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Abstract

In a graph a vertex is said to dominate itself and all its neighbors. A
double dominating set of a graph G is a subset of vertices that dominates
every vertex of G at least twice. The double domination number of G,
denoted γ×2(G), is the minimum cardinality among all double dominating
sets ofG. We consider the effects of vertex removal on the double domination
number of a graph. A graph G is γ×2-vertex critical graph (γ×2-vertex stable
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investigate various properties of these graphs. Moreover, we characterize
γ×2-vertex critical trees and γ×2-vertex stable trees.
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1. Introduction

For the terminology and notation of graph theory not given here, the reader is
referred to [3, 6]. Let G = (V (G), E(G)) be a simple graph. The open neighbor-
hood of a vertex v ∈ V (G) is N(v) = NG(v) = {u ∈ V (G) : uv ∈ E(G)}, and
its closed neighborhood N [v] = NG[v] = N(v)∪ {v}. The degree of v, denoted by
degG(v), is the size of its open neighborhood. A vertex of degree one is called a
leaf, and its neighbor is called a support vertex. We also denote the set of leaves
of a graph G by L(G) and the set of support vertices by S(G). If D ⊆ V (G),
then the subgraph induced by D in G is denoted by G[D]. A tree T is a double
star if it contains exactly two vertices that are not leaves. A subdivided star K∗

1,t

is a tree obtained from a star K1,t by replacing each edge uv of K1,t by a vertex
w and edges uw and vw. For a vertex v in a rooted tree T , we denote by C(v)
and D(v) the set of children and descendants, respectively, of v. The maximal
subtree at v is the subtree of T induced by D(v) ∪ {v}, and is denoted by Tv.

A subset S of V (G) is a double dominating set (abbreviated DDS) of G if
for every vertex v ∈ V (G), |N [v] ∩ S| > 2, that is, v is in S and has at least
one neighbor in S or v is in V (G) − S and has at least two neighbors in S.
The double domination number γ×2(G) is the minimum cardinality among all
double dominating sets of G. If S is a DDS of G of size γ×2(G), then we call
S a γ×2(G)-set. Clearly, double domination is defined only for graphs without
isolated vertices. Double domination was introduced by Harary and Haynes in
[5].

In this paper, we are interested in studying the effect that a graph modi-
fication has on the double domination number. More precisely, we first study
graphs for which the double domination number decreases on the removal of any
vertex. Then we study graphs for which the double domination number remains
unchanged on the removal of any vertex. We note that for the same parameter,
Khelifi et al. studied in [7] graphs that are critical under the deletion of any edge
and Chellali and Haynes [4] studied graphs that are stable under the deletion of
any edge.

2. Preliminary Results

We begin by some useful observations.

Observation 1. Every DDS of a graph contains all its leaves and support ver-
tices.

Observation 2. Let G be a graph without isolated vertices. Then γ×2(G) =
|V (G)| if and only if every vertex of G is either a leaf or a support vertex.
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Proof. Let G be a graph such that γ×2(G) = |V (G)| . Assume that v is a vertex
of G that is neither a leaf nor a support vertex. Then clearly degG(v) ≥ 2 and
V (G) − {v} is DDS for G, a contradiction. Hence every vertex of G is either a
leaf or a support vertex.

The converse is obvious.

Our next result consists of the effect of deleting any vertex in G different from a
support vertex on the double domination number of a graph.

Theorem 3. Let G be a connected graph of order at least three. Then for every
vertex v different from a support vertex, γ×2(G) − 2 ≤ γ×2(G − v) ≤ γ×2(G) +
degG(v)− 1.

Proof. We first establish the lower bound. Let D be any γ×2(G − v)-set. If
D∩N(v) 6= ∅, thenD∪{v} is a DDS for G, and ifD∩N(v) = ∅, thenD∪{v, u} is a
DDS forG, where u is any vertex inN(v). In both cases, we have γ×2(G) ≤ |D|+2.
Now let R be any γ×2(G)-set. Clearly if v /∈ R, then R is a DDS of G − v and
so γ×2(G − v) ≤ γ×2(G). Thus we may assume that v ∈ R. Let B be the set of
vertices in V − R for which v is necessary to be dominated twice, that is, each
vertex of B has exactly one neighbor in R−v. Let also A be the set of all vertices
in R for which v is the unique neighbor in R. Since v is not a support vertex, each
vertex of A has a neighbor in V − R. Let A′ be a smallest subset of V − R that
dominates A. Clearly |A′| ≤ |A| and |A′|+|B| ≤ degG(v). Since A

′∪B∪R−{v} is
a DDS for G−v, we obtain γ×2(G−v) ≤ |R|−1+|A′|+|B| ≤ γ×2(G)+degG(v)−1.

The following corollary is immediate.

Corollary 4. Let G be a connected graph of order at least three and let v ∈
V (G)− S(G). Then

(a) γ×2(G− v) ≤ γ×2(G) + ∆(G)− 1.

(b) If v is a leaf, then γ×2(G− v) ≤ γ×2(G).

The following result shows that there is no graph G such that the deletion of
every vertex increases the double domination number.

Proposition 5. There is no graph G such that γ×2(G − v) > γ×2(G) for every
vertex v ∈ V (G)− S(G).

