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Abstract

For a strong oriented graph D of order n and diameter d and an integer
k with 1 < k < d, the kth power D* of D is that digraph having vertex set
V(D) with the property that (u,v) is an arc of D* if the directed distance
dp (u,v) from w to v in D is at most k. For every strong digraph D of order
n > 2 and every integer k > [n/2], the digraph D* is Hamiltonian and the
lower bound [n/2] is sharp. The digraph D* is distance-colored if each arc
(u,v) of D¥ is assigned the color i where i = dp(u,v). The digraph D¥
is Hamiltonian-colored if D* contains a properly arc-colored Hamiltonian
cycle. The smallest positive integer k for which D* is Hamiltonian-colored
is the Hamiltonian coloring exponent hce(D) of D. For each integer n > 3,
the Hamiltonian coloring exponent of the directed cycle C, of order n is
determined whenever this number exists. It is shown for each integer k > 2
that there exists a strong oriented graph Dy such that hce(Dy) = k with
the added property that every properly colored Hamiltonian cycle in the kth
power of Dj must use all k colors. It is shown for every positive integer p
there exists a a connected graph G with two different strong orientations D
and D’ such that hce(D) — hee(D’) > p.
Keywords: powers of a strong oriented graph, distance-colored digraphs,
Hamiltonian-colored digraphs, Hamiltonian coloring exponents.
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1. INTRODUCTION

For a connected graph G of order n, the distance dg(u,v) between two vertices
u and v in G is the length of a shortest u — v path in G. A u — v path of length
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da(u,v) is a u — v geodesic. The greatest distance between any two vertices of
G is the diameter diam(G) of G. For an integer k with 1 < k < d = diam(G),
the kth power G* of G is that graph with vertex set V(G) and uwv € E(G¥)
if 1 < dg(u,v) < k. The graphs G? and G® are called the square and cube,
respectively, of G, while G' = G. For an integer k > d, G* = K,,, the complete
graph of order n. We refer to [3] for graph theory notation and terminology not
described in this paper.

In 1960 Sekanina [7] proved that the cube of every connected graph G of
order at least 3 is Hamiltonian. In fact, he showed that for every such graph G,
the graph G® is Hamiltonian-connected (every two vertices of G are connected
by a Hamiltonian path). In 1971 Fleischner [4] verified a well-known conjecture
(at the time) that the square of every 2-connected graph is Hamiltonian.

For a connected graph G, the edge-colored graph G* is distance-colored if
each edge uv of G¥ is assigned the color i where i = dg(u,v). The graph G*
is Hamiltonian-colored if it contains a properly colored Hamiltonian cycle, that
is, a Hamiltonian cycle in which every two adjacent edges are colored differently.
There are connected graphs G for which G* is not Hamiltonian-colored for any
positive integer k. Indeed, if GG is a graph of order n containing a vertex of
degree n — 1, then G* is not Hamiltonian-colored for any positive integer k. On
the other hand, if G¥ is Hamiltonian-colored for some positive integer k, then the
smallest such integer k is called the Hamiltonian coloring exponent hce(G) of G.
These concepts were introduced in [1] and studied further in [6]. Applications
of Hamiltonian-colored graphs to network communications were studied in [2].
Chartrand, Jones, Kolasinski and Zhang established the following result dealing
with the Hamiltonian coloring exponent of a graph (see [1, 6]).

Theorem 1.1. For each integer k > 2, there exists a graph G such that hee(G) =
k and every properly colored Hamiltonian cycle in GF must use all k colors.

In this paper we study the analogous concept of Hamiltonian-colored powers of
strong oriented graphs. We begin by presenting some information on powers of
strong oriented graphs.

2. POWERS OF STRONG ORIENTED GRAPHS

A digraph D is an oriented graph if for every two distinct vertices x and y, at
most one of the arcs (directed edges) (z,y) and (y, x) belongs to D. The digraph
D is strong (or strongly connected) if for every two vertices u and v, the digraph
D contains both a (directed) u—v path and a v —u path. The length of a shortest
u — v path in D is the (directed) distance dp(u,v) from u to v and a u — v path
of length dp(u,v) is a u — v geodesic. The maximum value of dp(z,y) among all
pairs z,y of vertices of D is the diameter diam(D) of D.
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For a strong oriented graph D of order n and diameter d and an integer k& with
1 < k < d, the kth power D of D is that digraph (not necessarily oriented
graph) having vertex set V(D) with the property that (u,v) is an arc of D¥ if
1< JD(u,v) < k. If k > d, then D* = K*, the complete symmetric digraph of
order n. If n > 2 and k > d, then DF is Hamiltonian. Unlike the situation for
connected graphs of order at least 3 where there is a fixed constant ¢ (namely
¢ = 3) such that G is Hamiltonian for every connected graph G of order at
least 3, there is no fixed constant ¢ such that D¢ is Hamiltonian for every strong
oriented graph D. We will see in Theorem 2.3 that if D is a strong digraph of
order n > 2 and k is an integer such that k > [n/2], then D* is Hamiltonian.
In order to establish this result, we first present a lemma. Obviously, if D is a
strong digraph of order n > 2 and diameter d, then odv > 1 and idv > 1 for
every vertex v of D. Since D? = K7, it follows that odps¢v = idpav =n — 1 for
every vertex v of D¢. More generally, we have the following.

Lemma 2.1. Let D be a strong digraph of order n > 2 and diameter d. For every
integer k with 1 < k < d and every vertex v of Dk, odprv > k and idpr v > k.

Proof. Suppose that the lemma is false. Then there is a smallest positive integer
r where r < d such that either odprv < r or idpr v < 7, say the former. Since
odpv > 1 and idp v > 1, it follows that r» > 2. Furthermore, because odpr-1 v >
r—1and idpr—1v > r—1, it follows that odpr—1 v = r—1. Since r < d, it follows
that |[Npr—1(v)U{v}| = r < n and so there are vertices of D that do not belong to
Npr-1(v)U{v}. Let w be one of these vertices. Since D is strong, there are v —w
paths in D. Let P be a v —w geodesic in D and let y be the first vertex of P that
does not belong to Npr—1(v) U {v}, where z is the vertex immediately preceding
y on P. Thus dp(v,z) < r—1 and (x,y) € E(D"'). Therefore, dp(v,y) = r
and y € Npr(v), a contradiction. |

Among the sufficient conditions that exist for a digraph to be Hamiltonian is the
following due to Ghouila-Houri [5].

