and Olariu [13] relaxed
this condition. They defined a vertex to be semisimplicial in S if and only if it is
not a centre vertex of an induced P4 in 〈S〉.

Claw Paw 3-Fan P4

House Domino A-graph

Indicates a centre vertex

Figure 1. Special graphs.

Dragan, Nicolai and Brandstädt [10] introduced another convexity notion that
relies on induced paths. The m3-interval between a pair u, v of vertices in a graph
G, denoted by Im3 [u, v], is the collection of all vertices of G that belong to an
induced u − v path of length at least 3. Let G be a graph with vertex set V .
A set S ⊆ V is m3-convex if and only if for every pair u, v of vertices of S the
vertices of the m3-interval between u and v belong to S. As in the other cases
the collection of all m3-convex sets is an alignment. Note that an m3-convex set
is not necessarily connected. It is shown in [10] that the extreme points of an
m3-convex set are precisely the semisimplicial vertices of 〈S〉. Moreover, those
graphs for which the m3-convex sets form a convex geometry are characterized
in [10] as the (house, hole, domino, A)-free (HHDA-free) graphs (see Figure 1).
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In the same paper several ‘local’ convexities related to the m3-convexity were
studied. For a set S of vertices in a graph G, N [S] is S ∪ N(S) where N(S) is
the collection of all vertices adjacent with some vertex of S. A set S of vertices
in a graph is connected if 〈S〉 is connected. The following result which we will
use in this paper is established in [10].

Theorem 1. A graph G is (house, hole, domino)-free if and only if N [S] is

m3-convex for all connected sets S of vertices of G.

The (house, hole, domino)-free graphs also arise in the study of the induced path
function (see for example, [7, 8]). We next look at more recently studied graph
convexities that motivate the convexities studied in this paper. In [16] a graph
convexity that generalizes g-convexity is introduced. Let S be a set of vertices in
a graph G. A Steiner tree T for S is a connected subgraph of G that contains S
and has the smallest number of edges among all such subgraphs. The subgraph
induced by the vertices of T may not be an induced subgraph; for example, if
G is a net (i.e. the graph obtained by joining a new vertex to each of the three
vertices in a K3) and S consists of the three leaves in G, then any spanning
tree of G is a Steiner tree for S. The Steiner interval of a set S of vertices in
a connected graph G, denoted by I(S), is the union of all vertices of G that lie
on some Steiner tree for S. Steiner intervals have been studied, for example, in
[14, 17]. A set S of vertices in a graph G is k-Steiner convex (gk-convex) if the
Steiner interval of every collection of k vertices of S is contained in S. Thus S is
g2-convex if and only if it is g-convex. The collection of gk-convex sets forms an
aligned space. We call an extreme point of a gk-convex set a k-Steiner simplicial

vertex, abbreviated kSS vertex.
The extreme points of g3-convex set S, i.e., the 3SS vertices are characterized

in [5] as those vertices that are not a centre vertex of an induced claw, paw or
P4, in 〈S〉 see Figure 1. Thus a 3SS vertex is semisimplicial. Apart from the gk-
convexity, for a fixed k, other graph convexities that (i) depend on more than one
value of k and (ii) combine the g3 convexity and the geodesic counterpart of the
m3-convexity are introduced and studied in [15]. In particular characterizations
of convex geometries for several of these graph convexities are given. We state
here only those results that are used in this paper.

A graph G is a replicated twin C4 if it is isomorphic to any one of the four
graphs shown in Figure 2(a), where any subset of the dashed edges may belong
to G. The collection of the four replicated twin C4 graphs is denoted by RC4

.

Theorem 2 [15]. Let G = (V,E) be a graph. Then the following are equivalent

(1) G is (P4, RC4
)-free.

(2) (V, Mg3(G)) is a convex geometry.

Convex geometries give rise to ‘elimination orderings’ of vertices in graphs and
these are particularly useful for algorithmic purposes. Suppose P is a property
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that a vertex in a graph G may possess. We say G has a P-elimination ordering if
the vertices of G can be ordered as {v1, v2, . . . , vn} such that for every i, 1 ≤ i ≤ n,
vertex vi has property P in the subgraph induced by vi, vi+1, . . . , vn. If P is a
property that characterizes the extreme vertices with respect to a graph convexity,
then it is well known (see e.g. [11]) that if the corresponding convex sets form
a convex geometry, then G has a P-elimination ordering. The extreme vertices
for the convexities studied in this paper are also the 3SS vertices. Graphs for
which every LexBFS ordering is a 3SS-elimination ordering are characterized in
[5]. Interestingly this class of graphs is precisely the same as the class for which
the monophonic intervals, satisfying a certain betweenness axiom, also satisfy the
monotone property as shown in [8].

We now introduce the notion of a ‘minimal U -tree’ which extends both the
definition of an induced path and that of a Steiner tree. This in turn gives rise to
graph convexities that extend both the m-convexity and gk-convexity. Let U be
a set of at least two vertices in a connected graph G. A subgraph H containing U
is a minimal U -tree if H is a tree and if every vertex v ∈ V (H)\U is a cut-vertex
of 〈V (H)〉, i.e., H is a minimal U -tree if H connects U and if H is a minimal
subgraph that connects U in the sense that for every v ∈ V (H) \ U , U is no
longer connected in 〈V (H) \ {v}〉. Thus if U = {u, v}, then a minimal U -tree is
just an induced u − v path. Moreover, every Steiner tree for a set U of vertices
is a minimal U -tree. The collection of all vertices that belong to some minimal
U -tree is called the monophonic interval of U and is denoted by Im(U). A set S
of vertices is k-monophonic convex, abbreviated as mk-convex, if it contains the
monophonic interval of every subset U of k vertices of S. Thus a set of vertices
in G is a monophonic convex set if and only if it is an m2-convex set. For a
set T = {k1, k2, . . . , kt} of integers such that 2 ≤ k1 < k2 < · · · < kt a set S of
vertices of G is mT -convex if G is mki-convex for all 1 ≤ i ≤ t. It is not difficult
to see that the collection of mT -convex sets is an alignment of V (G), called the
mT -convex alignment. We show that the class of graphs for which the mT -convex
alignment is a convex geometry is the same as the class of graphs for which the
mk-convex alignment is a convex geometry where k is the smallest value in T .

