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Abstract

In a graph G, a vertex is said to dominate itself and all its neighbors.
A dominating set of a graph G is a subset of vertices that dominates every
vertex of G. The domination number γ(G) is the minimum cardinality of
a dominating set of G. A proper coloring of a graph G is a function from
the set of vertices of the graph to a set of colors such that any two adjacent
vertices have different colors. A dominator coloring of a graph G is a proper
coloring such that every vertex of V dominates all vertices of at least one
color class (possibly its own class). The dominator chromatic number χd(G)
is the minimum number of color classes in a dominator coloring of G. Gera
showed that every nontrivial tree T satisfies γ(T ) + 1 ≤ χd(T ) ≤ γ(T ) + 2.
In this note we characterize nontrivial trees T attaining each bound.
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1. Introduction

Let G = (V,E) be a simple graph. A vertex in a graph G is said to dominate

itself and every vertex adjacent to it. A set D of vertices in G is a dominating set

if every vertex not in D is adjacent to at least one vertex in D. The domination

number γ(G) is the minimum cardinality among all the dominating sets of G.
A proper coloring of a graph G = (V,E) is a function from the set of vertices

of the graph to a set of colors such that any two adjacent vertices have different
colors. A dominator coloring of a graph G is a proper coloring such that every
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vertex of V dominates all vertices of at least one color class (possibly its own
class). The dominator chromatic number χd(G) is the minimum number of color
classes in a dominator coloring of G. A dominator coloring of G with χd(G) colors
will be called a χd(G)-DC. The concept of dominator coloring was introduced by
Gera, Horton and Rasmussen [4] and studied further in [2] and [3], and recently
in [1].

It is shown in [2, 3] that for every nontrivial tree T, γ(T ) + 1 ≤ χd(T ) ≤
γ(T ) + 2. However, computing the exact value of the dominator coloring number
of a tree remains an open problem. Our aim in this note is to characterize all
nontrivial trees T attaining each bound. To this end we will focus only on trees
T with χd(T ) = γ(T ) + 1.

Let us introduce some notations and definitions. The open neighborhood

N(v) of a vertex v consists of the vertices adjacent to v, and N [v] = N(v) ∪ {v}
is the closed neighborhood of v. For a vertex set S ⊆ V (G), N(S) = ∪v∈SN(v)
and N [S] = ∪v∈SN [v]. The degree of a vertex v is the cardinality of its open
neighborhood. A leaf of a graph G is a vertex of degree 1, and its neighbor is
called a stem. For a set S ⊆ V, the private neighborhood pn(v, S) of v ∈ S is
defined by pn(v, S) = N [v] −N [S − {v}]. If D is a minimum dominating set of
G, then let DI = {v ∈ D : pn(v,D) = {v}} and DR = D−DI . Clearly if v ∈ DI ,
then v has no neighbor in D. Also every vertex w of V − D adjacent to v has
another neighbor in D besides v (for otherwise pn(v,D) = {v, w}, contradicting
the fact that v ∈ DI). Moreover, if D is a minimum dominating set of a tree
T, then for every pair of vertices u, v ∈ DI , N(u) ∩ N(v) = ∅. Indeed, let z ∈
N(u)∩N(v) and D′ = {z}∪D−{u, v}. If D′ does not dominate T, then there is
a vertex w ∈ V −D adjacent to both u and v but then {z, u, v, w} induces a cycle
C4 which is excluded since T is a tree. Hence D′ is a dominating set of T of size
less than D, a contradiction too. Let V1, V2, . . . , Vχd(G) be the color classes of a
dominator coloring of G. A vertex v ∈ Vi is called solitary if |Vi| = 1. We denote
by CP the set of color classes containing solitary vertices, by CS the set of color
classes such that each of them contains at least two vertices and is dominated
by some vertex of V, and by CG the set of color classes such that each of them
contains at least two vertices andis not dominated by any vertex of V. Clearly
CP , CS , CG are disjoint sets and CG ∪ CP ∪ CS = {V1, V2, . . . , Vχd(G)}. Let A be
the set of all solitary vertices and B be the set of all vertices belonging to color
classes in CG. Clearly |CP | = |A| . We denote by xS a vertex dominating the
color class S and let DS = {xS ∈ V : S ∈ CS}. Recall that a subset of vertices
S ⊆ V is independent if no edge of G has its two endvertices in S.