Proof. Assume that G is a graph such that γ×2(G − v) > γ×2(G) for every
vertex v ∈ V (G) − S(G). Then by Corollary 4(b), G contains no leaf and so
by Observation 2, γ×2(G) < |V (G)| . Now let D be any γ×2(G)-set and let w ∈
V (G)−D. Then clearly D is a DDS for G−w, implying that γ×2(G−w) ≤ |D| =
γ×2(G), a contradiction.
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According to Theorem 3 and Proposition 5 we define a graph G to be:

• a γ×2-vertex critical graph if for every vertex v ∈ V (G)−S(G), γ×2(G−v) <
γ×2(G). It follows from Theorem 3 that in a γ×2-vertex critical graph G,
γ×2(G − v) = γ×2(G) − 2 or γ×2(G − v) = γ×2(G) − 1 for every vertex
v ∈ V (G)− S(G).

• a γ×2-vertex stable graph if for every vertex v ∈ V (G)−S(G), γ×2(G−v) =
γ×2(G).

3. γ×2-vertex Critical Graphs

We begin by giving some useful properties of γ×2-vertex critical graphs.

Proposition 6. If G is a γ×2-critical graph and v ∈ V (G)− (S(G)∪L(G)), then
every γ×2(G− v)-set contains at most one neighbor of v.

Proof. Suppose that D is a γ×2(G− v)-set containing at least two neighbors of
v. Then D is a DDS of G and so γ×2(G) ≤ γ×2(G − v), contradicting the fact
that G is γ×2-vertex critical.

As a consequence of Proposition 6, we have.

Corollary 7. If G is a path Pn with n ≥ 5, or a cycle Cn, or a complete graph
Km with m ≥ 3, then G is not γ×2-vertex critical.

A vertex of a graph G is said to be free if it does not belong to any minimum
double dominating set of G.

Proposition 8. Let G be a γ×2-vertex critical graph and v a vertex of V (G) −
S(G). If there is a vertex w ∈ NG(v) belonging to every γ×2(G− v)-set, then the
following conditions hold.

(1) γ×2(G− v) = γ×2(G)− 1.

(2) Every vertex in NG(v)− {w} is free in G− v.

Proof. Let G be a γ×2-vertex critical graph and v any vertex of V (G) − S(G).
Since w is in every γ×2(G− v)-set, then such a set plus v is a DDS of G and so
γ×2(G− v) < γ×2(G) ≤ γ×2(G− v) + 1, implying that γ×2(G− v) = γ×2(G)− 1.
Now since w belongs to every γ×2(G−v)-set, then by Proposition 6, every vertex
of NG(v)− {w} is free in G− v.

Proposition 9. Let G be a graph and v ∈ V (G) − (S(G) ∪ L(G)). Then if
γ×2(G− v) = γ×2(G)− 2, then every neighbor of v is free in G− v.
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Proof. Suppose that a neighbor of v, say u, is not free in G−v. Thus u belongs to
some γ×2(G−v)-setD and soD∪{v} is a DDS ofG. It follows that γ×2(G−v)+2 =
γ×2(G) ≤ |D|+ 1 = γ×2(G− v) + 1, a contradiction. Hence u is a free vertex in
G− v.

In the next, we will focus on γ×2-vertex critical trees. We begin by showing
that the removal of any free vertex from a tree T leaves the double domination
number unchanged. We note that free vertices of any tree can be determined in
polynomial time [2].

Lemma 10. If v is a free vertex of a nontrivial tree T, then γ×2(T−v) = γ×2(T ).

Proof. Let v be a free vertex of T. Clearly v /∈ S(T ) ∪ L(T ) and so degT (v) =
k ≥ 2. We root T at v and let C(v) = {u1, u2, . . . , uk} . Since v is free, every
γ×2(T )-set is a DDS for T − v, and so γ×2(T − v) ≤ γ×2(T ). Furthermore,
since every γ×2(T − v)-set can be extended to a γ×2(T )-set by adding v and
one of its neighbors, γ×2(T ) ≤ γ×2(T − v) + 2. Hence we have γ×2(T ) − 2 ≤
γ×2(T − v) ≤ γ×2(T ). Let us first assume that γ×2(T − v) = γ×2(T ) − 2 and
let S1 be any γ×2(T − v)-set. If NT (v) ∩ S1 6= ∅, then S1 ∪ {v} is a DDS of T
with γ×2(T ) − 1 vertices, which is impossible. Hence NT (v) ∩ S1 = ∅ but then
S1 ∪ {u1, v} is a γ×2(T )-set containing v, contradicting the fact that v is free.
Assume now that γ×2(T − v) = γ×2(T ) − 1 and let S′ be any γ×2(T − v)-set.
Clearly S′ contains no neighbor of v, otherwise S′ ∪ {v} would be a γ×2(T )-
set containing v, a contradiction. Let S′

i = S′ ∩ V (Tui
) for 1 ≤ i ≤ k. Then

|S′| = |S′
1| + |S′

2| + · · · + |S′
k| and obviously S′

i is a γ×2(Tui
)-set for each i. Now

let D be a γ×2(T )-set and Di = D ∩ V (Tui
) for every i. Recall that v /∈ D

since v is free. We claim that D contains exactly two neighbors of v. Suppose
to the contrary that |NT (v) ∩D| ≥ 3, and assume, without loss of generality,
that u1, u2, u3 ∈ D. If for some i, |Di| < |S′

i|, then Di would be a DDS for
Tui

smaller than S′
i which is impossible. Thus |Di| ≥ |S′

i| for every i, implying
that |Di| = |S′

i| for i ≥ 4. Now using the fact |D| = |S′| + 1, we deduce that
|D1|+ |D2|+ |D3| = |S′

1|+ |S′
2|+ |S′

3|+ 1. Without loss of generality, we assume
that |D1| = |S′

1|+1. It follows that S′
1∪D2∪· · ·∪Dk is a DDS of T of cardinality

less than |D| , a contradiction. Hence |D ∩NT (v)| = 2, say u1, u2 ∈ D. As
seen before |Di| = |S′

i| for i ≥ 3, and so |D1| + |D2| = |S′
1| + |S′

2| + 1. We can
suppose that |D1| = |S′

1| + 1. Then S′
1 ∪ D2 ∪ · · · ∪ Dk is a DDS of T − v with

|S′
1 ∪D2 ∪ · · · ∪Dk| = γ×2(T )−1. So S′′ = S′

1∪D2∪· · ·∪Dk is also a γ×2(T −v)-
set (containing u2) but then S′′ ∪ {v} would be a γ×2(T )-set that contains v, a
contradiction. Therefore, γ×2(T − v) = γ×2(T ).