In this paper we give structural characterizations of those classes of graphs
for which the m3-convex alignment forms a convex geometry. It turns out that
these graphs are precisely the same as the graphs for which the g3-convex align-
ment forms a convex geometry and thus contains no induced P4’s. However, by
combining the m3- convexity with the m3-convexity introduced in [10], we obtain
a graph convexity for which the convex geometries cover a larger more interest-
ing class of graphs that has no restriction on the diameter. More specifically we
define a set S of vertices in a connected graph to be m3

3-convex if S is both m3-
and m3-convex. In this paper we give structural characterizations of those classes
of graphs for which the m3

3-convex alignment forms a convex geometry.
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2. Convex Geometries

2.1. m3-convex geometries

We begin by showing that the extreme vertices of 3-monophonic convex sets are
precisely the 3SS vertices of the set. If v is an extreme vertex of a 3-monophonic
set S, then v cannot be the centre of an induced claw, paw or P4 in 〈S〉; otherwise,
v is on a minimal tree for some set of three vertices in S. Hence v is a 3SS vertex.
Suppose now that v is not an extreme vertex of a 3-monophonic set S. Then there
is a set U of three vertices in S \ {v} such that v lies on a minimal U -tree H.
So H − v is disconnected. If v has at least three neighbours in H − v, then v is
the centre of a claw or a paw. (Let x, y, z be three neighbours of v from H − v
such that x does not belong to the same component as y or z in H − v. Then
〈{v, x, y, z}〉 is a claw or paw.) If v has two neighbours, say x, y, in H − v, then
either the component of H−v containing x or the component of H−v containing
y has at least two vertices, say the latter. Let z be a neighbour of y in H − v.
Then x is nonadjacent with both y and z. So v is not 3SS. Hence if v is a 3SS
vertex of a 3-monophonic set S, then v is an extreme vertex of S.

Let G = (V,E) be a connected graph and Mm3
(G) the collection of m3-

convex sets and Mg3(G) the collection of g3-convex sets. In this section we
determine the class of connected graphs G for which (V, Mm3

(G)) is a convex
geometry. Observe that every 2-element set of vertices in a graph is m3-convex.
Thus m3-convex sets may induce disconnected graphs but only if they consist of
two nonadjacent vertices.

We observe first that if (V, Mm3
(G)) is a convex geometry, then G has no

induced path of length at least 3. To see this, suppose that G is a connected
graph and suppose that P : (u = )v0v1 . . . vd( = v) an induced u − v path of
length at least 3. Let S be the m3-convex hull of V (P ). Since u and v are the
only 3SS vertices of P , the 3SS vertices of S are a subset of {u, v}. But the
m3-convex hull of any subset R of {u, v} is just R and hence does not contain all
the vertices of P and thus not all the vertices of S. Thus, if (V, Mm3

(G)) is a
convex geometry, then G contains no induced path of length at least 3.

Theorem 3. Let G be a connected graph. Then (V, Mm3
(G)) is a convex ge-

ometry if and only if (V, Mg3(G)) is a convex geometry.

Proof. Suppose that (V, Mg3(G)) is a convex geometry. Let S ∈ Mm3
(G).

Then S ∈ Mg3(G), since S contains the Steiner interval of every set of three
vertices of S. Since the 3SS vertices of a set are the extreme vertices of the set
with respect to both the g3- and m3-convexity, S is the g3-convex hull of the 3SS
vertices and hence also the m3-convex hull of these vertices. Thus (V, Mm3

(G))
is also a convex geometry.
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Conversely, suppose (V, Mm3
(G)) is a convex geometry. Then, by the above

observation, G has no induced paths of length at least 3. Let S be a g3-convex
set of G and U = {u, v, w} any set of three vertices of S. Let H be any U -
tree. Then H is either a path or H is homeomorphic to K1,3 and its leaves are
contained in U . Suppose first that H is a path, say a u−w path. Then the u− v
subpath and v − w subpath of H are necessarily induced paths of G. Since G
has no induced paths of length at least 3, both these subpaths contain at most
three vertices. If neither of the subpaths has an interior vertex, then H is a
Steiner tree for {u, v, w}. If exactly one of the subpaths has no interior vertex,
say uv ∈ E(G), then H must be a Steiner tree for {u, v, w}; otherwise, the vertex
of H not in {u, v, w} is not a cut-vertex of 〈V (H)〉. If both have an interior
vertex, then H is a path of length 4 and is thus not an induced subgraph of G.
Let u′ be the neighbour of u in H and w′ the neighbour of w in H. Then, by
the above observation, the only possible edges in 〈V (H)〉 that do not belong to
H are edges with one end in {u, u′} and the other end in {w,w′}. Since H is a
minimal {u, v, w}-tree the only possible edge of 〈V (H)〉 that does not belong to
H is u′w′. However, in this case uu′w′w is an induced path of length 3 which is
not possible. So this case cannot occur.

Suppose now that H is a homeomorphic with K1,3. Let x be the vertex of
degree 3 in H. The three paths from x to each of the leaves of H must necessarily
be induced. We can argue as above that at most one of these three paths has
length 2. Suppose that one of these paths, say the x − u path of H has length
2. Let u′ be the neighbour of u on this path. If uw or uv is an edge of G, then
u′ is not a cut-vertex of H. So uw, uv 6∈ E(G). Since G has no induced paths
of length at least 3, u′v, u′w are necessarily edges of G. However, then x is not
a cut-vertex of 〈V (H)〉. So this case cannot occur. Thus u, v, w are all adjacent
with x. Now 〈{u, v, w}〉 is not connected; otherwise, x is not a cut-vertex of H.
Hence H is a Steiner tree for {u, v, w}. So S is g3-convex. Thus the m3-convex
hull of the extreme points of S is the same as the g3-convex hull of the extreme
points of S. So (V,Mg3(G)) is a convex geometry.