We shall prove:

Theorem 1. Let T be a nontrivial tree. Then χd(T ) = γ(T )+ 1 if and only if T
admits a minimum dominating set D = DI ∪DR such that V (T )− (DR ∪N [DI ])
is an independent set.
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2. Proof of Theorem 1

We begin by the following straightforward observation.

Observation 2. Let T be a nontrivial tree. Then for every χd(T )-DC of T ,
either each stem is solitary or it is adjacent to exactly one leaf and that leaf is

solitary.

Proof. Let u be a stem of T and v its leaf neighbor. From the definition of a
dominator coloring either v is alone in its color class and hence v is solitary or v
is adjacent to all vertices of at least one other class. Clearly in the later case the
color class dominated by v contains only u and so u is solitary. Now suppose that
u is adjacent to at least two leaves and consider any χd(T )-DC of T in which u
is not solitary. Then, as seen above, every leaf neighbor of u is solitary but then
we can decrease χd(T ) by giving to u the color of v and to every leaf neighbor of
u the color initially given to u, a contradiction. Thus if a stem is not solitary in
a χd(T )-DC of T , then it is adjacent to exactly one leaf and that leaf is solitary.

Lemma 3. Every tree T of order at least three admits a dominator coloring with

χd(T ) colors such that all leaves of T have the same color.

Proof. Let c be any dominator coloring of T with χd(T ) colors and maximum
number of solitary stems. If some stem u is not solitary, then by Observation
2, u is adjacent to exactly one leaf, say v, where v is a solitary vertex. In this
case we can swap the colors between the two vertices and so u becomes a solitary
vertex. Clearly u now dominates its own color class and every vertex adjacent to
u dominates the color class containing u. So c is turned into a dominator coloring
c′ with the same number of colors χd(T ) but c

′ has more solitary stems than c, a
contradiction. Hence c is a χd(T )-DC of T in which every stem is solitary. Now
if all leaves have the same color, then we are done. In the other case, each leaf
uses a color not used by stems and clearly we can decrease or leave unchanged
χd(T ) by giving the same color to all leaves of T .

Lemma 4. For every χd(T )-DC of a tree T, every color class S ∈ CS is domi-

nated by exactly one vertex. In that case we have |CS | = |DS| .

Proof. Consider a dominator coloring of T with χd(T ) colors and suppose that a
color class S ∈ CS is dominated by two vertices xS and yS . Then xS , yS and any
two vertices of S induce a cycle C4, a contradiction. Now |CS | = |DS| follows
immediately.

Lemma 5. For every χd(T )-DC of a tree T, A ∪DS is a dominating set of T .
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Proof. Consider a dominator coloring of T with χd(T ) colors. Every vertex x of
T dominates at least one color class, say Hx. If Hx ∈ Cp, then x is dominated by
A and if Hx ∈ CS , then x belongs to DS. Hence A ∪DS dominates all vertices
of T .

Lemma 6. Let T be a nontrivial tree with χd(T ) = γ(T ) + 1. Then for every

χd(T )-DC of T, there is at most one color class dominated by no vertex.

Proof. Let T be a nontrivial tree with χd(T ) = γ(T )+1. Consider any dominator
coloring of T with χd(T ) colors. We have to prove that |CG| ≤ 1. By Lemma
5, A ∪ DS is a dominating set of T and so γ(T ) ≤ |A ∪DS| . It follows that
γ(T ) + |CG| ≤ |A ∪DS|+ |CG| ≤ |A|+ |DS|+ |CG|. Using the fact that |CS | =
|DS| (see Lemma 4) we obtain γ(T )+|CG| ≤ |A|+|CS |+|CG| = χd(T ) = γ(T )+1
and so |CG| ≤ 1.

Lemma 7. Let T be a nontrivial tree different from a star. If χd(T ) = γ(T )+ 1,
then for every dominator coloring with χd(T ) colors such that all leaves of T have

the same color we have:

(a) |CG| = 1.