Now we are ready to characterize γ×2-vertex critical trees.

Theorem 11. A tree T of order n ≥ 3 is γ×2-vertex critical if and only if every
vertex of T is either a leaf or a support vertex, that is γ×2(T ) = |V (T )| .
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Proof. Let T be a γ×2-vertex critical tree. Let v be a support vertex of a tree
T having a neighbor that is neither a support nor a leaf. If such a vertex v does
not exist, then we are done, that is every vertex of T is either a leaf or a support
vertex. So v exists. Let w be a neighbor of v such that w /∈ S(T )∪L(T ). Clearly
v remains adjacent to a leaf in T −w and so v is in every γ×2(T −w)-set. Thus by
Proposition 8, γ×2(T−w) = γ×2(T )−1, and every vertex in NT (w)−{v} is free in
T −w. It follows v is the unique support vertex adjacent to w. Let NT (w)−{v} =
{u1, u2, . . . , uk}. Clearly k ≥ 1 since w is not a leaf. Let T1, T2, . . . , Tk be the
components of T − w, where ui ∈ V (Ti) for every i, and let T0 be the remaining
component that contains v. Let D1 be any γ×2(T1)-set and recall that each ui is
free in T − w, that is u1 /∈ D1. Hence D1 must contain two vertices adjacent to
u1, say x1 and x2. Also by Lemma 10, γ×2(T1−u1) = γ×2(T1). Now let D be any
γ×2(T −u1)-set and let T ′ = T −T1. Obviously, |D| = γ×2(T1−u1)+γ×2(T

′) and
hence D′ = (D∩T ′)∪D1 is a DDS of T. Therefore γ×2(T ) ≤ |D′| = γ×2(T −u1),
contradicting the fact that T is γ×2-vertex critical.

The converse is easy to see.

4. γ×2-vertex Stable Graphs

We focus in this section to the study of γ×2-vertex stable graphs. We make a
useful observation.

Observation 12. Let G be a γ×2-vertex stable graph. Then every support vertex
of G has exactly one neighbor (its leaf) in every γ×2(G)-set.

Proof. Let G be a γ×2-vertex stable graph and assume that a support vertex
v has two neighbors in some γ×2(G)-set D. If v′ is a leaf neighbor of v, then
D − {v′} is a DDS of G− v′. Hence γ×2(G− v′) < γ×2(G), a contradiction.

As a consequence of Observation 12, we obtain the following corollary.

Corollary 13. Let G be a γ×2-vertex stable graph. Then

(a) Every support vertex of G is adjacent to exactly one leaf.

(b) No two support vertices of G are adjacent.

The double domination number for cycles Cn and nontrivial paths Pn were given
in [5]: γ×2(Cn) = ⌈2n

3
⌉ and [1]: γ×2(Pn) = 2⌈n

3
⌉ + 1 if n ≡ 0 (mod 3) and

γ×2(Pn) = 2⌈n
3
⌉ otherwise.

Using the above results one can see that P5 is the only γ×2-vertex stable path
and cycles Cn are γ×2-vertex stable. Also since γ×2(Kn) = 2 for n ≥ 3, complete
graphs Kn with n ≥ 3 are γ×2-vertex stable.
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A vertex u is said to be adjacent to a path Pk in a tree T if there is a neighbor
of u, say v, such that the subtree resulting from T by removing the edge uv and
which contains the vertex v as a leaf, is a path Pk. The following observation will
be useful in the proof of the next lemma.

Observation 14. Let T be a nontrivial tree and S any subset of vertices con-
taining a free vertex v of T , where every vertex of T except v is dominated twice
by S. Then |S| > γ×2(T ).

Proof. Clearly degT (v) = k ≥ 2 since v is free. Root T at v and let v1, v2, . . . , vk
be the children of v in Tv = T. Let D be any γ×2(T )-set and Di = D ∩ Tvi for
every i. By Lemma 10, D is also a γ×2(T − v)-set and so Di is a γ×2(Tvi)-set
for every i. Hence γ×2(T ) = |D1| + |D2| + · · · + |Dk| . Note that D contains at
least two neighbors of v to doubly dominate v. Now assume to the contrary that
|S| = γ×2(T ) = |D|. Note that S cannot be smaller than D, for otherwise S plus
any neighbor of v not in S would be a γ×2(T )-set that contains v, a contradiction
with the fact that v is a free vertex. Let Si = S ∩ Tvi for every i. Note that since
S does not double dominate v, vi /∈ S for every i. Also since |S| = |D| and v ∈ S,
there is an index j such that |Sj | < |Dj | . The fact Sj ∪ {vj} is a DDS for Tvj

implies that |Dj | ≤ |Sj ∪ {vj}| < |Dj | + 1. Hence |Sj | = |Dj | − 1 and so the set

S′ = (
⋃k

i=1,i 6=j Di)∪ Sj ∪ {v} double dominate all vertices of T and has size |D| .
But S′ is a γ×2(T )-set that contains v, a contradiction too. Therefore |S| > |D|.