Recall that a graph G is a replicated twin C4 if it is isomorphic to any one of
the four graphs shown in Figure 2(a), where any subset of the dotted edges may
belong to G. The collection of the four replicated twin C4 graphs is denoted by
RC4

.

From Theorem 2 we now obtain the following,

Corollary 4. Let G = (V,E) be a graph. Then the following are equivalent:

(1) G is P4- and RC4
-free.

(2) (V (G), Mm3
(G)) is a convex geometry.



692 J. Cáceres, O.R. Oellermann and M.L. Puertas

2.2. mT -convex geometries

In this section we show that if T = {k1, k2, . . . , kt} is a collection of positive
integers such that 2 ≤ k1 < k2 < · · · < kt, then the class of graphs for which
the mT -convex sets form a convex geometry is precisely the same as the class for
which the mk1-convex sets form a convex geometry. For a connected graph G let
MmT

(G) be the collection of all mT -convex sets of G and for an integer k ≥ 2,
let Mmk

(G) be the collection of all mk-convex sets.

Lemma 5. Suppose that G is a graph and U = {u1, u2, . . . , ul} a set of l ≥ 2
vertices of G. Suppose that T is a minimal U -tree and k is an integer such that

2 ≤ k ≤ l. If v ∈ V (T ) \ U , then there exists a k element subset W of U and a

minimal W -tree T ′ containing v.

Proof. If l = 2, the result follows immediately. Suppose thus that l > 2. For the
remainder of the proof we proceed by induction on k. We prove a slightly stronger
result than that stated in the lemma. We show that the W -tree T ′ can be chosen
so that it has the property that it is a subtree of T and whenever F is a subtree
of T that contains T ′, then every vertex of V (T ′) \W is a cut-vertex of 〈V (F )〉.
Since v is a cut-vertex of H = 〈V (T )〉, v is a cut-vertex of T . Let x1 and y1 be
neighbours of v in T that belong to different components of H − v, say H1 and
H2, respectively. We first construct a subtree T ′ of T that contains v and exactly
two vertices of U . This subtree will be an induced path of which one branch at
v is contained in H1 and the other branch at v in H2. Begin the construction of
T ′ by starting with the vertices v, x1, y1 and the edges vx1, vy1. If x1 ∈ U , then
the construction of the branch of T ′ contained in H1 is completed. If x1 /∈ U , x1
is a cut-vertex of H. Let x2 be a neighbour of x1 in T such that x2 belongs to a
component of H − x1 that does not contain v. Add x2 and the edge x1x2 to the
tree that is being constructed. If x2 ∈ U , the construction of the branch of T ′ at
v contained in H1 is completed; otherwise, we let x3 6= x1 be a neighbour of x2 in
T that belongs to a component of H − x2 that does not contain x1. We continue
in this manner constructing a sequence x1, x2, x3 . . . of vertices in H1 such that
for i ≥ 2, xi is a neighbour of xi−1 in T and such that xi belongs to a component
of H − xi−1 that does not contain xi−2. We stop with the smallest j such that
xj ∈ U . Such a j must exist since the path we are constructing in H1 is a path
in T starting at v and ending necessarily at a vertex of U . (We may of course
reach a vertex of U before we reach a leaf of T .) The branch of T ′ at v contained
in H1 is the path vx1x2 . . . xj . We proceed in the same manner as for H1 and x1
when constructing the branch of T ′ contained in H2 that starts with vy1. These
two branches produce the tree T ′ which is necessarily a minimal W -tree for the
set W consisting of the two leaves of T ′. Note that T ′ is constructed in such a
way that if F is a subtree of T that contains T ′ then every vertex of V (T ′) \U is
a cut-vertex of 〈V (F )〉.
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Suppose now that 2 < k ≤ l and that we have constructed a subtree T ′′ of T
containing v that is a minimal W ′-tree for some k − 1 element subset W ′ of U
such that V (T ′′)∩U = W ′. Suppose also that if F is a subtree of T that contains
T ′′, then every vertex of V (T ′′) \ U is a cut-vertex of 〈F 〉. If some vertex v′ of
T ′′ has a neighbour z in T that belongs to U but not to T ′′, then we add z and
the edge v′z to T ′′ to obtain a minimal W ′∪{z}-tree with the desired properties.
Otherwise let z1 ∈ NT (V (T ′′)) and let z0 be its neighbour in T that belongs to
T ′′. Add z1 and the edge z0z1 to the tree T ′′. Now let z2 be a neighbour of z1 in
T that does not belong to the component of H − z1 that contains z0 (and hence
T ′′). Add z2 and the edge z1z2 to the current tree. If z2 ∈ U we stop and let T ′

be the tree we constructed; otherwise, let z3 be a neighbour of z2 in T that does
not belong to the component of H − z2 that contains z1. Add z3 and the edge
z2z3 to the current tree. We continue in this manner constructing a sequence
z0, z1, z2 . . . such that zi−1zi is an edge of T and of the tree we are constructing.
We stop when we encounter for the first time a vertex that belongs to U . As
was the case for k = 2 it is not difficult to see that this needs to happen since
the sequence z0z1 . . . we are constructing corresponds to a path in T which must
eventually encounter a vertex of U . Let s ≥ 2 be the smallest integer such that
zs ∈ U . Let T ′ be the tree obtained from T ′′ by adding the path z0z1 . . . zs and
let W = W ′ ∪ {zs}. Then T ′ is a W -tree with the desired properties.

Theorem 6. Let G = (V,E) be a connected graph and let T = {k1, k2, . . . kt} be

a collection of integers such that 2 ≤ k1 < k2 < · · · < kt. Then (V,MmT
(G)) is

a convex geometry if and only if (V,Mmk1
(G)) is a convex geometry.

Proof.

Claim 1. MmT
(G) = Mmk1

(G).