Theorem 2.2 (Ghouila-Houri’s Theorem). If D is a strong digraph of order n
such that odv +idv > n for every vertex v of D, then D is Hamiltonian.

As a consequence of Lemma 2.1 and Ghouila-Houri’s theorem, we have the fol-
lowing.

Theorem 2.3. For every strong digraph D of order n > 2 and every integer
k > [n/2], the digraph D* is Hamiltonian. Furthermore, the lower bound [n/2]
18 sharp.

Proof. Let d be the diameter of D. If k > d, then D is the complete symmetric
digraph of order n and so DF is Hamiltonian. Thus, we may assume that 1 <
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k < d. By Lemma 2.1, odprt v > [n/2] and idpr v > [n/2] for every vertex v of
D. Therefore, odpi v +idpr v > 2[n/2] > n. By Ghouila-Houri’s theorem, D is
Hamiltonian. Thus, it remains to show that the lower bound [n/2] is sharp. For
a given integer k > 3, consider the strong oriented graph Dy shown in Figure 1.
(If k£ = 3, then we replace the (directed) v — v path (u,v1,va,...,v_3,v) by the
arc (u,v).)

——=—O0—=>—0— ¢+ ¢ ¢+ >0—>—
U1 V2 U3 Vi—4 Vg -3

Figure 1. The strong oriented graph Dy in the proof of Theorem 2.3.

Since the order of Dy is n = 2k — 1, it follows by the first statement in this
theorem that the kth power of Dj is Hamiltonian. The diameter of Dy is k. In
fact, the only vertices y and z in Dy for which d, p(y,z) = k are distinct vertices
of {x1,z2,...,2;}. In fact, if we let G = K + Ky_1 (the join of K and K;_1),
then Dl]z_l = G* (the complete symmetric digraph with underlying graph G).
Because G is not Hamiltonian, it follows that D’,j is Hamiltonian but Dlg_l is not.
Therefore, the lower bound [n/2] is sharp. |

By Theorem 2.3, unlike the situation for connected graphs of order at least 3,
there is no fixed constant ¢ such that D¢ is Hamiltonian for every strong oriented
graph D.

3. DISTANCE-COLORED DIGRAPHS

For a strong oriented graph D and a positive integer k, the kth power D¥ is called
distance-colored if each arc (u,v) of D* is assigned the color i if d};(u,v) = i
The digraph D* is called Hamiltonian-colored if D contains a properly colored
Hamiltonian cycle C' = (v1,va,...,Vp, Unt1 = v1), that is, the colors of (v;, vit+1)
and (viy1,v;42) are distinct for 1 <i < n, where v, = vo.

If D is a strong oriented graph such that the distance-colored digraph D? is
Hamiltonian-colored, then D must have even order n. The only strong digraph
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of order 2 is K, which is not an oriented graph. There is also no strong oriented
graph D of order 4 for which D? is Hamiltonian-colored, for suppose, to the
contrary, that such a digraph D exists and C' = (u, v, w, x, u) is a properly colored
Hamiltonian cycle in D?, where (u,v) and (w,z) are colored 1 and (v,w) and
(x,u) are colored 2 (see Figure 2). Since (v, w) belongs to D? but not D, (v, w) ¢
E(D). Because D is strong and an oriented graph, (v,z) € E(D). Similarly,
(z,v) € E(D). However then, D is not an oriented graph, a contradiction. The
situation for the orders 2 and 4 are the exceptions, however, as we now see.

Figure 2. Showing that the square of no strong oriented graph of order 4
is Hamiltonian-colored.

U1 V2

V10 U3

Vg V4

(U3 Us

vr Ve

Figure 3. The strong oriented graph D (for k = 5) in the proof of Theorem 3.1.

Theorem 3.1. For every even integer n > 6, there exists a strong oriented graph
D of order n such that D? is Hamiltonian-colored.

Proof. Let D be the strong oriented graph of order n = 2k > 6 and size 3k
for which V(D) = {wvi,v2,...,v9,} and E(D) = {(vai—1,v2) : 1 < i < k} U
{(vor43—2is Vopq1-2i) : 1 < i < k} U {(vag,v2i43) : 1 < i <k}, where vopq1 = v1
and vop43 = v3. (The digraph D is shown in Figure 3 for the case where k = 5.)
In D?, the Hamiltonian cycle (vy,vs,. .., vy, v1) is properly colored. [
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If D is a strong oriented graph such that D* is Hamiltonian-colored for some
positive integer k, then the smallest such integer k is defined as the Hamilto-
nian coloring exponent hce(D) of D. Thus if hce(D) = k, then D*~! is not
Hamiltonian-colored. In particular, Theorem 3.1 shows that if D is a strong
oriented graph such that D? is Hamiltonian-colored, then hce(D) = 2.

4. HAMILTONIAN COLORING EXPONENTS OF DIRECTED CYCLES

We now determine hce(C,,) for the directed cycle C,, of order n > 3. Since
diam(C,) = n — 1, it follows that if hee(C,) exists, then 2 < hee(Cy,) < n — 1.
Let D = C,, where n > 3. If hee(C,) exists, let hee(D) = k. Then D¥ contains
a properly colored Hamiltonian cycle C' = (v1,v9, ..., 0n, Upy1 = v1) where 1 <
Jp(vi,vi+1) <kfori=12,...,n. Let JD(vi,vi+1) = q; for 1 < ¢ < n. Thus,
corresponding to the properly colored directed cycle C’ is the cyclic sequence
$:ai,as,...,a, of colors where a; € {1,2,...,k} for 1 <i < n. Since C’ starts
and ends at vy, it fol_lpws that O’ proceeds around C_"n a certain number of times,
say p, and so Y ;" dp(vi, vip1) = Y iy a; = pn.

For a cyclic sequence s : ai,as9,...,a, of length n and any integer ¢ with
1 <t < n, the sequence s can also be expressed as s : ag, Gg1,- -+, Qpny A1y - ., Q1.
A proper subsequence s* of s is defined as a sequence s* : ag, 41, - - -, Gppnr—1 Of
length n*, where 1 < n* < n and the subscripts are expressed as integers mod-
ulo n. There is no proper subsequence s* : as,a¢11,...,ai+q—1 of s for which
Zﬁig_l a; is a multiple of n, for otherwise, the cycle C* = (v, vit1, ..., Viqrq—1,
Upyq = v¢) is a cycle of length ¢ < n that is a proper subdigraph of the Hamil-
tonian cycle C’, which is impossible. Consequently, s : ai,as,...,a, where
a; € {1,2,...,k} for 1 < i < n is a cyclic sequence of colors of a Hamiltonian-
colored digraph D¥ with hce(D) = k if and only if

(1) no two consecutive terms in s are equal,
(2) >, a; is a multiple of n and
(3) the sum of the terms in no proper subsequence of s is a multiple of n.