Lemma 15. Let T be a γ×2-vertex stable tree and v a vertex of T different from
a support vertex. Then v is not adjacent to a path P3.

Proof. Let v be a vertex of T different from a support vertex and assume that
v is adjacent to a path P3 = u1-x1-y1 by the edge vu1. Root tree T at v and let
C(v) = {u1, u2, . . . , uk} be the set of children of v in the rooted tree. Note that
since T is γ×2-vertex stable and v is not a support vertex, T has order n ≥ 6
and so k ≥ 2. Clearly x1 and y1 are in every γ×2(T )-set and by Observation 12,
u1 belongs to no γ×2(T )-set. It follows that v is in every γ×2(T )-set. Now let
D be a γ×2(T − v)-set. Note that |D| = γ×2(T ) since T is γ×2-vertex stable.
It is clear that {u1, x1, y1} ⊂ D. Now if for some i 6= 1, ui ∈ D, then v is
dominated twice by u1 and ui, and soD is γ×2(T )-set containing u1, contradicting
Observation 12. Hence every ui 6= u1 is a free vertex in T − v. Note that if any
vertex is free in T − v, then it is also free in the component that contains such
a vertex. Let Tuj

denote the component of T − v such that uj ∈ V (Tuj
). Then

γ×2(T ) = γ×2(T − v) = γ×2(Tu1
) +

∑k
i=2

γ×2(Tui
) = 3 +

∑k
i=2

γ×2(Tui
). If A is

any γ×2(T )-set, then A contains v and some ui 6= u1, say u2, to double dominate
v. Hence |A| = |{x1, y1}| + |{v}| +

∑k
i=2

|A ∩ Tui
| = 3 +

∑k
i=2

|A ∩ Tui
| . Now

if for some i ≥ 3, |A ∩ Tui
| < |D ∩ Tui

| , then A ∪ {ui} would be a γ×2(Tui
)-set
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containing ui, a contradiction since ui is free in its component. Thus we must have
|A ∩ Tui

| = |D ∩ Tui
| for each i ≥ 3. Using this fact and |D| = |A| , we conlude

that |A ∩ Tu2
| = γ×2(Tu2

). Observe that A∩Tu2
is a set of vertices containing u2

which is a free vertex in Tu2
. Now if A∩Tu2

is a DDS for Tu2
, then u2 is not free,

a contradiction. Thus A∩ Tu2
double dominates all vertices of Tu2

except u2 but
then by Observation 14, we must have |A ∩ Tu2

| > γ×2(Tu2
), a contradiction too,

and the proof of Lemma 15 is complete.

Before presenting our next result, we give another definition. Let u be a support
vertex of T with a unique leaf v and let T ′ be the forest obtained from T by
removing u and v. Then we call u a good support vertex if γ×2(T

′) = γ×2(T )− 2
and every neighbor of u except v is free in T . For example every support vertex
of a subdivided star of order at least seven is good. However, no support vertex
of the path P5 is good since γ×2(T

′) > γ×2(P5)− 2.
In the aim to characterize γ×2-vertex stable trees, we define the family H of

all trees T that can be obtained from a sequence T1, T2, . . . , Tj (j > 1) of trees
such that T1 is a subdivided star K∗

1,r with r ≥ 2, T = Tj , and if j > 2, Ti+1

can be obtained recursively from Ti by one of the operations listed below. Let
A(T1) = S(T1) ∪ L (T1)

• Operation O1: Add a subdivided star K∗
1,k, k ≥ 2, centered at a vertex

x and join x by an edge to a vertex y of Ti, with the condition that if
y is a leaf, then its support vertex is a good one in Ti. Let A(Ti+1) =

A (Ti) ∪ S(K∗
1,k) ∪ L

(

K∗
1,k

)

.

• Operation O2: Add a path P3 = x-y-z attached by an edge xv at any
support vertex v of Ti. Let A (Ti+1) = A (Ti) ∪ {y, z} .

We will use the following observations.

Observation 16. Let T be a tree obtained from a nontrivial tree T ′ by adding a
path P3 = u-v-z attached by an edge ux at any vertex x of T ′. Then γ×2(T

′) ≤
γ×2(T )− 2, with equality if x belongs to some γ×2(T

′)-set.

Proof. Let D be a γ×2(T )-set. By Observation 1, D contains v, z. If u ∈ D,
then we can replace it in D by x or any neighbor of x in T ′. Hence we may
suppose that u /∈ D and so D ∩ V (T ′) is a DDS for T ′. It follows that γ×2(T

′) ≤
|D ∩ V (T ′)| = γ×2(T )− 2. Now if x belongs to some γ×2(T

′)-set, then such a set
can be extended to a DDS for T, implying that γ×2(T ) ≤ γ×2(T

′)− 2. Therefore
we obtain equality.

Observation 17. Let T be a tree obtained from a nontrivial tree T ′ by adding a
subdivided star K∗

1,k (k ≥ 2) centered at u, attached by an edge uw at any vertex
w of T ′. Then γ×2(T ) = γ×2(T

′) + 2k.
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Proof. Let D be a γ×2(T )-set. Then by Observation 1, D contains all vertices
of K∗

1,k except u (else replace u by w or a neighbor of w in T ′). Hence D∩V (T ′)
is a DDS of T ′ and γ×2(T

′) ≤ γ×2(T ) − 2k. Also, if D′ is any γ×2(T
′)-set, then

D′ ∪
(

V (K∗
1,k)− {u}

)

is a DDS of T ′ and so γ×2(T ) ≤ γ×2(T
′) + 2k. It follows

that γ×2(T ) = γ×2(T
′) + 2k.