Proof. Let S be a mk1-convex set. We show first that S is also an mT -convex
set. If this is not the case, then there is some i > 1 such that S is not mki-convex.
Thus there is a set U of ki vertices in S such that the monophonic interval of
U is not contained in S, i.e., for some vertex v /∈ S there is a minimal U -tree
containing v. By Lemma 5 there is a k1 element subset W of U and a minimal
W -tree containing v. This is not possible since S is mk1-convex. So every mk1

convex set ismT -convex. By definition everymT -convex set ismk1-convex. Hence
MmT

(G) = Mmk1
(G).

Claim 2. The extreme vertices of S with respect to the mk1-convexity are the

same as the extreme vertices with respect to the mT -convexity.

Proof. If x is an extreme vertex of S with respect to the mT -convexity, then
S \ {x} is an mT -convex set and thus an mk1-convex set. So x is an extreme
vertex of S with respect to the mk1-convexity. Suppose now that x is an extreme
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vertex of S with respect to the mk1-convexity. If x is not an extreme vertex with
respect to the mT -convexity, then there is some i > 1 such that S \ {x} is not
mki-convex. Hence there is a ki element subset U of S \ {x} such that x belongs
to some minimal U -tree of U . By Lemma 5 there is a k1 element subset W of
U and a minimal W -tree containing x. This contradicts the fact that S \ {x} is
mk1-convex. So the extreme vertices of S with respect to the mk1-convexity are
the same as the extreme vertices with respect to the mT -convexity.

Suppose first that (V,MmT
(G)) is a convex geometry. Let S be an mk1-convex

set. By Claim 1, S is mT -convex and by Claim 2 the extreme vertices of S with
respect to mk1 convexity are the same as the extreme vertices with respect to mT

convexity. The mk1-convex hull of the extreme vertices of S is a subset of S. If it
is a proper subset of S, then this proper subset is, by Claim 1, also mT -convex.
Thus the mT -convex hull of the extreme vertices of S is also a proper subset of
S. This contradicts the hypothesis. Thus (V,Mmk1

(G)) is a convex geometry.

For the converse suppose that (V,Mmk1
(G)) is a convex geometry. Let S

be an mT -convex set. Then S is, by definition, mk1-convex. By Claim 2, the
extreme vertices of S with respect to the mk1 convexity are the same as the
extreme vertices with respect to the mT convexity. The convex hull with respect
to the mT convexity of the extreme vertices of S is a subset of S. If it is a proper
subset of S, then this proper subset contains the convex hull of the extreme
vertices with respect to mk1 convexity. This contradicts the hypothesis. Thus
(V,MmT

(G)) is a convex geometry.

2.3. m
3

3
-convex geometries

Before characterizing the class of graphs for which the m3
3-convex sets form a

convex geometry, we introduce another useful result. Recall that the graphs for
which the m3-convex sets form a convex geometry are characterized in [10] as the
(house, hole, domino, A)-free graphs. The proof of this characterization depends
on the following result also proven in [10].

Theorem 7. If G is a (house, hole, domino, A)-free graph, then every vertex of

G is either semisimplicial or lies on an induced path of length at least 3 between

two semisimplicial vertices.

We now proceed to characterize those graphs for which the m3
3-convex alignment

forms a convex geometry. Let Mm3

3

(G) be the m3
3-convex alignment of a graph

G. Recall that a graph F is a replicated twin C4 if it is isomorphic to one of the
four graphs shown in Figure 2(a) where any subset of the dotted edges may be
chosen to belong to F , and the collection of replicated twin C4’s is denoted by
RC4

. A graph F is a tailed twin C4 if it is isomorphic to one of the two graphs
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Tailed twin C s‘4
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x
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z

v
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ww
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Figure 2. Forbidden subgraphs for m3
3
-convex geometries.

shown in Figure 2(b) where again any subset of the dotted edges may be chosen
to belong to F . We denote the collection of tailed twin C4’s by T C4

.

Theorem 8. For a connected graph G = (V,E) the following are equivalent:

(1) G is (house, hole, domino, A, RC4
, T C4

)-free.

(2) (V, Mm3

3

(G)) is a convex geometry.

Proof. (2) → (1) Suppose F is a house, hole, domino, replicated twin C4 or a
tailed twin C4. Then F has at most one 3SS vertex. Suppose G is a graph that
contains F as an induced subgraph. Then the set of extreme points of the convex
hull of V (F ) is contained in the collection of 3SS vertices of F . So the convex
hull of the extreme points of the m3

3-convex hull of V (F ) is empty or consists of
a single vertex and hence cannot contain all the vertices of F . So in this case the
m3

3-convex alignment of G does not form a convex geometry. It is shown in [6]
that if the m3

3-convex sets of a graph G form a convex geometry, then G does not
contain an A.

(1) → (2) It is not difficult to see that if G is a connected graph of order at
most 4, then every m3

3-convex set is the convex hull of its extreme points. Sup-
pose now that there exists a connected (house, hole, domino, A, RC4

, T C4
)-free

graph G (abbreviated by HHDARC4
T C4

-free graph G) for which (V, Mm3

3

(G))
is not a convex geometry. We may assume that G is such a graph of smallest
possible order. Thus every proper connected induced subgraph of G has the
property that its vertex set is the m3

3-convex hull of its extreme points, i.e, the
3SS vertices. By assumption V is not the m3

3-convex hull of its extreme points.
Since V is m3

3-convex it is m3-convex; so, by Theorem 7, every vertex of G is
either semisimplicial or lies on an induced path of length at least 3 between two
semisimplicial vertices. Thus if every semisimplicial vertex is 3SS, then V is the
m3

3-convex hull of its extreme points, a contradiction. Let S be the m3
3-convex

hull of the 3SS vertices of G. By assumption V \ S 6= ∅.

Case 1. V \ S contains a vertex a that is not semisimplicial. Since G
is HHDA-free and V is m3-convex, Theorem 7 guarantees that a lies on an
induced path of length at least 3 between two semisimplicial vertices w,w′ of G.
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Among all pairs {w,w′} of semisimplicial vertices such that a ∈ Im3 [w,w′] we will
assume that {v, v′} is a pair that has a maximum number of 3SS vertices. At
least one of v and v′, say v, is not 3SS in G; otherwise, a lies on an induced path
of length at least 3 between two extreme vertices of V . Since v is semisimplicial
but not 3SS it must be the centre of an induced claw or paw in G. Let x, y, z be
the peripheral vertices of a claw or paw containing v as centre where xz, yz 6∈ E.