(b) A ∪DS is a minimum dominating set.

(c) A ∩DS = ∅.

(d) Every color class S ∈ CS is dominated by a vertex of B.

Proof. Consider a dominator coloring with γ(T ) + 1 colors such that all leaves
of T have the same color. Note that such a dominator coloring exists by Lemma
3.

(a) Since T is not a star, all leaves of T form a color class and this class is
dominated by no vertex, that is |CG| ≥ 1. Equality follows from Lemma 6.

(b) γ(T ) + 1 = χd(T ) = |CP | + |CS | + |CG| = |CP | + |CS | + 1, implying that
γ(T ) = |CP | + |CS | . Since |CP | = |A| and |CS | = |DS| it follows that γ(T ) =
|A|+ |DS| and so A ∪DS is a minimum dominating set.

(c) Follows from (b).

(d) Let S be any color class of CS and assume that S is not dominated by a
vertex of B. Let xS be a vertex dominating the color class S. Thus xS ∈ DS and
xS /∈ B. By item (c) xS /∈ A and hence xS ∈ V (T )− (A ∪B), that is xS belongs
to some color class in CS . In this case we shall prove that there is a color class,
say S∗ ∈ CS , such that each vertex of S∗ dominates a color class in CP . Let us
assume that S∗ does not exist. Then since every vertex of T must dominate a
color class, there is a vertex of S, say xS1

that dominates a color class S1 ∈ CS

(otherwise every vertex of S dominates a color class in CP , and so S = S∗, a
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contradiction to our assumption). By the same argument, there is a vertex xS2
of

S1 that dominates a color class S2 ∈ CS , and so on. Since T is finite, the process
stops by providing a cycle in the subgraph induced by the vertices xS , xS1

, xS2
, . . .

contradicting the fact that T is a tree. Hence S∗ exists and so every vertex of S∗ is
dominated by A. Now since S∗ ∈ CS , let xS∗ be the vertex of DS that dominates
all vertices of S∗. By item (b), A ∪DS is a minimum dominating set of T, and
hence A∪DS−{xS∗} dominates T and has size γ(T )−1, a contradiction. Thus S
is dominated by a vertex of B and therefore every color class of CS is dominated
by a vertex of B.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let T be a nontrivial tree and assume that T admits a
minimum dominating set D = DI ∪ DR such that V (T ) − (DR ∪ N [DI ]) is an
independent set. To see that χd(T ) = γ(T ) + 1, we color the vertices of T as
follow.

• We give a different color to every vertex of DR.

• For every vertex y ∈ DI we give a new color to the vertices of N(y). (Recall
that any two vertices y′ and y′′ of DI satisfy N(y′) ∩N(y′′) = ∅.)

• We give the same (but new) color to the remaining vertices.

Obviously the previous coloring is a dominator coloring. Hence γ(T ) + 1 ≤
χd(T ) ≤ |DR|+ |DI |+ 1 = |D|+ 1 = γ(T ) + 1, and the equality follows.

Conversely, let T be a nontrivial tree with χd(T ) = γ(T ) + 1. Suppose T is a
star of center vertex, say x. Then D = {x} is a minimum dominating set, where
DI = ∅ and clearly the set V (T )− (DR∪N(DI)) that consists of the set of leaves
of the star is independent. Therefore the theorem is valid. Now assume that T is
a tree different from a star and let us consider a dominator coloring with χd(T )
colors such that all leaves of T have the same color. Note that such a dominator
coloring exists by Lemma 3. Also by Lemma 7, A∪DS is a minimum dominating
set of T . Let D = A ∪DS, DI = {v ∈ D : pn(v,D) = {v}} and DR = D −DI .
We shall show that every vertex in V (T )− (A ∪B) is adjacent to a vertex of DI ,
that is V (T ) − (A ∪B) ⊂ N(DI). Let x be any vertex of a color class S ∈ CS .
Let xS be a vertex of DS that dominates S. By Lemma 7(d), xS ∈ B. Recall
that xS ∈ D since xS ∈ DS. It is well known by Ore’s theorem (see [7]) that
every vertex in a minimum dominating set has a private neighborhood. Suppose
that x∗ 6= xS is a private neighbor of xS with respect to D. Clearly x∗ /∈ D (for
otherwise D−{x∗} would be a dominating set smaller than D, a contradiction).
Therefore x∗ does not dominate a color class of CS (else x∗ ∈ DS ⊂ D). Also
since x∗ ∈ pn(xS , D), x∗ has no neighbor in A but then x∗ does not dominate
any color class, a contradiction. Consequently xS has no private neighbor other
than itself, that is xS ∈ DI . Thus V (T )− (A ∪B) ⊂ N(DI). It follows now that
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all vertices of V (T ) − (DR ∪ N [DI ]) ⊆ B and since B is an independent set we
are done.

