ON THE TOTAL RESTRAINED DOMINATION NUMBER OF DIRECT PRODUCTS OF GRAPHS ${ }^{1}$

Wai Chee Shiu
Department of Mathematics, Hong Kong Baptist University 224 Waterloo Road, Kowloon Tong, Hong Kong, China
e-mail: wcshiu@hkbu.edu.hk
Hong-Yu Chen
School of Mathematics and System Sciences, Shandong University
Jinan, Shandong Province, 250100, China
Xue-Gang Chen
Department of Mathematics, North China Electric Power University
Beijing, 102206, China
e-mail: gxc_xdm@163.com
AND
Pak Kiu Sun
Department of Mathematics, Hong Kong Baptist University 224 Waterloo Road, Kowloon Tong, Hong Kong, China
e-mail: lionel@hkbu.edu.hk

Abstract

Let $G=(V, E)$ be a graph. A total restrained dominating set is a set $S \subseteq V$ where every vertex in $V \backslash S$ is adjacent to a vertex in S as well as to another vertex in $V \backslash S$, and every vertex in S is adjacent to another vertex in S. The total restrained domination number of G, denoted by $\gamma_{r}^{t}(G)$, is the smallest cardinality of a total restrained dominating set of G. We determine lower and upper bounds on the total restrained domination number of the direct product of two graphs. Also, we show that these bounds are sharp by presenting some infinite families of graphs that attain these bounds. Keywords: total domination number, total restrained domination number, direct product of graphs. 2010 Mathematics Subject Classification: 05C69.

[^0]
1. Introduction

All graph theory terminology not presented in this paper can be found in [4]. Let $G=(V, E)$ be a graph with $|V|=n$. For any vertex $v \in V$, the open neighborhood of v, denoted by $N_{G}(v)$, is $\{u \in V \mid u v \in E\}$. The closed neighborhood of v, denoted by $N_{G}[v]$, is the set $N_{G}(v) \cup\{v\}$. Let S be a subset of V. The neighborhood of S is the set $N(S)=\bigcup_{v \in S} N(v)$. The open packing number $\rho^{0}(G)$ of G is the maximum cardinality of a set of vertices whose open neighborhoods are pairwise disjoint.

A set S is a dominating set of G if for every vertex $u \in V \backslash S$ there exists $v \in S$ such that $u v \in E$. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. We call a set S a γ-set if S is a dominating set with cardinality $\gamma(G)$.

A set $S \subseteq V$ is a total dominating set if $N(S)=V(G)$, and the total domination number $\gamma_{t}(G)$ is the minimum cardinality of a total dominating set of G.

A set $S \subseteq V$ is a restrained dominating set if every vertex in $V \backslash S$ is adjacent to a vertex in S and to another vertex in $V \backslash S$. Let $\gamma_{r}(G)$ denote the size of a smallest restrained dominating set. A set S is called a γ_{r}-set if S is a restrained dominating set with cardinality $\gamma_{r}(G)$.

A total restrained dominating set is a set $S \subseteq V$ where every vertex in $V \backslash S$ is adjacent to a vertex in S as well as to another vertex in $V \backslash S$, and every vertex in S is adjacent to another vertex in S. The total restrained domination number of G, denoted by $\gamma_{r}^{t}(G)$, is the smallest cardinality of a total restrained dominating set of G.

It is obvious that $\gamma(G) \leq \gamma_{t}(G) \leq \gamma_{r}^{t}(G)$.
The direct product $G \times H$ (some authors call it the cross product $[1,3]$) of two graphs G and H is the graph with $V(G \times H)=V(G) \times V(H)$ and $(u, v)\left(u^{\prime}, v^{\prime}\right) \in$ $E(G \times H)$ if and only if $u u^{\prime} \in E(G)$ and $v v^{\prime} \in E(H)$.

In this paper we study the total restrained domination number of the direct product of graphs. In Section 2, we give lower and upper bounds on $\gamma_{r}^{t}(G \times H)$ in terms of total and total restrained domination number and maximum degree of G and H. Both bounds are best possible. In Section 3, we further investigate the exact values of the total restrained domination number when one of the factors is a path or cycle. Throughout the rest of the paper, all graphs are assumed to be simple and have no isolated vertices.

2. Upper and Lower Bounds for $\gamma_{r}^{t}(G \times H)$

Theorem 2.1. For any two graphs G and H, we have $\gamma_{r}^{t}(G \times H) \leq \gamma_{r}^{t}(G) \gamma_{r}^{t}(H)$. Proof. Let D_{1} and D_{2} be a $\gamma_{r}^{t}(G)$-set and a $\gamma_{r}^{t}(H)$-set, respectively. We show
that $D=D_{1} \times D_{2}$ is a total restrained dominating set of $G \times H$. For any vertex $(x, y) \in V(G \times H)$, we have the following cases.