Let I
(a)
m3 [v, v

′] be the collection of all vertices that lie in some induced v − v′

path of length at least 3 that contains the vertex a.

Claim 1. None of x, y or z is in I
(a)
m3 [v, v

′].

Proof. Assume, to the contrary, that P is an induced path of length at least 3

containing v, v′, a and one of x, y, z. Suppose first that z ∈ I
(a)
m3 . Since P is an

induced path x, y 6∈ V (P ). Let z′ be the neighbour of z on P different from v.
Then xz′, yz′ ∈ E(G); otherwise, xvzz′ or yvzz′ is an induced P4 which is not
possible since v is semisimplicial. Let z′′ be the neighbour of z′ on P different from
z. If z′′x, z′′y 6∈ E, then 〈{v, x, y, z, z′, z′′}〉 is a tailed twin C4 which is forbidden.
So we may assume xz′′ ∈ E. Then 〈{x, v, z, z′, z′′}〉 is a house which is forbidden.

Similarly yz′′ 6∈ E. Hence z 6∈ I
(a)
m3 [v, v

′]. Suppose now that x or y, say x, belongs
to P . In that case we may assume xy ∈ E; otherwise, we can argue as for z that
G contains a forbidden subgraph as induced subgraph. Let x′ be the neighbour
of x on P different from v. Then zx′ ∈ E; otherwise, v is not semisimplicial.
Also yx′ ∈ E; otherwise, 〈{y, v, z, x, x′}〉 is a house which is forbidden. Let x′′

be the neighbour of x′ on P different from x. If zx′′ ∈ E, then 〈{z, v, x, x′, x′′}〉
is a house which is forbidden. So zx′′ 6∈ E. If yx′′ ∈ E, then 〈{y, v, z, x′, x′′}〉 is
a house which is not possible. But then 〈{y, v, z, x, x′, x′′}〉 induces a tailed twin

C4 which is not possible. So we may assume that x, y, z 6∈ I
(a)
m3 . This completes

the proof.

Claim 2. If P : (v =)v0v1 . . . vk(= v′) is an induced v−v′path of length at least 3
containing a, then each of x, y, z is adjacent with v1 but with no vi for 2 ≤ i ≤ k.

Proof. If zvi ∈ E for 2 ≤ i ≤ k, then both xvi, yvi ∈ E; otherwise, xvzvi
or yvzvi is an induced P4 having v as centre which is not possible since v is
semisimplicial. Similarly if xvi ∈ E for some i, 2 ≤ i ≤ k, then zvi ∈ E and thus
yvi ∈ E. Hence for every i, 2 ≤ i ≤ k, the vertices x, y, z are either all adjacent
with vi or all are non-adjacent with vi. Also if there is an i, 2 ≤ i < k such that
x, y, z are all adjacent with vi, then x, y, z are all adjacent with vi+1; otherwise,
〈{v, x, y, z, vi, vi+1〉 is a tailed twin C4. Thus, if x, y, z are all adjacent with vi
for some 2 ≤ i < k, then 〈{v, x, y, z, vi, vi+1}〉 is a replicated twin C4; which is
forbidden. We may thus assume x, y, z are all nonadjacent with vi for 2 ≤ i < k.
Since v is semisimplicial and zvv1v2 is a P4, zv1 ∈ E. Similarly xv1, yv1 ∈ E. If
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x, y, z are all adjacent with vk, then 〈{v, v1, x, y, z, vk}〉 is a replicated twin C4

which is forbidden. We have thus shown that x, y, z are all adjacent with v1 and
that they are nonadjacent with vi for 2 ≤ i ≤ k. This completes the proof.

So zv1v2 . . . vk is an induced path of length at least 3 containing a as internal
vertex. Now z is not a 3SS vertex; otherwise, we have a contradiction to our
choice of the pair v, v′. So z is either not semisimplicial or the centre of an induced
claw or paw.

Claim 3. x, y, z can be chosen in such a way that z is semisimplicial.

Proof. Suppose that z is not semisimplicial. Then there exists an induced path
wzrs having z as centre. If v is on this path, then v is w. Suppose w = v. Then
{x, y} ∩ {r, s} = ∅ since v is adjacent with x and y but not r and s. Now xvzr
(respectively, yvzr) is an induced P4 having v as centre unless xr (respectively,
yr) is an edge of G. So xr, yr ∈ E. If xs ∈ E, then 〈{x, v, z, r, s}〉 is a house which
is forbidden. So xs 6∈ E. Similarly, ys 6∈ E. Since xs, ys 6∈ E, 〈{v, x, y, z, r, s}〉 is
a tailed twin C4 which is forbidden. So w 6= v.

Since vzrs is a path of order 4 having z as centre and v as end-vertex, it
follows from the above that it cannot be an induced path. So vr or vs is an edge
of G. Suppose first that vr 6∈ E. Then vs ∈ E. Now wzvs is an induced P4

unless vw ∈ E. However, then 〈{z, r, s, v, , w, }〉 is a house which is forbidden. So
vr ∈ E. If vs 6∈ E, then x and y are not on the path wzrs (i.e., s 6= x, y). Now
xvrs is an induced P4’s having v as centre unless xr or xs is an edge of G. If
xr 6∈ E, then xs ∈ E. But then 〈{x, v, r, s, z}〉 is a house. So xr ∈ E. Similarly
yr ∈ E. If wv ∈ E, then wvrs is an induced P4 having v as centre. This is not
possible. So vw 6∈ E. Now wzvx and wzvy are induced P4’s unless wx,wy ∈ E.
However, then 〈{w, x, y, z, v, r}〉 is a replicated twin C4 which is forbidden. So
vr, vs ∈ E. Now wzvs is an induced P4 having v as centre unless vw ∈ E. Note
〈{v, w, r, s}〉 is a paw with v as centre. So as we argued for x, y, z, none of w, r, s
is v1 and each of w, r, s is adjacent with v1 and to no vi for 2 ≤ i ≤ k.