Any cyclic sequence s : ay,as,...,a, of terms a; € {1,2} for 1 < i < n satisfying
condition (1) has the property that n < Y " ; a; < 2n. Thus condition (2) is not
satisfied. Therefore, we have the following observation.

Observation 4.1. Let n > 3 be an integer. If hee(Cy) exists, then hee(Ch) > 3.

Since diam(Cs) = 2, it follows by Observation 4.1 that hee(C) does not exist. On
the other hand, if Cy = (v1, v2, v3,v4, v1), then C" = (v1,v9, vy, v3,v1) is a properly
colored Hamiltonian cycle in the cube of Cy4 and so hce(Cy) = 3. Corresponding
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to C’ is the cyclic sequence s : 1,2, 3,2 of colors. In fact, not only is hce((i;) =3

—

but hce(C),) = 3 for all even integers n > 4, as we show next.

Theorem 4.2. For every even integer n > 4, hee(Cy,) = 3.

Proof. We have already observed that hee(Cy) = 3 and hee(C,,) > 3 for all
integers n > 3 (if hce(C),) exists). Thus, it remains only to show that there is a
cyclic sequence s : ay,ag, ..., a, of n > 6 terms with n even and a; € {1,2,3} for

1 <4 < n satisfying conditions (1)—(3). We consider two cases.

Case 1. n =2(mod 4). So n = 4r + 2 for r > 1. Consider the cyclic sequen-
ce s : 1,3,1,3,...,1,3 of 4r + 2 terms. Then the sum of the terms of s is
8r + 4 = 2n. Since the sum of the terms of any subsequence of s is either odd or
a multiple of 4, this sum is not n.

Case 2. n = 0(mod 4). So n = 4r for r > 2. Consider the cyclic sequence
s:1,3,1,3,...,1,3,1,2,3,1,3,1,...,3,1, 3,2 of 4r terms where there are 2r — 1
terms between the occurrences of 2 in s. Then the sum of the terms of s is
8r = 2n. Now observe that the sum of the terms of any subsequence

(i) containing both terms 2 exceeds n,

(ii) containing neither term 2 is less than n and

(iii) containing exactly one term 2 is either odd or is congruent to 2 modulo
4 and consequently is not n. [

We now consider hee(C,,) where n > 3 is odd. We saw that hee(Cs) does not
exist. In fact, hce(C5) does not exist either.

Proposition 4.3. The number hee(Cs) does not exist.

Proof. Let D = Cs. Assume, to the contrary, that hce(D) exists. By Observa-
tion 4.1, 3 < hce(D) < diam(D) = 4, that is, either hce(D) = 3 or hce(D) = 4.
If hce(D) = 3, then there exists a cyclic sequence s : a1, as,as, as, as with
a; € {1,2,3}, 1 < i < 5, satisfying (1)—(3). Necessarily, some term, say ag, is
3. If either a; = 2 or ag = 2, then either a; + as = 5 or as + ag = 5, which is
impossible. Thus a; = ag = 1. However then, a; + as + ag = 5, also impossible.
If hee(D) = 4, then there exists a cyclic sequence s : a1, ag,as, as, as with
a; € {1,2,3,4}, 1 < i < 5, satisfying (1)—(3). Necessarily, some term, say as, is
4. Neither as nor a4 is 1, for otherwise, either as + az = 5 or ag + a4 = 5, which
is impossible. Also, we cannot have as = a4 = 3 for then as + a3 + a4 = 10, also
impossible. Thus, one of as and a4 is 2 and the other is 2 or 3. First, suppose
that as = 3 and a4 = 2. Now a5 # 1, for otherwise, as + a3 + a4 + a5 = 10,
which is impossible. Also, a5 # 3, for otherwise, a4 + a5 = 5. Finally, a5 # 4, for
otherwise, ag + a4 + a5 = 10. Thus, this case cannot occur. Next suppose that
as = a4 = 2. Neither a1 = 4 nor a5 = 4 for otherwise, either a1 + as + ag = 10
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or az + a4 + a5 = 10. Also, neither a; = 3 nor as = 3, for otherwise, a1 + a2 =5
or ag + as = 5. Consequently, a; = a5 = 1, which contradicts (1). Again, this is
impossible. [

On the other hand, hce(én) exists for each odd integer n > 7. First, we present
a lemma.

—

Lemma 4.4. For every odd integer n > 7, hce(Cy,) # 3.

Proof. Assume, to the contrary, that there is an odd integer n > 7 such that

hee(Cp) = 3. Let D = C,, = (v1,02,...,0n,0p11 = v1). Hence there exists
a properly colored Hamiltonian cycle C' = (u1,us,. .., Un, Uni1 = u1) in D3,
where u; = v1 and where C’ proceeds about C,, twice. If s : a1, ao,...,a, is the

corresponding cyclic sequence of colors for C’, then no two consecutive terms in
s are equal, > " | a; = 2n and no proper subsequence of s has the property that
the sum of its terms is n. Since C’ is an odd cycle, all three colors 1,2 and 3
must appear in s. Furthermore, since the sum )" ; a; is even and the average
term in this sum is 2, the colors 1 and 3 must appear an equal number of times,
implying that the color 2 must appear an odd number of times in s.

First, we show that neither 1,2, 1 nor 3, 2, 3 can occur as a subsequence of s. If
1,2, 1 occurs as a subsequence of s, then C’ contains the path (v, v;11, Vi3, Vita)
for some ¢ with 1 < ¢ < n where the subscripts are expressed as integers modulo n.
This, however, implies that (v;_1,v;12,v;45) is a path on C’ and that 3,3 is a
subsequence of s, which is impossible. If 3,2,3 occurs as a subsequence of s,
then C’ contains the path (v;, vit3,vVit5,vitg) for some i (1 < i < n). Since C’
proceeds about én twice, (Vit1, Vit2, Vitd, Vit6, Vit7) 1S also a path on C’ and so
1,2,2,1 is a subsequence of s, which is impossible.