Case 1. $x \in V(G) \backslash D_{1}$ and $y \in V(H) \backslash D_{2}$. Since D_{1} is a total restrained dominating set of G, there exist $x_{1} \in D_{1}$ and $x_{2} \in V(G) \backslash D_{1}$ such that $x x_{1} \in$ $E(G)$ and $x x_{2} \in E(G)$. By a similar way, there exist $y_{1} \in D_{2}$ and $y_{2} \in V(H) \backslash D_{2}$ such that $y y_{1} \in E(H)$ and $y y_{2} \in E(H)$. Hence, (x, y) is dominated by $\left(x_{1}, y_{1}\right) \in$ D, and (x, y) is adjacent to a vertex $\left(x_{2}, y_{2}\right) \in V(G \times H) \backslash D$.

Case 2. $x \in D_{1}$ and $y \in V(H) \backslash D_{2}$. Since D_{1} is a total restrained dominating set of G, there exists $x_{1} \in D_{1}$ such that $x x_{1} \in E(G)$. By a similar way, there exist $y_{1} \in D_{2}$ and $y_{2} \in V(H) \backslash D_{2}$ such that $y y_{1} \in E(H)$ and $y y_{2} \in E(H)$. Hence, (x, y) is dominated by $\left(x_{1}, y_{1}\right) \in D$, and (x, y) is adjacent to a vertex $\left(x_{1}, y_{2}\right) \in V(G \times H) \backslash D$.

Case 3. $x \in V(G) \backslash D_{1}$ and $y \in D_{2}$. By a similar way as Case 2, it holds.
Case 4. $x \in D_{1}$ and $y \in D_{2}$. Since D_{1} is a total restrained dominating set of G, there exists $x_{1} \in D_{1}$ such that $x x_{1} \in E(G)$. By a similar way, there exists $y_{1} \in D_{2}$ such that $y y_{1} \in E(H)$. Hence, (x, y) is adjacent to a vertex $\left(x_{1}, y_{1}\right) \in D$.

Therefore, D is a total restrained dominating set of $G \times H$. So $\gamma_{r}^{t}(G \times H) \leq$ $\gamma_{r}^{t}(G) \gamma_{r}^{t}(H)$.

To present a nontrivial infinite family of graphs that achieve the above bound, we will make use of the following inequality.

Lemma 2.2 [6]. For any two graphs G and H, we have

$$
\gamma_{t}(G \times H) \geq \max \left\{\rho^{0}(G) \gamma_{t}(H), \rho^{0}(H) \gamma_{t}(G)\right\}
$$

Theorem 2.3. Let G be a graph with $\rho^{0}(G)=\gamma_{r}^{t}(G)$ and H be a graph with $\gamma_{t}(H)=\gamma_{r}^{t}(H)$. Then $\gamma_{r}^{t}(G \times H)=\gamma_{r}^{t}(G) \gamma_{r}^{t}(H)$.

Proof. By Theorem 2.1 and Lemma 2.2 we obtain

$$
\gamma_{r}^{t}(G) \gamma_{r}^{t}(H) \geq \gamma_{r}^{t}(G \times H) \geq \gamma_{t}(G \times H) \geq \rho^{0}(G) \gamma_{t}(H)=\gamma_{r}^{t}(G) \gamma_{r}^{t}(H)
$$

and hence $\gamma_{r}^{t}(G \times H)=\gamma_{r}^{t}(G) \gamma_{r}^{t}(H)$.
Since $\rho^{0}(G) \leq \gamma_{t}(G)$ holds for an arbitrary graph G (see [6]), the assumption concerning G in the above proposition implies $\rho^{0}(G)=\gamma_{t}(G)=\gamma_{r}^{t}(G)$. This family of graphs includes paths P_{n} where $n \equiv 2(\bmod 4)$, cycles C_{n} where $n \equiv 0(\bmod 4)$, etc. The complete characterization of trees with equal total and total restrained domination numbers is given in [2].

Apart from the upper bound, we give a lower bound on the total restrained domination number of $G \times H$, which is a direct consequence of the following theorems [3].