We know, since G is HHDA-free, that z is an interior vertex of an induced
path of length at least 3 between two semisimplicial vertices. Let Q : u0u1 . . . um
be such a path. Then z = ui for some i (0 < i < m). Thus ui−1uiui+1ui+2

or ui−1ui−1uiui+1 is an induced P4 having z as centre vertex, say the former.
As we showed for the path wzrs, v 6∈ {ui−1, ui+1, ui+2} and ui−1, ui, ui+1, and
ui+2 are each adjacent with both v and v1 but with no other vertex of P . If
i − 1 6= 0, we repeat the argument with ui−2ui−1uiui+1 and ui−1 instead of ui
since 〈{v, ui−1, ui+1, ui+2}〉 is a paw having v as centre. So ui−2 is adjacent with
both v and v1 but with no vj for 2 ≤ j ≤ k. Continuing in this manner we see
that for all j (0 ≤ j ≤ i+2), vertex uj is not on P and uj is adjacent with both v
and v1. Similarly one can show if i+2 6= m, then every vertex uj for i+2 < j ≤ m
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is not on P and uj is adjacent with both v and v1 and with no vl for 3 ≤ l ≤ k.
Hence v is the centre of the paw 〈{v, u0, u2, u3}〉 where u0u2, u0u3 6∈ E. So we
may assume z = u0, x = u2 and y = u3. This completes the proof.

The path zv1v2 . . . vk is an induced path of length at least 3 containing a as
interior vertex and since z, vk are both semisimplicial. Vertex z cannot be 3SS;
otherwise, we have a contradiction to the choice of the pair v, v′. So z is the
centre of a claw or paw whose peripheral vertices are, say r, s, t where tr, ts 6∈ E.
By Claim 3 we may assume t is semisimplicial.

Claim 4. v 6∈ {r, s, t}.

Proof. Suppose first that v = t. Then rzvx and szvx are induced P4’s having v
as centre unless rx, sx ∈ E. Similarly ry, sy ∈ E. However, then 〈{v, x, y, z, s, r}
is a replicated twin C4 which is forbidden. So v 6= t. Suppose now that v is r or s,
say v = r. Thus we may assume rs ∈ E; otherwise, we can repeat the argument
we used for t. Then xvzt and yvzt are induced P4’s unless xt, yt ∈ E. Now
sztx and szty are induced P4’s having z as centre unless sx, sy ∈ E. But then
〈{t, x, y, z, v, s}〉 is a replicated twin C4 which is forbidden. Hence v 6∈ {r, s, t}.
This completes the proof of Claim 4.

Claim 5. v is adjacent with each of r, s, t.

Proof. If v is nonadjacent with some b ∈ {r, s, t}, then bzvx and bzvy are induced
P4’s having v as centre vertex unless bx, by ∈ E. Thus if v is nonadjacent with
two vertices in r, s, t, then these two vertices together with v and x, y, z induce a
replicated twin C4 which is forbidden. So v is adjacent with at least two of the
vertices r, s, t. Suppose v is nonadjacent with t. Then tx, ty, vs, vr ∈ E and txvr,
txvs, tyvr and tyvs are induced P4’s having v as centre vertex unless xr, xs, yr, ys,
respectively are edges of G. However, then 〈{t, x, y, z, r, s}〉 is a replicated twin
C4. If v is nonadjacent with r or s, say r, then vs, vt, rx, ry ∈ E. We may also
assume rs ∈ E; otherwise, we can argue as for t that G has a replicated twin C4.
Now tvxr and tvyr are induced P4’s having v as centre vertex unless xt, yt ∈ E.
However, then 〈{r, x, y, z, v, t}〉 is a replicated twin C4 which is forbidden. This
completes the proof of Claim 5.

Thus, by Claim 2, r, s, t are all adjacent with v1 and with none of the vertices
vj for 2 ≤ j ≤ k. So tv1v2 . . . vk is an induced path of length at least three
containing a as interior vertex. By our choice of the pair v, v′ we know that t is
not 3SS. So t is the centre of a claw or paw.

Since t is adjacent with z it is neither x nor y. By Claims 3, t is the cen-
tre of a claw or paw with peripheral vertices r1, s1, t1 such that t1s1, t1r1 6∈ E
and such that t1 is semisimplicial. Since both v and z are the centre of a
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claw or paw whose peripheral vertices are r, s, t, it follows from Claim 4 that
v, z 6∈ {r1, s1, t1} and by Claim 5, v and z are both adjacent with every vertex
of {r1, s1, t1}. Moreover, {r1, s1, t1} ∩ {x, y, r, s} = ∅. Now t1 is semisimplicial
and r1, s1, t1 are adjacent with v1 but with no vj for 2 ≤ j ≤ k. Thus as for t
we can argue that t1 is the centre of some induced claw or paw 〈{t1, r2, s2, t2}〉
where we may assume t2s2, t2r2 6∈ E(G). Moreover, one can argue as before that
v, z, x, y, r, s, t, r1, s1, t1 6∈ {r2, s2, t2} and that v, z, t and t1 are all adjacent with
r2, s2, t2. Continuing in this manner we see that G has an infinite number of
vertices which is not possible. So this case cannot occur.

Case 2. Every vertex of G that is not semisimplicial belongs to S.

Subcase 2.1. All vertices of G are semisimplicial. Then the extreme points
of G are the vertices that are not the centre of a claw or paw in G and G has
no induced path of length at least 3. So the m3

3-convex sets are the m3-convex
sets and the m3

3-convex hull of the extreme points is just the m3-convex hull of
the extreme points. Also since G has no induced path of length 3, G is 3-fan
free. Since G is (P4, RC4

)-free it follows from Corollary 4 that (V,Mm3

3

(G)) is a
convex geometry.

Subcase 2.2. There exist vertices that are not semisimplicial. From the case
we are in, these vertices all belong to S. So S has vertices that are not 3SS.
Thus 〈S〉 has at least four vertices and is therefore connected.