Lemma 18. If T ∈ H, then

(a) A(T ) is the unique γ×2(T )-set.

(b) T is a γ×2-vertex stable tree.

Proof. Let T ∈ H. Then from the way in which T is constructed, A(T ) is a
DDS of T . Now to show that A(T ) is the unique γ×2(T )-set and T is γ×2-vertex
stable, we use an induction on the total number of operations Oi performed to
construct T . We use the terminology of the construction for set A(T ). Clearly the
two properties are true for T1 = K∗

1,r with r ≥ 2. Assume that both properties are
true for all trees of H constructed with j − 1 ≥ 0 operations, and let T be a tree
of H constructed with j operations. Thus T is obtained by performing operation
O1 or O2 on a tree T ′ obtained by j − 1 operations. Let D be a γ×2(T )-set. We
examine the following two cases.

Case 1. T is obtained from T ′ using Operation O1. By Observation 17,

γ×2(T ) = γ×2(T
′) + 2k and so A(T ) = A(T ′)∪

(

V (K∗
1,k)− {x}

)

is a γ×2(T )-set.

Now assume that A(T ) is not the unique γ×2(T )-set and let R be a second γ×2(T )-
set. Clearly V (K∗

1,k) − {x} ⊂ D. Now if x /∈ R, then R ∩ V (T ′) is a γ×2(T
′)-set

and since R 6= A(T ′) ∪
(

V (K∗
1,k)− {x}

)

it follows that R ∩ V (T ′) 6= A(T ′), a

contradiction to the uniqueness of A(T ′). Hence x ∈ R. Clearly x is in R to double
dominate y and so R ∩ V (T ′) is not a DDS for T ′. If y is not a leaf of T ′, that
is degT ′(y) ≥ 2, we can replace x by y or any neighbor of y in T ′, which gives
different γ×2(T

′)-sets, a contradiction too. Hence we can assume that y is a leaf
in T ′. Let z be the support vertex of y in T ′. There are two situations: either
y ∈ R and z /∈ R or y /∈ R and z ∈ R. In both cases, z must have a neighbor
z′ 6= y in R. Let R ∩ V (T ′) plus z for the first situation and R ∩ V (T ′) plus y.
Both sets are γ×2(T

′)-set, however z is not a good support vertex of T ′ since z′

is not free in T ′, which contradicts the construction. We conclude that A(T ) is
the unique γ×2(T )-set.

Now let us prove item (b). Recall that by the inductive hypothesis on T ′, T ′

is a γ×2-vertex stable tree. Also since T has a unique γ×2(T )-set that does not
contain x; x is a free vertex in T. Now let y1, . . . , yk denote the support vertices
of K∗

1,k and z1, . . . , zk the leaves, with edges yizi for every i. Let w be any vertex
of T different from a support vertex. We shall show that γ×2(T − w) = γ×2(T ).

If w = x, then since x is a free vertex in T, by Lemma 10, γ×2(T−x) = γ×2(T ).
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Suppose now that w = zi for some i. Then by Theorem 3, γ×2(T )− 2 ≤ γ×2(T −
zi) ≤ γ×2(T ). Let D be any γ×2(T − zi)-set. Then x is a support vertex for yi
and so V (K∗

1,k) − {zi} ⊂ D. First assume that γ×2(T − zi) = γ×2(T ) − 2. Then
clearly D ∪ {z1} would be a DDS for T of size less than γ×2(T ), a contradiction.
Now if γ×2(T − zi) = γ×2(T )− 1, then D ∪ {z1} is a γ×2(T )-set that contains x,
contradicting the fact that x is a free vertex. Therefore γ×2(T − zi) = γ×2(T ).

Finally, suppose that w is a vertex of V (T ′). First let w = y and t =
degT ′(y) ≥ 1. Then T ′ − y provides t subtrees T ′

1, T ′
2, T ′

3, . . . , T
′
t and T − y

provides the same subtrees and in addition the added subdivided star K∗
1,k.

Now since T ′ is γ×2-vertex stable, γ×2(T
′ − y) =

∑t
i=1

γ×2(Ti) = γ×2(T
′).

Also γ×2(T − y) = γ×2(K
∗
1,k) + γ×2(T

′ − y) = 2k + γ×2(T
′) = γ×2(T ). Sec-

ond, suppose that w 6= y is any leaf of T ′. Then T ′ − w is nontrivial and
so by Observation 17, γ×2(T − w) = γ×2(T

′ − w) + 2k. Using the fact that
T ′ is γ×2-vertex stable with the equality γ×2(T ) = γ×2(T

′) + 2k we obtain
γ×2(T − w) = γ×2(T

′ − w) + 2k = γ×2(T
′) + 2k = γ×2(T ). Now assume that

w 6= y is any vertex of T different from z (when z is the support vertex of y
in T ′). Then w has the same degree in T as in T ′, say p ≥ 2. Clearly T ′ − w
provides p subtrees T ′