Theorem 2.4. For any two graphs G and H, we have $\gamma_{t}(G \times H) \geq \frac{|H|}{\Delta(H)} \gamma_{t}(G)$.
Theorem 2.5. For any two graphs G and H, we have

$$
\gamma_{r}^{t}(G \times H) \geq \max \left\{\frac{|H|}{\Delta(H)} \gamma_{t}(G), \frac{|G|}{\Delta(G)} \gamma_{t}(H)\right\}
$$

3. Products of Paths and Cycles

Let P_{n} and C_{n} denote respectively a path and a cycle of order n. In this section, we determine the total retrained domination number of direct products of graphs involving paths and cycles. These graphs attain the bounds given in the previous section. From Theorems 2.1 and 2.5, we have:

$$
\begin{align*}
& \frac{n \gamma_{t}(G)}{2} \leq \gamma_{r}^{t}\left(P_{n} \times G\right) \leq \gamma_{r}^{t}\left(P_{n}\right) \gamma_{r}^{t}(G) \tag{1}\\
& \frac{n \gamma_{t}(G)}{2} \leq \gamma_{r}^{t}\left(C_{n} \times G\right) \leq \gamma_{r}^{t}\left(C_{n}\right) \gamma_{r}^{t}(G) \tag{2}
\end{align*}
$$

Before proving Theorems 3.4 and 3.6, the following results should be stated in advance.

Lemma 3.1 [3]. Let P_{n} and C_{n} be a path and cycle with n vertices, respectively. Then

$$
\gamma_{t}\left(P_{n}\right)=\gamma_{t}\left(C_{n}\right)= \begin{cases}\frac{n}{2} & \text { for } n \equiv 0(\bmod 4) \\ \frac{n+1}{2} & \text { for } n \equiv 1(\bmod 4) \\ \frac{n+2}{2} & \text { for } n \equiv 2(\bmod 4) \\ \frac{n+1}{2} & \text { for } n \equiv 3(\bmod 4)\end{cases}
$$

Theorem 3.2 [5]. If $n \geq 3$ and $m \geq 2$, then

$$
\begin{gathered}
\gamma_{r}^{t}\left(C_{n}\right)=n-2\left\lfloor\frac{n}{4}\right\rfloor= \begin{cases}\frac{n}{2} & \text { for } n \equiv 0(\bmod 4), \\
\frac{n+1}{2} & \text { for } n \equiv 1(\bmod 4), \\
\frac{n+2}{2} & \text { for } n \equiv 2(\bmod 4), \\
\frac{n+3}{2} & \text { for } n \equiv 3(\bmod 4),\end{cases} \\
\gamma_{r}^{t}\left(P_{m}\right)=m-2\left\lfloor\frac{m-2}{4}\right\rfloor= \\
=\begin{array}{ll}
\frac{m+4}{2} & \text { for } m \equiv 0(\bmod 4), \\
\frac{m+5}{2} & \text { for } m \equiv 1(\bmod 4), \\
\frac{m+2}{2} & \text { for } m \equiv 2(\bmod 4), \\
\frac{m+3}{2} & \text { for } m \equiv 3(\bmod 4) .
\end{array}
\end{gathered}
$$

Lemma 3.3 [7]. Let G be a graph without isolated vertices and $n \geq 2$. Then $\gamma_{t}\left(P_{n} \times G\right)=\gamma_{t}\left(P_{n}\right) \gamma_{t}(G)$.

Theorems 3.4 and 3.5 show that the upper bound in (1) is attained when P_{n} is such that $n \equiv 2(\bmod 4)$ and $\gamma_{t}(G)=\gamma_{r}^{t}(G)$, or when G is K_{2}.

Theorem 3.4. Let G be a graph with $\gamma_{t}(G)=\gamma_{r}^{t}(G)$ and let P_{n} be such that $n \equiv 2(\bmod 4)$. Then $\gamma_{r}^{t}\left(P_{n} \times G\right)=\gamma_{r}^{t}\left(P_{n}\right) \gamma_{r}^{t}(G)$.