We show first that G − S has exactly one component. Suppose G − S has
at least two components. Let H1, H2, . . . , Hl be the components of G− S. Then
the 3SS vertices of G, which necessarily belong to S, are still 3SS vertices of
G − V (H1). Moreover if G − V (H1) contains any 3SS vertices that were not
3SS vertices of G these are also contained in S since such vertices are necessarily
adjacent with vertices ofH1. But since all 3SS vertices ofG−V (H1) are contained
in S, their m3

3-convex hull is also contained in S since S is m3
3-convex. However,

by our choice of G, the m3
3-convex hull of the 3SS vertices of G−V (H1) is V (G−

V (H1)) 6= S. This contradiction shows that G − S has exactly one component,
say H.

Since S contains vertices that are not 3SS, each such vertex v is either the
interior vertex of an induced path of length at least 3 whose end vertices are in
S or there exist three vertices x, y, z in S such that v is an interior vertex of a
minimal {x, y, z}-tree. In the first case all the vertices on the induced path belong
to S. In the second case 〈{x, y, z}〉 is not connected. In either case S contains
three vertices that induce a disconnected graph. Hence a vertex of G−S cannot
be adjacent to all vertices of S; otherwise, it would belong to a minimal R-tree
for some set R of three vertices of S. This is not possible since S is m3

3-convex.

Observe that every vertex of G−S is adjacent with some vertex of S; other-
wise, there is a vertex b distance 2 from S in G. Let bcS be a b−S path. Since c
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is not adjacent to every vertex of S, there is some vertex d ∈ S and a neighbour
d′ of d in S such cd ∈ E and cd′ 6∈ E. Thus bcdd′ is an induced P4. However, then
c is not semisimplicial and thus by the case we are in c ∈ S. This contradiction
shows that every vertex of G− S is adjacent with some vertex of S.

We now show that every vertex of S is adjacent with a vertex of H. Suppose
some vertex v of S is not adjacent with any vertex of H. Suppose first that
G − v is connected. By the minimality of G, V (G − v) is the m3

3-convex hull
of its extreme points, i.e., its 3SS vertices. Since the extreme points of G − v
are contained in S and since S is m3

3-convex, the m3
3-convex hull of the extreme

points of V (G − v) is contained in S \ {v}, a contradiction. Suppose next that
G − v is disconnected. Then, by the minimality of G, the vertex set of each
component is the m3

3-convex hull of its extreme points. Since G− v has at least
three vertices, there is a set R of three vertices of G− v such that v belongs to a
minimal R-tree. (Pick the vertices of R in such a way that they belong to at least
two distinct components of G − v.) However, since the extreme points of G − v
are contained in S, the extreme points of each component of G− v are also in S.
Thus the m3

3-convex hull of the extreme points of each component is contained in
S. Since v is also in S the m3

3-convex hull of the union of the m3
3-convex hulls of

the components together with v is also contained in S, a contradiction. So each
vertex of S is adjacent with some vertex of H.

Suppose first that 〈S〉 contains an induced path of order 4, say wrst. From
the above we know that w is adjacent with some vertex w′ in H. Now w′ cannot
be adjacent with both s and t; otherwise, w would be on a minimal {w, s, t}-tree
and thus in the m3

3-convex hull of the extreme points of G. Moreover, w′ cannot
be adjacent with exactly one of s and t; otherwise, w′ is not semisimplicial since
either ww′st (if w′s ∈ E) or ww′ts (if w′t ∈ E) are induced P4’s having w as
centre vertex. Let t′ be a neighbour of t in H1. We have argued that t′ 6= w′.
Since H is connected there is an induced w′ − t′ path P ′ in H. Since all vertices
of H are semisimplicial in G, P ′ has length 1 or 2. As we argued for w′ we can
show that t′ is not adjacent with either w or r. If w′t′ ∈ E, then ww′t′t is an
induced P4 containing w′ and t′ as centre vertices. This is not possible since all
vertices of H are semisimplicial. Suppose thus that P ′ has length 2 and let w′′

be the common neighbour of w′ and t′ on P ′. If w′′ is adjacent with w, then it
is nonadjacent with s and t (we argue as for w′). However, then ww′′t′t is an
induced P4 containing w′′ as centre vertex which is not possible. Similarly if w′′

is adjacent with t we can show that w′′ is not semisimplicial. But now ww′w′′t′

is an induced P4 containing w′ as centre vertex. This is not possible.

Thus 〈S〉 has no induced P4. By the case we are considering, H contains no
induced P4’s. We know that G has an induced path of order 4 and that any such
path necessarily contains vertices from H and S.

We show first that diam(G) ≤ 2. Suppose diam(G) = d ≥ 3. Let v, v′ be
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vertices such that d(v, v′) = d. Let Vi be the vertices distance i, 1 ≤ i ≤ d from v
in the g-interval between v and v′. Since H is connected and all vertices of H are
semisimplicial, H contains no induced path of order at least 4. Moreover, since
〈S〉 does not contain an induced path of order at least 4, one of v and v′, say v,
belongs to H and the other to S. In fact d = 3. Since the vertices of V1 and V2

are not semisimplicial, they belong to S. No neighbour x of v in H is adjacent
with a vertex of Vi for i = 2 or 3; otherwise, x is either not semisimplicial
or d(v, v′) < d = 3; neither of these situations is possible. Moreover, such a
neighbour is adjacent with every vertex of V1; otherwise, v is not semisimplicial.

Suppose now that v has a neighbour x in S \ V1. Then x is not adjacent
with a vertex of Vi for i = 2 or 3; otherwise, x is either in V1 or d(v, v′) < d = 3,
neither of which is possible. Moreover, such a vertex x is adjacent with every
vertex of V1; otherwise, v is not semisimplicial. (Note that if y ∈ V1 is such that
xy /∈ E and that if s ∈ V2 is such that sy ∈ E, then xvys is an induced P4 having
v as centre vertex.) But then 〈S〉 contains an induced x − v′ path of order 4
which is not possible in the case we are considering. So V1 is the collection of
neighbours of v in S. Similarly every neighbour y of v in H is adjacent with
precisely the vertices of V1 and with no other vertices of S. It is not difficult to
see that d(y, v′) = 3. So arguing as we did for v we see that every neighbour of
y in H is adjacent to precisely the vertices of V1 and to no other vertices of S.
Since H is connected and contains no induced P4’s it follows that every vertex
of H is adjacent with precisely the vertices of V1 and to no other vertices of S.
But then not every vertex of S is adjacent with a vertex of H; a contradiction.
So diam(G) ≤ 2.