Therefore, each occurrence of the color 2 in s must occur as 1,2,3 or 3,2, 1.
If 1,2,3 occurs in s, then C’ contains the path (v;, vit+1,vit3,vit6) for some 7
(1 <i < mn), implying that C’ also contains (v;_1,v;+2, Vi+4,vi+5) and so 3,2, 1 is
a subsequence (later) in s. Similarly, if 3,2, 1 occurs in s, then 1,2, 3 occurs (later)
in s. That is, the subsequences 1,2, 3 and 3,2, 1 occur in pairs in s, implying that
2 appears an even number of times in s, which is a contradiction. [

We next show that hee(Cr) = hee(Cy) = 5, beginning with hee(Cr) = 5.
Proposition 4.5. hce(Cy) = 5.

Proof. Let D = Cr = (v1,v2,...,v7,v1). Since the cyclic sequence
s:1,5,3,2,1,5,4
corresponds to the properly colored Hamiltonian cycle
_’(’Ul,’02,1)7,’1)3,1)5,’1)6,’1)4,’1)1) . .
in D5, it follows that hce(C7) < 5. By Lemma 4.4, hce(C7) > 4. Thus hce(Cr) =
4 or hee(Cy) = 5. We show that hee(Cr) = 5.
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Assume, to the contrary, that hce((%) = 4. Then D* contains a properly colored
Hamiltonian cycle C’. Corresponding to C’ is a cyclic sequence of colors s :
ai,as,...,a7, where 21-7:1 a; = 14 or Ezzl a; = 21. Necessarily, at least one of
the terms in s is the color 4, say a4 = 4. Since the sum of the terms in no proper
subsequence of s is a multiple of 7, it follows that (1) neither ag nor as is 3 and
(2) {as,as} # {1,2}. Hence either a3 = a5 = 1 or ag = a5 = 2. First, assume
that ag = a5 = 1. Thus either a1 + a9 + ag + a7 = 8 or aj + as + ag + a7 = 15.
Since no two consecutive terms in s are 4, it follows that a1 + as + ag + a7 = 8.
If one of the colors a1, a2, ag and a7 is 4, then two of them are 1, contradicting
the assumption of the case. Again, the assumption of the case implies that
no two the colors ai,ao,as,a7 can be 1. Consequently, we may assume that
s:1,2,1,4,1,3,2. Since as + a3 + a4 = 7, a contradiction is produced. Next,
assume that ag = a5 = 2. First, we observe that neither as nor ag is 1 since
the sum of the terms in no proper subsequence of s is 7. Also, since the sum of
the terms in no proper subsequence of s is 14, it cannot occur that as = ag = 3.
Therefore, either ao = ag = 4 or we may assume that ao = 3 and ag = 4. If
as = ag = 4, then a; ¢ {1,2, 3,4}, for otherwise, the sum of the terms in a proper
subsequence of s is a multiple of 7; if ap = 3 and ag = 4, then a7 ¢ {1,2,3,4},

a contradiction. [

Proposition 4.6. hce(Cy) = 5.

Proof. Let D = Cy = (v1,v2,...,v9,v1). Since the cyclic sequence
s:1,4,3,4,3,5,2,3,2
corresponds to the properly colored Hamiltonian cycle
(v1, v2, v6, V9, Va, U7, V3, V5, Vs, V1) B
in D5, it follows that hce(Co) < 5. By Lemma 4.4, hce(Cy) > 4. Thus hee(Cy) =
4 or hee(Cy) = 5. We show that hee(Cy) = 5.

Assume, to the contrary, that hce(ég) = 4. Then D?* contains a properly
colored Hamiltonian cycle C’. Corresponding to C” is a cyclic sequence of colors
s :ai,ao,...,ay, where Z?:l a; = 18 or Z?:l a; = 27. (There is no no proper
subsequence of s, the sum of whose terms is a multiple of 9.) We consider two
cases.

Case 1. Z?:1 a; = 18. Then the cycle C’ proceeds about Cly exactly twice.
Since at least one of the terms in s is the color 4, we may assume that (vy,vs) is
a path on C’. However then, (vy,v3,v4) is also path on C’; implying that 1,1 is
a subsequence of s, which is impossible.

Case 2. Z?:1 a; = 27. Consider the three subsequences of s,
11 a1,a2,0a3, $2 : 44,05, 06, $3 : a7,0s8, a9,
where o; is the sum of the terms in s; for ¢ = 1,2,3. Necessarily, no o; has the
value 9. Since o1 + 09 + 03 = 27, two of the numbers o1, 09, 03 exceed 9 or two
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are less than 9. First assume that two of the numbers o1, 09,03 exceed 9, say
o1 and o9. Thus each of o1 and o9 is 10 or 11. If o7 = 11, then s : 4,3,4.
If o1 = 10, then sq : 4,2,4 or s1 : 3,4,3. Since a3 # a4, we may assume that
s1:3,4,3 and either s9 : 4,2,4 or s3 : 4,3,4. Since ag+a4+as # 9, it follows that
s1:3,4,3 and s3 : 4,3,4. Thus o3 = 6, which implies that a7 4+ ag + a9 +a; =9,
producing a contradiction. Next, assume that two of the numbers o1, 09,03 are
less than 9, say o1 and o3. Thus o9 = 11, which implies that ss : 4,3,4. Hence
o1 = o3 = 8. Consequently, s; is one of (1) 4,3,1, (2) 4,1,3 or (3) 1,4, 3; while
sg is one of (17) 1,3,4, (2’) 3,1,4 or (3’) 3,4,1. Since a; # ag, ag + a1 +az # 9
and ag + ag + a1 # 9, none of these are possible. [

We now show that hce(C,) = 5 for each odd integer n > 7.

v1 U1

v11 v2 V16 /F vs

V10 v3 15 V4
/\ V14 Qs
V9 (o
X \ i 1)130\G Ve
vg \) U5 V12 / Cid
v11 ) % vs8
U6 o

vt
v10 V9

(a) (b)

Figure 4. Properly colored Hamiltonian cycles in the 5th powers of C_”n and 517.

—

Theorem 4.7. For every odd integer n > 7, hee(C,,) = 5.

—

Proof. Let D = C,, = (v1,v2,...,0,,v1). We have seen by Propositions 4.5 and
4.6 that hce(C7) = hce(Cy) = 5. Hence we may assume that n > 11. We first

show that hce(C),) < 5. There are hree cases, according to whether n is congruent
to 5, 1 or 3 modulo 6.