Proof. From Lemma 3.1 and Theorem 3.2, we have $\gamma_{r}^{t}\left(P_{n}\right)=\gamma_{t}\left(P_{n}\right)$ for $n \equiv 2(\bmod 4)$. Since $\gamma_{t}\left(P_{n}\right) \gamma_{t}(G)=\gamma_{t}\left(P_{n} \times G\right) \leq \gamma_{r}^{t}\left(P_{n} \times G\right) \leq \gamma_{r}^{t}\left(P_{n}\right) \gamma_{r}^{t}(G)=$ $\gamma_{t}\left(P_{n}\right) \gamma_{t}(G)$, it follows that $\gamma_{r}^{t}\left(P_{n} \times G\right)=\gamma_{r}^{t}\left(P_{n}\right) \gamma_{r}^{t}(G)$.
Theorem 3.5. If $n \geq 2$, then $\gamma_{r}^{t}\left(P_{n} \times K_{2}\right)=2 \gamma_{r}^{t}\left(P_{n}\right)$.
Proof. $P_{n} \times K_{2}$ consists of two disjoint copies of P_{n}, so the result follows.
The upper and lower bounds in (2) agree when $n \equiv 0(\bmod 4)$ and $\gamma_{t}(G)=\gamma_{r}^{t}(G)$. The following theorem shows that the lower bound in (2) is attained when G is a complete graph K_{m} for $m \geq 3$, while the upper bound is attained when G is K_{2} and $n \not \equiv 3(\bmod 4)$. Note that $\gamma_{t}\left(K_{m}\right)=2$ for $m \geq 2$.

Throughout this paper we use $\mathbb{Z}_{n}=\{1,2, \ldots, n\}$ to be the vertex set of C_{n}. That means computation involving the name of vertices is taken in modulo n.

Theorem 3.6. If $m \geq 2$ and $n \geq 3$, then

$$
\gamma_{r}^{t}\left(C_{n} \times K_{m}\right)= \begin{cases}2 \gamma_{r}^{t}\left(C_{n}\right) & \text { if } m=2 \text { and } n \not \equiv 3(\bmod 4) \\ n & \text { if } m \geq 3\end{cases}
$$

Proof. Let $m=2$. If n is even, then the graph $C_{n} \times K_{2}$ consists of two disjoint copies of C_{n}. So $\gamma_{r}^{t}\left(C_{n} \times K_{2}\right)=2 \gamma_{r}^{t}\left(C_{n}\right)$.

If n is odd, then the graph $C_{n} \times K_{2} \cong C_{2 n}$ and we have $\gamma_{r}^{t}\left(C_{n} \times K_{2}\right)=\gamma_{r}^{t}\left(C_{2 n}\right)$. Since $n \not \equiv 3(\bmod 4)$, we have $n \equiv 1(\bmod 4)$ and $\gamma_{r}^{t}\left(C_{2 n}\right)=n+1=2 \gamma_{r}^{t}\left(C_{n}\right)$ by Theorem 3.2.

Suppose $m \geq 3$. We shall construct a total restrained dominating subset D of $C_{n} \times K_{m}$ with $|D|=n$. Let the vertex set of K_{m} be $\{1,2, \ldots, m\}$. It is possible to choose a mapping $f: \mathbb{Z}_{n} \rightarrow\{1,2,3\}$ such that $f(i) \neq f(i+2)$ for each $i \in \mathbb{Z}_{n}$. Let $D=\{(i, f(i)) \mid 1 \leq i \leq n\}$. For example, let $D=$ $\{(1,1),(2,1),(3,2),(4,2),(5,3),(6,3),(7,2)\}$ when $n=7$.
Consider any vertex (i, j). Since $f(i-1) \neq f(i+1)$ (for $i=1$, we take n as $i-1$), at least one of them is different from j, say $f(i-1) \neq j$. Then (i, j) is adjacent to $(i-1, f(i-1)) \in D$. This shows that D is a total dominating set of $C_{n} \times K_{m}$. For $(i, j) \notin D,(i, j)$ is also adjacent to $(i+1, f(i-1)) \notin D$. So D is a total restrained dominating set of $C_{n} \times K_{m}$. Since $n=\frac{n \gamma_{t}\left(K_{m}\right)}{2} \leq \gamma_{r}^{t}\left(C_{n} \times K_{m}\right) \leq|D|=n,|D|$ is minimum and $\gamma_{r}^{t}\left(C_{n} \times K_{m}\right)=n$.

After showing that the lower and upper bounds established in Section 2 are the best possible, we are now going to determine the total restrained domination number of direct product of cycles. Consider the direct product of cycles, then (2) becomes

$$
\begin{equation*}
\max \left\{\left\lceil\frac{n \gamma_{t}\left(C_{m}\right)}{2}\right\rceil,\left\lceil\frac{m \gamma_{t}\left(C_{n}\right)}{2}\right\rceil\right\} \leq \gamma_{r}^{t}\left(C_{n} \times C_{m}\right) \leq \gamma_{r}^{t}\left(C_{n}\right) \gamma_{r}^{t}\left(C_{m}\right) \tag{3}
\end{equation*}
$$

Theorem 3.12 shows that the lower bound in (3) is attained when $n=m$. Before we present the proof, the following lemma and definition from [3] should be stated.