Let P : wrst be an induced path. Then P is not contained in 〈S〉 and P is
not contained in H. Since r and s are not semisimplicial they belong to S (from
the case we are considering). Suppose first that w and t both belong to H. Since
H is connected there is an induced w− t path in H having length at most 2. Let
u be a common neighbour of w and t in H. Since G contains no house and hole,
u is adjacent with r and s. Since r and s are not semisimplicial they are not
3SS vertices. But r and s belong to the m3

3-convex hull of the extreme points
of G. So they must be the centre of a claw or paw whose peripheral vertices
belong to S. Let x, y, z be the peripheral vertices of such a claw or paw in 〈S〉
having r as centre vertex. Vertex t cannot be adjacent to all three vertices x, y, z;
otherwise, t belongs to the m3

3-convex hull of the 3SS vertices of G, i.e., t ∈ S,
a contradiction. We may assume tx /∈ E. Then xrut is an induced P4 having
u as centre vertex unless ux ∈ E. Also u is not adjacent with each of the three
vertices x, y, z; otherwise, u ∈ S. Suppose yu /∈ E. Then yrut is an induced
P4 having u as centre vertex unless yt ∈ E. If xy /∈ E, then 〈{y, r, u, t, x}〉 is a
house which is forbidden. So xy ∈ E. Since x, y, z, are the peripheral vertices of
a claw or paw it follows that zx, zy /∈ E. Now zrut is an induced P4 having u
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as centre vertex unless one of zu or zt is and edge of G. If zt /∈ E, then zu ∈ E
and 〈{t, u, r, y, z}〉 is a house which is forbidden. So zt ∈ E. But then ztyx is an
induced P4 having t as centre vertex, which is not possible since t ∈ V (H).

So we may assume that w ∈ V (H) and that t ∈ S. Of course r, s ∈ S. We
show first that H contains a common neighbour of w and t. Suppose this is not
the case. We know that t has a neighbour t′ in H. Since diam(H) ≤ 2 there is a
vertex u in H that is a common neighbour of w and t′. By assumption, ut 6∈ E.
But then tt′uw is an induced P4 having u as centre vertex which is not possible.
So there is a vertex u in H that is adjacent with w and t. Since G contains no
house or hole, us, ur ∈ E. Since s is not semisimplicial but s ∈ S it must be the
centre of an induced claw or paw in 〈S〉. Let x, y, z be the peripheral vertices
of such an induced claw or paw having s as centre. Since w ∈ V (H), w is not
adjacent with all three of the vertices x, y, z. Suppose wx 6∈ E. Then xsuw is an
induced P4 having u as centre vertex unless ux ∈ E. Similarly u is not adjacent
with all three vertixes x, y, z. We may assume uy 6∈ E. Then ysuw is an induced
P4 unless wy ∈ E. If xy 6∈ E, then 〈{w, u, s, y, x}〉 is a house which is forbidden.
So xy ∈ E. Since x, y, z are the peripheral vertices of a claw or paw, we conclude
that zx, zy 6∈ E. Now zsuw is an induced P4 having u as centre vertex unless one
of zu, zw is in E. If zw 6∈ E, then 〈{w, u, s, y, z}〉 is a house which is forbidden.
So zw ∈ E. But then zwyx is an induced P4 having w as centre vertex. This
completes the proof.

3. Concluding Remarks

In this paper we introduced the definition of a minimal U -tree where U is a set
of vertices in a connected graph G and defined several graph convexities that
use this concept. Of course every Steiner tree for U is a minimal U -tree but the
converse does not hold. So the Steiner interval is contained in the monophonic
interval for U . Two graph invariants have been studied that indicate the smallest
number of vertices that “span” the vertex set of a graph using different interval
notions. In particular, the geodetic number of a graph G, denoted by g(G), is
the smallest number k of vertices in G for which there exists a set S of k vertices
with the property that V (G) = ∪u,v∈SIg[u, v] and the Steiner geodetic number
of G, denoted by sg(G), is the smallest number k for which there exists a set
S of k vertices with V (G) = I(S). These invariants can be extended naturally
if we replace geodetic (Steiner) intervals by monophonic intervals. Let m(G) be
the smallest integer k for which there exists a set S of k vertices in G such that
V (G) = ∪u,v∈SIm[u, v] and sm(G) the smallest integer k such that there exists
a set S of k vertices in G with V (G) = Im(S). It was shown in [17] that in
general there is no relationship between g(G) and sg(G) by showing that the
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ratio g(G)/sg(G) can be made arbitrarily large and arbitrarily small. However,
such is not the case for the ratio m(G)/sm(G). It is not difficult to see that it
can never exceed 1. To see this suppose that S is a set of vertices in G such that
V (G) = Im(S). If w ∈ V (G)\S, then w belongs to some minimal S-tree T . Thus
w is a cut-vertex of H = 〈V (T )〉. Hence there exist two vertices u and v of S that
belong to distinct components in H − w. Thus w lies on an induced u− v path.
So S also has the property that V (G) = ∪u,v∈SIm[u, v]. But m(G)/sm(G) can
be arbitrarily small. Take for example the complete bipartite graph Kr,s where
2 ≤ r ≤ s. It is not difficult to see that m(Kr,s) = 4 whereas sm(G) = r. Hence
by choosing r sufficiently large the ratio m(G)/sm(G) can be made as small as
we wish. The problem of finding g(G) is known to be NP-hard (see [1]). In view
of the fact that the problem of finding Steiner trees for sets of vertices in a graph
is NP-hard it is likely that the problem of finding sg(G) may also be NP-hard.
However not much is known about the computability of m(G) and sm(G).
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