Case 1. n =5(mod 6). First, observe that the cyclic sequence
s11:95,1,3,4,2,3,5,2,5,2,1
corresponds to the properly colored Hamiltonian cycle
Cil - (Ul, V6, U7, V10, V3, ’Ué, Vg, V2,V4,V9, V11, ’Ul)
shown in Figure 4(a) in the 5th power of Ci1; while the cyclic sequence
s17:5,1,5,1,3,4,2,4,2,3,5,2,4,2,5,2, 1
corresponds to the properly colored Hamiltonian cycle

!
(1) 017 = (017UG,U7,U12,U13,01671)3,115,119,1111,U14,112,v4,118,v10,U15,’017,Ul)
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shown in Figure 4(b) in the 5th power of Cy7. Thus hce(éll) < 5and hce(617) <
5. For the cycle C{; (in (1) and in Figure 4(b)), let n = 17 and relabel v;

V12

v11

V10

Figure 5. Properly colored Hamiltonian cycles in the 5th powers of 613 and C_"lg.

(1 <i <17 = n) as vi4¢ and delete the arcs (vp46,v7), (Unts,09), (Vnts,v8).
We next add vertices v1,vg, ..., vs along with all arcs of C], incident with and
directed away from vy, vs,...,vs. Finally, we add the arcs (vy+6,v1), (Un+s,03),
(Un+3,v2). This produces a properly colored Hamiltonian cycle C’ for the 5th
power of 6—"23. Corresponding to this cycle is the cyclic sequence
s':5,1,5,1,5,1,3,4,2,4,2,4,2,3,5,2,4,2,4,2,5,2, 1.
By first letting n = 23 and then proceeding successively as above, we obtain a
properly colored Hamiltonian cycle in the 5th power of C., for each n > 29 such
that n = 5 (mod 6). Such a cycle also corresponds to the cyclic sequence obtained
by inserting in s’ (a) the sequence 5,1 between 5,1 and 3,4, (b) the sequence 2,4
between 2,4 and 2,3 and (c) the sequence 2,4 between 2,4 and 2, 5.

Case 2. n =1(mod 6). First, observe that the cyclic sequence
s13:5,1,5,1,3,1,4,3,4,3,4,1,4
corresponds to the properly colored Hamiltonian cycle
Cls = (v1,v6, 07, V12, V13, VU3, V4, Vs, V11, V2, Us, Vg, V10, V1)
shown in Figure 5(a) in the 5th power of Cj3; while the cyclic sequence
$19:5,1,5,1,5,1,3,1,4,2,4,3,4,3,4,2,4,1,4
corresponds to the properly colored Hamiltonian cycle

!
(2) 19 —
(v1,v6, V7, V12, V13, V18, V19, U3, V4, U8, V10, V14, V17, V2, Us, V9, V11, V15, V16, V1)

shown in Figure 5(b) in the 5th power of Cig. Thus hee(Ci3) < 5 and hee(Clg) <
5. For the cycle C}qy (in (2) and in Figure 5(b)), let n = 19 and relabel v;
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(1 <4 <19 =n) as vi1¢ and delete the arcs (vn46,v9), (Unta,vs), (Unts,v7).
We next add vertices vy, vs, ..., vs along with all arcs of (g incident with and
directed away from vy, vs,...,vs. Finally, we add the arcs (vp+6,v1), (Un+s,v3),
(Un44,v2). This produces a properly colored Hamiltonian cycle C’ for the 5th
power of 525. Corresponding to this cycle is the cyclic sequence
s 5,1,5,1,5,1,5,1,3,1,4,2,4,2,4,3,4,3,4,2,4,2,4,1,4.
By first letting n = 25 and then proceeding successively as above, we obtain a
properly colored Hamiltonian cycle in the 5th power of C, for every integer n > 31
such that n = 1(mod 6). Such a cycle also corresponds to the cyclic sequence
obtained by inserting in s’ (a) the sequence 5,1 between between 5,1 and 3, 1,4,
(b) the sequence 2,4 after 3,1,4 and (c) the sequence 2,4 after 3,4, 3, 4.
Case 3. n = 3(mod 6). First, observe that the cyclic sequence
s15:5,1,5,1,5,1,4,2,5,2,3,4,2,3,2

corresponds to the properly colored Hamiltonian cycle

015 = (UlaU6a0770127U13,U3,U4,U8L0107’1)15,712,@5,@9,@11,’1)147@1)
shown in Figure 6(a) in the 5th power of C}5; while the cyclic sequence

s91:5,1,5,1,5,1,5,1,4,2,4,2,5,2,3,4,2,4,2,3,2

corresponds to the properly colored Hamiltonian cycle

!
021 = (Ulavﬁa
VU7, V12, V13, V18, V19, U3, V4, U8, V10, V14, V16, V21, V2, U5, V9, V11, V15, V17, V20, 111)

3)

shown in Figure 6(b) in the 5th power of Coy. Thus hce(615) < 5and hce(égl) <
5.

V19
V18

v17
V16

V15

Figure 6. Properly colored Hamiltonian cycles in the 5th powers of Cis and Co;.

For the cycle C%; (in (3) and in Figure 6(b)), let n = 21 and relabel v; (1 <i <
21 = n) as v;¢ and delete the arcs (vn46,v8), (Vnts,07), (Unta,v9). We next
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add vertices v1,ve,...,vs along with all arcs of C%; incident with and directed
away from vy, v, ..., vs. Finally, we add the arcs (v,46,v2), (Un+5,01), (Unt4,v3).
This produces a properly colored Hamiltonian cycle C’ for the 5th power of 627.
Corresponding to this cycle is the cyclic sequence
s':51,51,5,1,5,1,5,1,4,2,4,2,4,2,5,2,3,4,2,4,2,4,2,3,2.

By first letting n = 27 and then proceeding successively as above, we obtain a
properly colored Hamiltonian cycle in the 5th power of C, for every integer n
such that n > 33 and n = 3(mod 6). Such a cycle also corresponds to the cyclic
sequence obtained by inserting in s’ (a) the sequence 5,1 between 5,1 and 4,2,
(b) the sequence 2,4 between 2,4 and 2,5 and (c) the sequence 2,4 between 2,4
and 2, 3.

Next, we show that hce(én) > 5. We have seen by Lemma 4.4 that hce(én) >
4 for every odd integer n > 7. Thus it remains only to show that hce(C_"n) = 4 for
all such integers n. Assume, to the contrary, that the distance-colored digraph
D* contains a properly colored Hamiltonian cycle C, which we assume begins and
ends at v1. Thus the arcs of C are colored with elements of the set {1,2,3,4}.
Since hee(C,) > 4, at least one arc of C'is colored 4, say (v;, vi44) is colored 4 for
some 4. If the cycle C proceeds about C, only twice, then C' must contain the
path (viy1, vit2, vits), which implies that two consecutive arcs of C' are colored 1,
which is impossible. Consequently, C' proceeds about C, exactly three times.