1, T
′
2, T

′
3, . . . , T

′
p, where y ∈ V (T1). Likewise T − w pro-

vides p subtrees T1, T
′
2, T

′
3, . . . , T

′
p, where T1 is the subtree that contains ver-

tices of the added subdivided star K∗
1,k and those of T ′

1. By Observation 17,

γ×2(T1) = γ×2(T
′
1) + 2k. We know that γ×2(T

′ − w) =
∑p

i=1
γ×2(Ti) = γ×2(T

′)
and γ×2(T −w) = γ×2(T

′
1)+2k+

∑p
i=2

γ×2(Ti). Therefore γ×2(T −w) = γ×2(T ).
It remains to examine the last situation when w = z and y is the leaf neigh-
bor of z in T ′. Let T ′′ = T ′ − {y, z}. Then T − z is formed by T ′′ and T (y),
where T (y) is obtained from K∗

1,k by adding an edge to the single vertex y. Hence
γ×2(T (y)) = 2k + 2 and γ×2(T − z) = γ×2(T

′′) + γ×2(T (y)). Now since z is a
good support vertex in T ′, γ×2(T

′′) = γ×2(T
′) − 2. It follows that γ×2(T − z) =

γ×2(T
′′) + γ×2(T (y)) = γ×2(T

′)− 2 + 2k + 2 = γ×2(T ).
We saw that the deletion of any vertex of T different from a support vertex

does not change γ×2(T ); so T is γ×2-vertex stable.

Case 2. T is obtained from T ′ using Operation O2. By Observation 16,
γ×2(T ) = γ×2(T

′)+2 and so A(T ) = A(T ′)∪{y, z} is a γ×2(T )-set. Observe that
for every γ×2(T )-set D, D ∩ V (T ′) is a γ×2(T

′)-set, implying that A(T ) is the
unique γ×2(T )-set. Hence we have item (a).

Now let us prove item (b). Let u be the leaf neighbor of v and let w be any
vertex of T different from a support vertex. If w = x, then since A(T ) is the
unique γ×2(T )-set with x /∈ A(T ); x is a free vertex in T. Hence by Lemma 10,
γ×2(T − x) = γ×2(T ). Also if w = z, then it is easy to see that γ×2(T − z) =
γ×2(T

′) + 2 = γ×2(T ). Assume now that w 6= u and let k = degT ′(w). Clearly
we also have k = degT (w). Then T ′ − w provides k subtrees T ′

1, T
′
2, T

′
3, . . . , T

′
k,

where v ∈ V (T ′
1). Also T − w provides k subtrees T1, T

′
2, T

′
3, . . . , T

′
k, where T1 is
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obtained from T ′
1 by attaching the path P3 = x-y-z. By Observation 16, γ×2(T1) =

γ×2(T
′
1) + 2. Now we know that γ×2(T

′ − w) =
∑k

i=1
γ×2(Ti) = γ×2(T

′) and

γ×2(T − w) = γ×2(T1) +
∑k

i=2
γ×2(Ti) = 2 +

∑k
i=1

γ×2(Ti) = 2 + γ×2(T
′ − w).

Therefore γ×2(T − w) = γ×2(T
′) + 2 = γ×2(T ). Finally assume that w = u. We

first show that v is not a free vertex in T ′−u. We know that A(T ′) is the unique
γ×2(T

′)-set and every neighbor of v in T ′ besides u is free (by Observation 12).
Now since γ×2(T

′ − u) = γ×2(T
′), the set {a} ∪ (A(T ′)− {u}) is a γ×2(T

′ − u)-
set that contains v, where a is any neighbor of v in T ′ − u. Thus indeed v is
not free in T ′ − u and belongs to some γ×2(T

′ − u)-set. Using this fact and
the fact that T − u is obtained from T ′ − u by attaching the path P3 = x-
y-z, then by Observation 16, γ×2(T − u) = γ×2(T

′ − u) + 2. It follows that
γ×2(T−u) = γ×2(T

′−u)+2 = γ×2(T
′)+2 = γ×2(T ). Consequently the removing

of any vertex of T different from a support vertex does not change γ×2(T ); so T
is γ×2-vertex stable.

We now are ready to prove the following.

Theorem 19. A tree T is γ×2-vertex stable if and only if T ∈ H.

Proof. If T ∈ H, then by Lemma 18, T is a γ×2-vertex stable tree. Now let T
be a γ×2-vertex stable tree. To prove that T ∈ H we proceed by induction on the
order of T . Since stars and double stars are not γ×2-vertex stable (by Observation
12), T has diameter at least four. Clearly the smallest tree of diameter four is
the path P5 = K∗

1,2 that belongs to H. Assume that every γ×2-vertex stable tree
of order n′ < n is in H.

Let T be a γ×2-vertex stable tree of order n. If T has diameter 4, then by
Observation 12, every support vertex is adjacent to exactly one leaf and no two
support vertices are adjacent. So T is a subdivided star K∗

1,r with r ≥ 2 and such
trees are in H. Hence we can assume T has diameter at least 5.

We now root T at leaf r of a longest path. Let u be a vertex at distance
diam(T ) − 2 from r on a longest path starting at r. We further assume that
among all such vertices u has maximum degree. Let x1 be the child of u and y1
the (unique) child of x1 on this path. We also let v be the parent of u and z
the parent of v. Since x1 is a support vertex, by Observation 12, u cannot be a
support vertex. Also since x1 and y1 are in every γ×2(T )-set, u does not belong
to any γ×2(T )-set, otherwise we contradict Observation 12. Hence u is a free
vertex in T. We now consider the following two cases.