3. Caterpillars

A caterpillar is a tree in which every vertex of degree at least three has at most
two non-leaf neighbors. As it was already noted in the introduction, there is no
polynomial time algorithm that computes the dominator chromatic number for
the class of trees. It was even mentioned by Gera et al. in [4] that an efficient
algorithm for computing χd of an arbitrary caterpillar would be a worthwhile
contribution. Our aim in this section is to give a descriptive characterization
of caterpillars T with χd(T ) = γ(T ) + 1. Using a result of Volkmann [8] (see
Theorem 8), one can check easily whether a caterpillar satisfies χd(T ) = γ(T )+1
or χd(T ) = γ(T ) + 2.

A vertex cover in a graph G is a set of vertices that covers all edges of G. The
minimum cardinality of a vertex cover in a graph G is called the covering number

of G and is denoted by α0(G). It is well known that a set D of vertices of G is a
vertex cover if and only if V (G)−D is independent. Also every vertex cover set
is a dominating set. The following result of Volkmann gives a characterization of
nontrivial trees T with equal domination and covering numbers.

Theorem 8 (Volkmann [8]). A nontrivial tree satisfies γ(T ) = α0(T ) if and only

if each component in the graph resulting from G by removing the set of leaves and

their stems is an isolated vertex or a star, where the centers of these stars are

not adjacent to any stem in T .

Now we are ready to state the following result.

Proposition 9. Let T be a nontrivial caterpillar. Then χd(T ) = γ(T )+ 1 if and

only if γ(T ) = α0(T ).

Proof. Let T be a caterpillar with γ(T ) = α0(T ). Let D be any minimum vertex
cover set of G. Then color the vertices of D so that each vertex has a unique
color and the remaining vertices of T by a new color. Then γ(T ) + 1 ≤ χd(T ) ≤
|D|+ 1 = γ(T ) + 1, and the equality follows.

Now assume that T is a caterpillar with χd(T ) = γ(T ) + 1. By Theorem
1, T admits a minimum dominating set D such that V (T )\(DR ∪ N [DI ]) is
independent. Assume that V (T )−D is not independent and let u, v be any two
adjacent vertices in V (T )−D. Clearly since D contains either a leaf or its stem,
neither u nor v is a leaf. First, assume that u and v are not stems. Let d1 and
d2 be two vertices in D such that d1, u, v, d2 induce a path P4. Then d1 is the
unique neighbor of u in D for otherwise u has degree at least three and so u is a
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stem. Likewise d2 is the unique neighbor of v in D. Hence d1 and d2 belong to
DR and so V (T )\(DR∪N [DI ]) is not an independent set, contradicting Theorem
1. Hence at least u or v is a stem. Without loss of generality, assume that u is
a stem and let f be its leaf. Since f belongs to D, f is the unique leaf adjacent
to u. Let us modify D as follows: D′ = {u} ∪ D\{f}. Clearly D′ remains a
minimum dominating set for T with less edges in V (T )−D′. This procedure can
be repeated for every two adjacent vertices not in the current γ(T )-set until we
obtain a γ(T )-set S for which V (T )− S has no two adjacent vertices. Therefore
γ(T ) = α0(T ).

According to Theorem 8, Proposition 9 can be also stated as follows.

Proposition 10. Let T be a nontrivial caterpillar. Then χd(T ) = γ(T ) + 1 if

and only if T is a star or the distance between any two consecutive stems is 1, 2
or 4.
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