We claim that no arc of C'is colored 1. Suppose that this is not the case. Then
one or more arcs of C' are colored 1. We may assume that (v;, v2) is colored 1 and
this is the first arc of C. Thus (ve,v3) is not an arc of C. Let vpy1 (2 < k < n)
be the next vertex of C' that is incident with an arc colored 1, where v, 11 = v;.
Therefore, no arc of C that is incident with any of vs, vy, ..., vy is colored 1. We
refer to the set {v1, ve, ..., v} of vertices as a block of C', where the block is even
or odd according to whether & is even or odd. We show that this block is even.

First, we show that (vy,v4) and (v,—1,v3) are arcs of C. Certainly, vy, is
adjacent to either vs or vy. If (v,,v3) is an arc of C, then (vy,v2) and (v, v3)
belong to two of the three distinct paths that pass by v; as we proceed about
C, on C. However then, the third path that passes by v; must contain an arc
(vj,ve), where j < n and ¢ > 3, which is impossible. Hence (vy,v4) is an arc on
C', which implies that (v,—1,v3) is an arc on C.

In summary then, the cycle C' contains the arc (v1,vs) colored 1 and the arcs
(vn,vq) and (vp—1,v3), both colored 4. The vertex vy is adjacent to either vs or
vg. We consider these two cases.

Case 1. (ve,vs) is an arc on C. In this case, (v3,vg) and (v4,v7) are arcs of
C'. This implies that (vs,v9) is an arc of C (see Figure 7). The vertex v,_s is
adjacent to either v,,_1, v, or v;. We consider these three subcases.

Subcase 1.1. (vp—2,vp—1) is an arc of C. Since (vp—2,vp—1) is an arc of C'
colored 1, it follows by the previous discussion that (v,_3,v,) is not an arc of C'
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Un—2

Figure 7. Illustrating Case 1.

and so (v,—3,v1) is an arc of C. This, however, implies that (v,_4,vy) is an arc
of C' colored 4, which is impossible since (v, v4) is also an arc of C' colored 4.

Subcase 1.2. (vp—2,vy) s an arc of C. If (v7,vg) is an arc of C' colored 1, then
the block is even. Thus, we may assume that (v, vs) is not an arc of C. This
implies that (v7,v11) is an arc of C. If n = 11, then a contradiction is produced
since (vp,v4) = (v11,v4) is also an arc of C. Thus, n > 13 and then (vg, vg) must
be an arc of C. This implies that (vg,v19) cannot be an arc of C. Thus (vg, v1g)
is an arc of C' colored 1 and the block is even.

Subcase 1.3. (vp—2,v1) is an arc of C. If (v7,vs) is an arc of C, then the
block is even; otherwise, (v7,v11) is an arc of C. As we saw in Subcase 1.2, a
contradiction is produced if n = 11. Thus, n > 13. In this case, (vg,vg) and
(vs,v12) are arcs of C. From this, it follows that (vg,v10) is an arc of C' and the
block is even.

Case 2. (va,vg) is an arc of C. In this case, (v3,vs) and (v4, v7) are also arcs
of C. See Figure 8. Then v5 is adjacent to either vg or vg. We consider these two
subcases.

4 4 2 3
1
(e} O [ ] O ©) O
Un—2 Upn—1 Un v1 v2 U3 V4 U5 V6 v7 U8 V9
4

Figure 8. Illustrating Case 2.

Subcase 2.1. (vs,vs) is an arc of C. Here, both (vg,v9) and (v7,v11) are arcs
of C. Again, if n = 11, then a contradiction is produced since (vy,v4) = (v11,v4)
is an arc of C. Thus, n > 13. If (vg,v19) is an arc of C, then the block is even;
otherwise, (vg,v13) is an arc of C' as is (v, v1p), which implies that (vi1,v12) is
an arc of C and once again the block is even.

Subcase 2.2. (vs,v9) is an arc of C. If (v7,vs) is an arc of C, then the block
is even; otherwise, (vg,vg) is an arc of C, which implies that (v7,v11) is an arc of
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C'. As we have seen that n # 11. Thus n > 13 and then (vg,v;12) is an arc of C.
From this, it follows that (vg, v1p) is an arc of C' and so the block is even.

Therefore, each arc of C' colored 1 belongs to an even block. Since the
distinct blocks produce a partition of V(C_”n), it follows that n is even, which
is a contradiction. Hence no arc of C is colored 1. Consequently, each arc of
a properly colored Hamiltonian cycle C' of the distance-colored digraph D?* is
colored 2, 3 or 4.

Let s : ay,a9,...,a, be the corresponding cyclic sequence of colors of C,
where, as we noted, a; € {2,3,4} for each i (1 < i < n). Also >, a; = 3n.
Since (>°;"; a;)/n = 3 and n is odd, the color 3 appears an odd number of times
in s and the colors 2 and 4 occur an equal number of times.

First, we show that 2,3 is not a subsequence of s, for suppose that it is. We
may assume that (vs,vs) and (vs,vs) are arcs of C. Observe that (v4,v7) and
(v2,v6) are arcs of C'. Then v is adjacent to no vertex of D on C, a contradiction.

Consequently, each term 3 in s is immediately preceded by 4 in s. Since the
number of terms 2 and the number of terms 4 are equal, each subsequence of s
between consecutive occurrences of 3 must alternate 2 and 4, beginning with 2
and ending with 4. In particular, each occurrence of 3 in s is immediately followed
by 2,4, that is, 3,2,4 is a subsequence of s. We may assume therefore that C
contains the arcs (v1,v4), (v4,v6) and (ve,v109). Note that (ve,vs) and (vs,v7)
must be arcs on C. However then, vs is adjacent to no vertex of D on C, a
contradiction.

Hence, D* contains no properly colored Hamiltonian cycle. Therefore,

— —

hee(C),) > 5 and so hee(C),) = 5 for each odd integer n > 7. [
In summary, hce(Cs) and hee(Cs) do not exist and

= 3 ifn >4iseven,
hee(Cn) = { 5 ifn>7is odd.

5. DISTANCE-COLORED DIGRAPHS WITH PRESCRIBED HAMILTONIAN
COLORING EXPONENT

We saw that there are strong oriented graphs D for which hce(D) does not exist.
On the other hand, for each integer k > 2, there exists a strong oriented graph D
such that hce(D) = k. In fact, more can be said. We now present a result that
is analogous to Theorem 1.1.