Case 1. degT (u) ≥ 3. Hence every child of u is a support vertex and so
Tu = K∗

1,k, where k = degT (u)− 1. Let {x1, x2, . . . , xk} be the set of all children
of u and let yi be the leaf neighbor of xi for every i. Now consider the tree
T ′ = T − D [u] . Note that T ′ has order n′ > 3. Indeed T ′ is nontrivial since
diam(T ) ≥ 5; also if n′ = 3, then T ′ would be a path P3 centered at z, where all its
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vertices are in every γ×2(T )-set which contradicts Observation 12. Moreover, by
Observation 17, γ×2(T

′) = γ×2(T )−|D(u)| . Next we shall show that T ′ is a γ×2-
vertex stable tree. Let w 6= v be any vertex of T ′ different from a support vertex.
Let b = degT ′(w) ≥ 1. Clearly the removing of w from T ′ produces a forest with
b components T ′

1, T
′
2, . . . , T

′
b, where without loss of generality, v ∈ V (T ′

1). Also the
removing of w from T produces a forest with b components T1, T2, . . . , Tb, with
Ti = T ′

i for every i ≥ 2 and T1 is the component that contains T ′
1 and the vertices

of D[u]. Since T ′
1 is nontrivial, by Observation 17, γ×2(T1) = γ×2(T

′
1) + |D(u)|.

Clearly γ×2(T
′ −w) =

∑b
i=1

γ×2(T
′
i ) and γ×2(T −w) = γ×2(T1) +

∑b
i=2

γ×2(T
′
i ).

Using the facts γ×2(T ) = γ×2(T
′) + |D(u)| and T is a γ×2-vertex stable tree, we

get

γ×2(T ) = γ×2(T − w) = γ×2(T1) +
∑b

i=2
γ×2(T

′
i )

= γ×2(T
′
1) + |D(u)|+

∑b
i=2

γ×2(T
′
i )

=
∑b

i=1
γ×2(T

′
i ) + |D(u)| = γ×2(T

′ − w) + |D(u)| ,

and so γ×2(T
′ − w) = γ×2(T

′). Hence the deletion of such a vertex w from T ′

does not change the double domination number of T ′. It remains to examine the
case w = v and of course v is not a support vertex. We consider two possibilities
depending on the degree of v.

Subcase 1.1. degT (v) ≥ 3. Let j = degT (v). Clearly T − v is a forest with j
components T1 = Tu, T2, T3, . . . , Tj and so T2, T3, . . . , Tj are the components of

T ′ − v. Note that γ×2(Tu) = |D(u)|, γ×2(T − v) = γ×2(T1) +
∑j

i=2
γ×2(Ti) and

γ×2(T
′−v) =

∑j
i=2

γ×2(Ti). Since T is γ×2-vertex stable and γ×2(T ) = γ×2(T
′)+

|D(u)| , we obtain γ×2(T
′) + |D(u)| = γ×2(T ) = γ×2(T1) +

∑j
i=2

γ×2(Ti) =
|D(u)|+ γ×2(T

′ − v), and hence γ×2(T
′ − v) = γ×2(T

′).

Subcase 1.2. degT (v) = 2, that is v is a leaf in T ′. First we show that z is
good support vertex in T ′. Since u is a free vertex in T, it follows that v and z
belong to every γ×2(T )-set. Hence every neighbor of z besides v is a free vertex in
T ; indeed if z has another neighbor in some γ×2(T )-set X, then {u} ∪X −{v} is
a γ×2(T )-set containing y1, x1 and u, a contradiction to Observation 12. Clearly
this implies that every neighbor of z in T ′ besides v remain free. It remains
to see that γ×2(T

′′) = γ×2(T
′) − 2, where T ′′ is the tree resulting from T ′ by

removing v and z. Observe that the removing of z from T provides a forest
with at least two components T1 = Tv, T2, T3, . . . , Tt, where T2, T3, . . . , Tt are
precisely the components of T ′′. Note that Tv is a tree, where every vertex is
either a leaf or a support vertex; so γ×2(Tv) = |D(u)|+2. It follows that γ×2(T −
z) = γ×2(Tv) +

∑t
i=2

γ×2(Ti) = |D(u)| + 2 +
∑t

i=2
γ×2(Ti). On the other hand,

γ×2(T
′′) =

∑t
i=2

γ×2(Ti) = γ×2(T − z) − |D(u)| − 2. Now since T is γ×2-vertex
stable and γ×2(T

′) = γ×2(T )− |D(u)| , we get γ×2(T
′′) = γ×2(T )− |D(u)| − 2 =

γ×2(T
′)− 2. Therefore z is a good support vertex in T ′.
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Now let us see that the removing of v in T ′ does not change γ×2(T
′). Clearly

T −v is a forest with two components Tu and T ′−v. It follows that γ×2(T −v) =
γ×2(Tu) + γ×2(T

′ − v) = |D(u)|+ γ×2(T
′ − v). Using the equalities γ×2(T − v) =

γ×2(T ) and γ×2(T ) = γ×2(T
′) + |D(u)|, we obtain γ×2(T

′ − v) = γ×2(T
′).

According to all previous situations, we conclude that T ′ is a γ×2-vertex
stable tree. By induction on T ′, we have T ′ ∈ H. It follows that T ∈ H because
it is obtained from T ′ by using Operation O1.

Case 2. degT (u) = 2. Clearly v is a vertex adjacent to the path P3 = u-x1-y1.
Since T is γ×2-vertex stable, by Lemma 15, v is a support vertex in T. Let v′ be
its unique leaf. Let T ′ be the tree obtained from T by removing u, x1, y1. Note
that v belongs to every γ×2(T

′)-set. By Observation 16, γ×2(T ) = γ×2(T
′) + 2.