Consider the graph $G \times H$. For $x \in V(G), H_{x}$ is the graph induced by $\{(x, y) \mid y \in V(H)\}$.

Lemma 3.7 [3]. Let D be a total dominating set of $G \times H$ and let $u \in V(G)$. We have $\left|D \cap\left(\bigcup_{v \in N(u)} H_{v}\right)\right| \geq \gamma_{t}(H)$.

Definition 3.8 [3]. Let D be a total dominating set of $C_{n} \times C_{m}$. An S-sequence corresponding to D is a sequence $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$, where $S_{i}=\{j \mid(i, j) \in$ $D\} \subseteq V\left(C_{m}\right)$ for $i \in \mathbb{Z}_{n}$.

The above definition together with Lemma 3.7 give the following result:

$$
\begin{equation*}
S_{i} \cup S_{i+2} \text { is a total dominating set for } C_{m}, \text { where } i \in \mathbb{Z}_{n} . \tag{4}
\end{equation*}
$$

The condition in (4) is also sufficient to define a total dominating set for $C_{n} \times C_{m}$ in the sense that if $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ is a sequence of subsets of $V\left(C_{m}\right)$ such that (4) is satisfied, then $D=\left\{(i, j) \mid j \in S_{i}, 1 \leq i \leq n\right\}$ is a total dominating set of $C_{n} \times C_{m}$.

We define another sequence, the T-sequence, which depends on the S-sequence.
Definition 3.9. Given an S-sequence $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$, the corresponding T-sequence is defined as $T=\left(S_{1}, S_{3}, S_{5}, \ldots, S_{n}, S_{2}, S_{4}, \ldots, S_{n-1}\right)$ if n is odd. If n is even, then the T-sequence degenerates into two subsequences $T^{\prime}=$ $\left(S_{1}, S_{3}, \ldots, S_{n-1}\right)$ and $T^{\prime \prime}=\left(S_{2}, S_{4}, \ldots, S_{n}\right)$.

Let $T=\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ denote a T-sequence of length n. From (4), we have

$$
\begin{equation*}
T_{i} \cup T_{i+1} \text { is a total dominating set for } C_{m}, \text { where } i \in \mathbb{Z}_{n} \tag{5}
\end{equation*}
$$

Condition (5) is necessary and sufficient for a sequence $\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ to be a T-sequence corresponding to a total dominating set for $C_{n} \times C_{m}$.

To facilitate the proof of Theorem 3.12, we need the following lemmas about the total domination number of direct product of cycles.

Lemma 3.10 [3]. For odd $m \geq 3$, we have

$$
\gamma_{t}\left(C_{m} \times C_{m}\right)= \begin{cases}(4 k+3)(k+1) & \text { if } m=4 k+3 \\ 4 k^{2}+3 k+1 & \text { if } m=4 k+1\end{cases}
$$

Theorem 3.11 [3]. For odd k, we have $\gamma_{t}\left(C_{2 k} \times C_{m}\right)=2 \gamma_{t}\left(C_{k} \times C_{m}\right)$.
Theorem 3.12. For $m \geq 3$, we have

$$
\gamma_{r}^{t}\left(C_{m} \times C_{m}\right)= \begin{cases}4 k^{2}+7 k+3 & \text { if } m=4 k+3, \\ 4 k^{2}+3 k+1 & \text { if } m=4 k+1, \\ 4 k^{2} & \text { if } m=4 k, \\ 4 k^{2}+6 k+4 & \text { if } m=4 k+2 \text { and } k \text { is even }, \\ 4 k^{2}+6 k+2 & \text { if } m=4 k+2 \text { and } k \text { is odd. }\end{cases}
$$

Proof. Considering different values of m, we have the following cases.
Case 1. Suppose $m=4 k+3$ for some $k \geq 0$. We define a T-sequence of length $4 k+3$ by
(a) $T_{1}=\{4 j+1 \mid 0 \leq j \leq k\}$ and
(b) $T_{i+1}=\left\{j+1(\bmod 4 k+3) \mid j \in T_{i}\right\}, 1 \leq i \leq 4 k+2$.

It is obvious that $T_{i} \cup T_{i+1}$ is a total dominating set of $C_{4 k+3}$. That is, the condition (5) is satisfied. So $D=\left\{(i, j) \mid j \in S_{i}, 1 \leq i \leq 4 k+3\right\}$ is a total dominating set for $C_{4 k+3} \times C_{4 k+3}$.