Theorem 5.1. For each integer k > 2, there exists a strong oriented graph Dy
such that hce(Dy) = k. Furthermore, every properly colored Hamiltonian cycle
in the kth power of Dy must use all k colors.
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Proof. By Theorem 3.1, we may assume that k£ > 3. We consider two cases,
according to whether £ is even or k is odd.

Case 1. k is even. First, we define four oriented graphs H;, Ho, H3 and H,
as follows:

e H; is a tramsitive tournament of order 2k with the Hamiltonian path
(Ul, U2y . .- 7“214:)7

e Hy = (v1,v9,...,v) is a directed path of order k,

e Hj is a transitive tournament of order 2k with the Hamiltonian path
(U}l,'LUQ, s ,ka),

e Hy = (x1,x9,...,x) is a directed path of order k.

The oriented graph Dy is then constructed from Hi, Ho, H3 and H4 by adding
the arcs (ugg,v1), (v, w1), (wok, z1) and (zx,u1) (see Figure 9). Since

(U, Uy« vy UDhey VI, V2 v ey Uy W, W2y e e vy Wy Ty L2y v - vy Thoy UL )
is a Hamiltonian cycle in Dy, it follows that Dy is a strong oriented graph.

Tk

xr3 x2 x1
/O_é. h _O_eo_éo\
u1l W2k

u2

u3 Dy,

A

@ws
ol i
\H+o— R 9—(/

V1 v2 v3 Vg
Figure 9. The strong oriented graph Dy where k is even.

We first show that hce(Dy) > k. Assume, to the contrary, that the distance-
colored digraph Dl,j_l contains a properly colored Hamiltonian cycle C*. Since,
for each pair 4,j with 1 < ¢,5 < 2k and i < j, we have dp, (w;, w;) = 1 and
dp,(wj,w;) > k, at most two vertices of H3 can appear consecutively on C*.
On the other hand, vo,vs, ..., v; are the only vertices of Dy that are adjacent to
vertices of Hs in DZ_I. This implies that C* encounters H3 at most k — 1 times
and so C* contains at most 2(k—1) vertices of Hsz, which is a contradiction. Next,
we show that hee(Dy) < k by constructing a properly colored Hamiltonian cycle
in D,’:. Consider the k directed paths P; = (ugyq,vi,w;), 1 < i < k, of order 3
in DF. Observe that dp, (ugii,v;) = 1 +ifor 1 <i < k—1, dp, (ugk,vk) = k,
dp,(vi,w1) = k and dp, (v;,w;) = k+2—ifor 2 <i < k. Also, k > 4 is even
and so k 4+ 1 is odd. These observations imply that

(1) 2 <dp, (ugti,vi) < k and 2 < dp, (vi,w;) <k for 1 <i <k,
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(2) de (uk+i,vi) 7& de(vi,wZ-) fOl“ 1 S 7 S k‘.

Similarly, consider the k directed paths Q; = (wg4i, i, u;), 1 < i < k, of order 3
in D’,j. By symmetry, we have

(3) 2 <dp, (Wgti,zi) < kand 2 < dp, (z;,u;) <k for 1 <i <k,
(4) dp, (Wgti, zi) # dp, (i, u;) for 1 <i < k.

Since dp, (wj, ug+14i) =1 for 1 <i <k —1, dp, (w;, wg4;) =1 for 1 <7 < k and
dp, (uk, ug+1) = 1, it follows by (1)-(4) that (P1, Q1, P2, Q2, ..., Pk, Qk, ug+1) is
a properly colored Hamiltonian cycle in D,’j .

It remains to show that every properly colored Hamiltonian cycle in the
kth power of Dy must use all colors 1,2,...,k. Let C' be any properly colored
Hamiltonian cycle in Dl,j. As we saw, at most two vertices of Hg can appear
consecutively on C. Thus C' must encounter Hs at least k times. On the other
hand, since v1,v9,..., v, are the only vertices that are adjacent to vertices of Hg
in D,’j, it follows that C' encounters Hs exactly k times. Moreover, C enters Hg
immediately after encountering a vertex v; for some 7 with 1 < i < k. Hence,
C' contains an arc (v;, w) for each ¢ with 1 < i < k and for some w € V(Hs).
Since dp, (v1,w;) > k for 2 < j < k, it follows that (vi,w;) is an arc of C.
Also, we saw that dp, (vi,w;) = k+2 — for all 4,j with 2 < ¢ < k and 2 <
J < k. This implies that C' contains at least one arc colored by each of the
colors 2,3, ..., k. Furthermore, the order of Hg is 2k and so two vertices of Hg
must appear consecutively on C, which implies that C' contains at least one arc
colored 1.

Case 2. k is odd. We construct a strong oriented graph Dy in the same
fashion as the one in Case 1. First, we define four oriented graphs Hi, Ho, Hj
and Hy as follows:

e H; is a tramsitive tournament of order 2k with the Hamiltonian path
(ul, Uy ... ,UQk),

e Hy = (v1,v,...,v5_1) is a directed path of order k — 1,

e Hj is a transitive tournament of order 2k with the Hamiltonian path
(wi,wa, ..., ws),

e Hy = (x1,x2,...,75_1) is a directed path of order k — 1.

The oriented graph Dy is then constructed from Hi, Ho, H3 and H4 by adding
the arcs (uok,v1), (Vk—1,w1), (wok,u1), and (xx_1,u1). (See Figure 9, where we
replace vg by vi_1 and replace xp by zx_1.) Since
(ul,ug, ey UK, V1, V2, ooy V-1, W1, W2y« v o, Wy X1, L2y . -« ,xk,hul)
is a Hamiltonian cycle in Dy, it follows that Dy is a strong oriented graph.
We first show that hce(Dy) > k. Assume, to the contrary, that the distance-
colored digraph D],:_l contains a properly colored Hamiltonian cycle C*. Since
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V1,03, ...,Vp_1 are the only vertices of D that are adjacent to vertices of Hj
in Dllj_l, it follows that that C* encounters Hs at most k£ — 1 times and so C*
contains at most 2(k — 1) vertices of Hs, which is a contradiction. Next, we
show that hce(Dy) < k by constructing a properly colored Hamiltonian cycle in
DE. Consider the k directed paths P; = (ug,vi,w;), 1 <i < k—1, and Py =
(ugk,wy) of order 3 in D,]f,. Observe that dp, (ug4i,vi) =1+ifor 1 <i<k-—1,
dp, (vi,w;)) = k+1—idfor1 <i<k—1and dp,(ugk, w1) = k. Furthermore,
k > 3 is odd and k + 1 is even. Thus

(1) 2 <dp, (up+i,v;) <k and 2 < dp, (v, w;) <k for 1 <i <k,
(2) de (uk+i,vi) 75 de(vi,wi) for 1 < /) < k—1.