Next we shall show that T ′ is a γ×2-vertex stable tree. First let w be any vertex
of T ′ such that w /∈ L(T ′)∪S(T ′). The removing of w in T ′ provides a forest with
at least two components, say T ′

1, T
′
2, . . . , T

′
m. Without loss of generality, we can

assume that T ′
1 is the component that contains v and so v′. Also the removing of

w from T provides a forest withm components T1, T
′
2, . . . , T

′
m, where T1 is the tree

obtained from T ′
1 by attaching the path P3 = u-x1-y1 with the edge vu. Clearly

since v, v′ belong to every γ×2(T
′
1)-set, by Observation 16, γ×2(T1) = γ×2(T

′
1)+2.

On the other hand we have γ×2(T
′ − w) =

∑m
i=1

γ×2(T
′
i ) and γ×2(T − w) =

γ×2(T1) +
∑m

i=2
γ×2(T

′
i ). Now since T is γ×2-vertex stable, we obtain

γ×2(T ) = γ×2(T − w) = γ×2(T1) +
∑m

i=2
γ×2(T

′
i )

= γ×2(T
′
1) + 2 +

∑m
i=2

γ×2(T
′
i )

=
∑m

i=1
γ×2(T

′
i ) + 2 = γ×2(T

′ − w) + 2.

Now using the fact γ×2(T ) = γ×2(T
′) + 2 we obtain γ×2(T

′) = γ×2(T
′ − w).

Therefore the removing of w from T ′ does not change the double domination
number of T ′.

Now we assume that w is a leaf of T ′ and let T ′′ = T ′ − w. Suppose that
w 6= v′. We note here that T − w can be seen as the tree obtained from T ′′

by attaching the path P3 = u-x1-y1 by the edge uv. Since v, v′ are in every
γ×2(T

′′)-set, by Observation 16, γ×2(T −w) = γ×2(T
′′)+2. Since T is γ×2-vertex

stable, γ×2(T ) = γ×2(T − w). Combining the previous equalities with the fact
γ×2(T ) = γ×2(T

′) + 2 we get γ×2(T
′) + 2 = γ×2(T ) = γ×2(T −w) = γ×2(T

′′) + 2
and so γ×2(T

′) = γ×2(T
′′) = γ×2(T

′ − w). Therefore the removing of any leaf of
T ′ different from v′ does not change the double domination number of T ′. Finally
assume that w = v′ and recall that by Corollary 4, γ×2(T − v′) ≤ γ×2(T

′). Let
us consider two subcases.

Subcase 2.1. degT ′(v) = 2, that is, v is a leaf in T ′ − v′. Recall that z
is the parent of v in T and note that T ′ − v′ has order at least three since
diam(T ) ≥ 5. Now suppose that γ×2(T

′ − v′) < γ×2(T
′) and let D′ be any
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γ×2(T
′ − v′)-set. Then clearly v, z ∈ D′ and D′ ∪ {v′, x1, y1} is a DDS for T,

implying that γ×2(T ) ≤ |D′| + 3. Using the equality γ×2(T
′) = γ×2(T ) − 2 we

obtain

γ×2(T ) ≤
∣

∣D′
∣

∣+ 3 = γ×2(T
′ − v′) + 3 < γ×2(T

′) + 3 = γ×2(T ) + 1,

and so γ×2(T ) = |D′| + 3. It follows that D′ ∪ {v′, x1, y1} is a γ×2(T )-set but
in such a set v would be adjacent to z and v′, contradicting Observation 12.
Therefore γ×2(T − v′) = γ×2(T

′).

Subcase 2.2. degT ′(v) ≥ 3. Clearly v should have in T at least one other child
different from u and v′. Such a child cannot be a support vertex (by Observation
12). Thus let u′ be a child of v, x′1 a child of u′ and y′1 a child of x′1. By our
choice of u, u′ must have degree two. We shall show that v is not a free vertex
in T ′ − v′. Suppose to the contrary that v belongs to no γ×2(T

′ − v′)-set and let
X be any γ×2(T

′ − v′)-set. Then x′1, y
′
1 ∈ X and since v /∈ X we have u′ ∈ X. To

doubly dominate v by X, X contains at least one other neighbor of v but then
{v} ∪ X − {u′} is a γ×2(T

′ − v′)-set that contains v, a contradiction. Hence v
belongs to some γ×2(T

′ − v′)-set Y and such a set can be extended to DDS for
T − v′ by adding x1, y1, implying that γ×2(T − v′) ≤ γ×2(T

′ − v′) + 2. Equality
is obtained from the fact that there is a γ×2(T − v′)-set containing x1, y1, v and
not u. Now assume that γ×2(T

′ − v′) < γ×2(T
′). Observe that Y ∪ {x1, y1, v

′} is
a DDS for T. Now using the fact γ×2(T

′) = γ×2(T )− 2 we obtain

γ×2(T ) ≤
∣

∣Y ∪ {x1, y1, v
′}
∣

∣ = γ×2(T
′ − v′) + 3 < γ×2(T

′) + 3 = γ×2(T )− 2 + 3,

and so γ×2(T ) = |Y ∪ {x1, y1, v
′}| , that is Y ∪{x1, y1, v

′} is a γ×2(T )-set in which
v has two neighbors, contradicting Observation 12. Hence γ×2(T

′−v′) = γ×2(T
′).

According to all previous situations, we conclude that the removing of any
vertex of T ′ different from a support vertex does not change the double domina-
tion number of T ′, that is, T ′ is a γ×2-vertex stable tree. Applying the inductive
hypothesis on T ′, we have T ′ ∈ H. It follows that T ∈ H because it is obtained
from T ′ by using Operation O2.
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