Next we will show that D is a total restrained dominating set of $C_{4 k+3} \times$ $C_{4 k+3}$. For any vertex $(i, j) \notin D,(i, j)$ is adjacent to four vertices $(i-1, j-1)$, $(i-1, j+1),(i+1, j-1)$ and $(i+1, j+1)$. Since D is a total dominating set of $C_{4 k+3} \times C_{4 k+3}$, at least one of them is in D, say $(i-1, j-1) \in D$. By the construction of the T-sequence, we have $(i-1, j+1) \notin D$.

Figure 1. Neighbors of the vertex (i, j).
Thus, D is a total restrained dominating set of $C_{4 k+3} \times C_{4 k+3}$ and we have $\gamma_{r}^{t}\left(C_{4 k+3} \times C_{4 k+3}\right) \leq|D|=(4 k+3)(k+1)$.

On the other hand, from Lemma 3.10, we have $\gamma_{r}^{t}\left(C_{4 k+3} \times C_{4 k+3}\right) \geq \gamma_{t}\left(C_{4 k+3} \times\right.$ $\left.C_{4 k+3}\right)=(4 k+3)(k+1)$. Hence, $\gamma_{r}^{t}\left(C_{4 k+3} \times C_{4 k+3}\right)=(4 k+3)(k+1)=4 k^{2}+7 k+3$.

Case 2. Suppose $m=4 k+1$ for some $k \geq 1$. We define a T-sequence of length $4 k+1$ by
(a) $T_{1}=\{4 j+1 \mid 0 \leq j \leq k\}$,
(b) $T_{2}=\{4 j \mid 1 \leq j \leq k\}$,
(c) $T_{i+2}=\left\{j+2(\bmod 4 k+1) \mid j \in T_{i}\right\}, 1 \leq i \leq 4 k-1$.

With a similar proof as in Case $1, D=\left\{(i, j) \mid j \in S_{i}, 1 \leq i \leq 4 k+1\right\}$ is a total restrained dominating set for $C_{4 k+1} \times C_{4 k+1}$. Thus we have
$\gamma_{r}^{t}\left(C_{4 k+1} \times C_{4 k+1}\right) \leq|D|=\left\lceil\frac{(4 k+1)(2 k+1)}{2}\right\rceil=\left\lceil 4 k^{2}+3 k+\frac{1}{2}\right\rceil=4 k^{2}+3 k+1$.
Conversely, from Lemma 3.10, we have $\gamma_{r}^{t}\left(C_{4 k+1} \times C_{4 k+1}\right) \geq \gamma_{t}\left(C_{4 k+1} \times C_{4 k+1}\right)=$ $4 k^{2}+3 k+1$. Hence, $\gamma_{r}^{t}\left(C_{4 k+1} \times C_{4 k+1}\right)=4 k^{2}+3 k+1$.

Case 3. Suppose $m=4 k$ for some $k \geq 1$. Equation (3) gives $\frac{(4 k) \gamma_{t}\left(C_{4 k}\right)}{2} \leq$ $\gamma_{r}^{t}\left(C_{4 k} \times C_{4 k}\right) \leq \gamma_{r}^{t}\left(C_{4 k}\right) \gamma_{r}^{t}\left(C_{4 k}\right)$, Lemma 3.1 gives $\frac{(4 k) \gamma_{t}\left(C_{4 k}\right)}{2}=4 k\left(\frac{4 k}{4}\right)=4 k^{2}$ and Theorem 3.2 gives $\gamma_{r}^{t}\left(C_{4 k}\right) \gamma_{r}^{t}\left(C_{4 k}\right)=\left(\frac{4 k}{2}\right)\left(\frac{4 k}{2}\right)=4 k^{2}$. Therefore, $\gamma_{r}^{t}\left(C_{4 k} \times C_{4 k}\right)=$ $4 k^{2}$.

Case 4. Suppose $m=4 k+2$ for some $k \geq 1$. The vertex set of $C_{4 k+2} \times C_{4 k+2}$ can be divided into four parts as showed in Figure 2. Each part contains $(2 k+1)^{2}$ vertices.

	1	\cdots	$2 k+1$	$2 k+2$	\cdots	$4 k+2$
1						
\vdots		part 1		part 2		
$2 k+1$						
$2 k+2$						
\vdots		part 3			part 4	
$4 k+2$						

Figure 2. Vertex distribution of $C_{4 k+2} \times C_{4 k+2}$.
We divide it into two subcases.
Case 4.1. Suppose $k=2 l$ for some $l \geq 1$. For part 1 and part 3, we define a $T^{(1)}$-sequence of length $4 k+2$ by
(a) $T_{1}^{(1)}=\{4 j+1 \mid 0 \leq j \leq l\}$,
(b) $T_{2}^{(1)}=\{4 j \mid 1 \leq j \leq l\}$,
(c) $T_{i+2}^{(1)}=\left\{j+2(\bmod 2 k+1) \mid j \in T_{i}^{(1)}\right\}, 1 \leq i \leq 2 k-1$,
(d) $T_{2 k+i}^{(1)}=T_{i-1}^{(1)}$ for $2 \leq i \leq 2 k+2$.