Similarly, consider the k directed paths Q; = (wri4, i, u;) (1 <i < k—1) and
Qr = (waog,up) of order 3 in D’,j. By symmetry, we have

(3) 2 <dp, (Wg+i,zi) <k and 2 <dp, (zj,u;)) <k —1for1<i<k-—1,
(4) de(wkH,xi) 75 de(xi,ui) for 1 S 1 S k—1.

Since dp, (wi, ugr14i) =1 for 1 <i <k —1, dp, (wj, wg4;) =1 for 1 <i < k and
de (uk, uk_H) = 1, it follows by (1)*(4) that (Pl, Q1, P, Qa, ..., P, Qp, uk+1) is
a properly colored Hamiltonian cycle in D’,g .

It remains to show that every properly colored Hamiltonian cycle in the kth
power of Dy must use all colors 1,2, ..., k. Let C be any properly colored Hamil-
tonian cycle in D,]:. An argument similar to the one in Case 1 shows that C' must
enter H3 exactly k times. Since ugk,v1,v3,...,05_1 are the only vertices of Dy,
that are adjacent to vertices of H3 in D¥. each of the vertices uag, v1,vs, . .., Up_1
is immediately followed by a vertex of Hs on C. This, however, requires that C'
contains (ugk,w;1) and an arc (v;,w) for each ¢ with 1 <7 < k — 1 and for some
w € V(Hs). Since dp, (uzk, w1) =k and dp, (v, w;) =k+1—ifor 1 <i<k—1
and 2 < j <k, it follows that C contains at least one arc colored by each of the
colors 2,3,...,k. Furthermore, the order of Hs is 2k and so two vertices of H3
must appear consecutively on C. Hence C' contains an arc colored 1. [

6. ON THE EXISTENCE OF GRAPHS HAVING DISTINCT STRONG
ORIENTATIONS WITH DIFFERENT HAMILTONIAN COLORING EXPONENTS

By Theorem 5.1, there exists for each integer k > 2 a strong oriented graph D such
that hce(D) = k. Equivalently, there exists a connected graph G possessing a
strong orientation D such that hce(D) = k. It is possible, however, that there may
be another strong orientation of G, resulting in a digraph D’ whose Hamiltonian
coloring exponent is far differ from that of D. In fact, for two different strong
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orientations D and D’ of a connected graph, the difference between hce(D) and
hee(D') can be arbitrarily large.

Theorem 6.1. For every positive integer p there exists a connected graph G
with strong orientations D and D" such that hce(D) — hee(D') > p.

Proof. For a positive integer p, let k be an integer such that £ > p 4+ 3 and
k = 0(mod 4). Now let G be the underlying graph of the strong oriented graph
D;. in the proof of Theorem 5.1 when k is even. Following the same vertex
labeling for Dy and the same notation for the subdigraphs Hi, Hs, Hs and Hy
in Dy, (as described in the proof of Theorem 5.1), let D be the orientation of G
obtained from D by replacing the two arcs (u1,ugr) and (wi,war) by (ugg,u1)
and (wa, w1). Now let D = Dy, and D' = Dj.. By Theorem 5.1, hce(D) = k. In
fact, hee(D') = 3 as we show next.

First, we show that the cube of D’ is Hamiltonian-colored. To construct a
properly colored Hamiltonian cycle in the cube of D’, we first define eight vertex-
disjoint properly colored subpaths Ai, As, By, B2, C1,Csy, D1, Dy in the cubes of
the subdigraphs Hy, Hy, Ho and Hy4 of D', respectively, as follows:

e In the cube of Hj, define two vertex-disjoint properly colored paths P,
and P,, of order k — 2 as P,, = (uk,U3,uk,1,u4,...,u%%,u%w),ﬂm =
(u2k727 Uk+1, U2k—3, Uk+2y - - - 7uk+%+17 uk_i'_%) Let Al = (’U,Q, Pu1 ) ’LLQk,l) and
Ag = (uq, Py,,ugi) be the subpaths of order k in the cube of Hy. Then V(4;)U

V(As) = V(H1), each of the initial and terminal arcs of A; and As is colored 1
and Ay and Ag are properly colored.

e In the cube of Hy, define two vertex-disjoint paths By and By of order k/2 as
B1 = (v1,v2,Vs5, V6, V9, V10, V13, - - - , Vk—6, Vk—3, Vk—2), B2 = (v3,v4, 7, V8, V11, V12,
V15, .., Vk—4, Vg1, V). Observe that V(B1) UV (Bz2) = V(Hz) and each of the
initial and terminal arcs of By and By is colored 1. The arcs of By and By are
colored 1 and 3 alternatively.

e In the cube of H3, define two vertex-disjoint properly colored paths P,,

and P,, of order k — 2 as P, = (wg, w3, Wk_1, W4, .. .,w%%,w%w),]?m =

(wgkfg, Wh+1, Wok—3, Wk42, - - -, wk—f—%-{-l’ wk+%). Let Ch = (wl, Pw17w2k71)
and Cy = (we, Py,,ws)) be the subpaths of order k in the cube of Hs. Then
V(Cy) UV (Cy) = V(Hs), each of the initial and terminal arcs of Cy and C is
colored 1 and C and Cy are properly colored.

e In the cube of Hy, define two vertex-disjoint paths D; and Dj of order k/2 as
Dy = (x1, 22,75, T6, T9, T10, T13, - - - , Th—65 Th—3, Th—2), D2 = (3,24, T7, T8, T11,
X12,T15, - - -y Th—a, Th—1, T ). Observe that V(D) UV (Dy) = V(Hs) and each of
the initial and terminal arcs of Dy and D is colored 1. The arcs of D; and Do
are colored 1 and 3 alternatively.
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Then (A1, B1,Cy, D1, Aa, By, Co, Dy, us) is a properly colored Hamiltonian cycle
in the cube of D’ and so hce(D’) < 3. On the other hand, D’ contains an induced
path ]34 and so it can be shown that the square of D’ is not Hamiltonian-colored.
Thus hee(D’) = 3.

Consequently, hce(D) — hee(D') = k — 3 > p as desired. |
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