For part 2 and part 4, we define a $T^{(2)}$-sequence of length $4 k+2$ by

$$
T_{i}^{(2)}=\left\{j+(2 k+1) \mid j \in T_{i}^{(1)}\right\}, \text { for } 1 \leq i \leq 4 k+2
$$

For example, when $k=2$, the $T^{(1)}$-sequence and $T^{(2)}$-sequence are

$$
\begin{array}{llll}
T_{1}^{(1)}=\{1,5\}, & T_{1}^{(2)}=\{6,10\}, & T_{6}^{(1)}=T_{1}^{(1)}, & T_{6}^{(2)}=T_{1}^{(2)} \\
T_{2}^{(1)}=\{4\}, & T_{2}^{(2)}=\{9\}, & T_{7}^{(1)}=T_{2}^{(1)}, & T_{7}^{(2)}=T_{2}^{(2)} \\
T_{3}^{(1)}=\{3,2\}, & T_{3}^{(2)}=\{8,7\}, & T_{8}^{(1)}=T_{3}^{(1)}, & T_{8}^{(2)}=T_{3}^{(2)} \\
T_{4}^{(1)}=\{1\}, & T_{4}^{(2)}=\{6\}, & T_{9}^{(1)}=T_{4}^{(1)}, & T_{9}^{(2)}=T_{4}^{(2)} \\
T_{5}^{(1)}=\{5,4\}, & T_{5}^{(2)}=\{10,9\}, & T_{10}^{(1)}=T_{5}^{(1)}, & T_{10}^{(2)}=T_{5}^{(2)} .
\end{array}
$$

Let T-sequence be $T=\left\{T_{1}, T_{2}, \ldots, T_{4 k+2}\right\}$, where $T_{i}=T_{i}^{(1)} \cup T_{i}^{(2)}, 1 \leq i \leq 4 k+2$. The T-sequence degenerates into two subsequences:

$$
\begin{aligned}
T^{\prime} & =\left\{T_{1}, T_{2}, \ldots, T_{2 k+1}\right\}=\left\{S_{1}, S_{3}, \ldots, S_{4 k+1}\right\} \\
T^{\prime \prime} & =\left\{T_{2 k+2}, T_{2 k+3}, \ldots, T_{4 k+2}\right\} \\
& =\left\{S_{2 k+2}, S_{2 k+4}, \ldots, S_{4 k+2}, S_{2}, S_{4}, \ldots, S_{2 k}\right\}
\end{aligned}
$$

It is obvious that $T_{i} \cup T_{i+1}$ is a total dominating set of $C_{4 k+2}$. So $D=\{(i, j) \mid$ $\left.j \in S_{i}, 1 \leq i \leq 4 k+2\right\}$ is a total dominating set for $C_{4 k+2} \times C_{4 k+2}$ (see Figure 3 for $k=2$).

Figure 3. A total dominating set of $C_{10} \times C_{10}$.

Similarly to the proof of Case $1, D$ is also a total restrained dominating set of $C_{4 k+2} \times C_{4 k+2}$. Therefore, $\gamma_{r}^{t}\left(C_{4 k+2} \times C_{4 k+2}\right) \leq|D|=4\left\lceil\frac{(2 k+1)(2 l+1)}{2}\right\rceil=$ $4\left\lceil\frac{(2 k+1)(k+1)}{2}\right\rceil=4 k^{2}+6 k+4$.

On the other hand, by Theorem 3.11 and Lemma 3.10, we have

$$
\begin{aligned}
\gamma_{r}^{t}\left(C_{4 k+2} \times C_{4 k+2}\right) & \geq \gamma_{t}\left(C_{4 k+2} \times C_{4 k+2}\right)=4 \gamma_{t}\left(C_{2 l+1} \times C_{2 l+1}\right) \\
& =4\left(4 l^{2}+3 l+1\right)=4 k^{2}+6 k+4
\end{aligned}
$$

Hence, $\gamma_{r}^{t}\left(C_{4 k+2} \times C_{4 k+2}\right)=4 k^{2}+6 k+4$.
Case 4.2. Suppose $k=2 l+1$ for some $l \geq 0$. For part 1 and part 3, we define a $T^{(1)}$-sequence of length $4 k+2$ by
(a) $T_{1}^{(1)}=\{4 j+1 \mid 0 \leq j \leq l\}$,
(b) $T_{i+1}^{(1)}=\left\{j+1(\bmod 2 k+1) \mid j \in T_{i}^{(1)}\right\}, 1 \leq i \leq 2 k$,
(c) $T_{2 k+i}^{(1)}=T_{i-1}^{(1)}$ for $2 \leq i \leq 2 k+2$.

For part 2 and part 4 , we define a $T^{(2)}$-sequence of length $4 k+2$ by

$$
T_{i}^{(2)}=\left\{j+(2 k+1) \mid j \in T_{i}^{(1)}\right\} \text { for } 1 \leq i \leq 4 k+2 .
$$

For example, when $k=1$, the $T^{(1)}$-sequence and $T^{(2)}$-sequence are

$$
\begin{array}{llll}
T_{1}^{(1)}=\{1\}, & T_{1}^{(2)}=\{4\}, & T_{4}^{(1)}=T_{1}^{(1)}, & T_{4}^{(2)}=T_{1}^{(2)}, \\
T_{2}^{(1)}=\{2\}, & T_{2}^{(2)}=\{5\}, & T_{5}^{(1)}=T_{2}^{(1)}, & T_{5}^{(2)}=T_{2}^{(2)}, \\
T_{3}^{(1)}=\{3\}, & T_{3}^{(2)}=\{6\}, & T_{6}^{(1)}=T_{3}^{(1)}, & T_{6}^{(2)}=T_{3}^{(2)} .
\end{array}
$$

Let T-sequence be $T=\left\{T_{1}, T_{2}, \ldots, T_{4 k+2}\right\}$, where $T_{i}=T_{i}^{(1)} \cup T_{i}^{(2)}, 1 \leq i \leq 4 k+2$. The T-sequence degenerates into two subsequences:

$$
\begin{aligned}
T^{\prime} & =\left\{T_{1}, T_{2}, \ldots, T_{2 k+1}\right\}=\left\{S_{1}, S_{3}, \ldots, S_{4 k+1}\right\}, \\
T^{\prime \prime} & =\left\{T_{2 k+2}, T_{2 k+3}, \ldots, T_{4 k+2}\right\} \\
& =\left\{S_{2 k+2}, S_{2 k+4}, \ldots, S_{4 k+2}, S_{2}, S_{4}, \ldots, S_{2 k}\right\} .
\end{aligned}
$$

It is obvious that $T_{i} \cup T_{i+1}$ is a total dominating set of $C_{4 k+2}$. Thus $D=$ $\left\{(i, j) \mid j \in S_{i}, 1 \leq i \leq 4 k+2\right\}$ is a total dominating set for $C_{4 k+2} \times C_{4 k+2}$ (see Figure 4 for $k=1$).

Similarly to the proof of Case $1, D$ is a total restrained dominating set of $C_{4 k+2} \times C_{4 k+2}$. Therefore, $\gamma_{r}^{t}\left(C_{4 k+2} \times C_{4 k+2}\right) \leq|D|=4(2 k+1)(l+1)=$
$4(2 k+1)\left(\frac{k-1}{2}+1\right)=(4 k+2)(k+1)$. Moreover, by Lemma 3.10 and Theorem 3.11, we have

$$
\begin{aligned}
\gamma_{r}^{t}\left(C_{4 k+2} \times C_{4 k+2}\right) & \geq \gamma_{t}\left(C_{4 k+2} \times C_{4 k+2}\right)=4 \gamma_{t}\left(C_{2 k+1} \times C_{2 k+1}\right) \\
& =4(2 k+1)(l+1)=4(2 k+1)\left(\frac{k-1}{2}+1\right) \\
& =(4 k+2)(k+1) .
\end{aligned}
$$

Hence, $\gamma_{r}^{t}\left(C_{4 k+2} \times C_{4 k+2}\right)=(4 k+2)(k+1)$ if k is odd.

Figure 4. A total dominating set of $C_{6} \times C_{6}$.
Theorem 3.13. Let n and m be odd and $n>m$. Then $\gamma_{r}^{t}\left(C_{n} \times C_{m}\right)=$ $\left\lceil\frac{n \gamma_{t}\left(C_{m}\right)}{2}\right\rceil$.

Proof. Consider the following two possibilities.
Case 1. Suppose $m=4 k+3$. Let $T=\left\{T_{1}, T_{2}, \ldots, T_{m}\right\}$ be the T-sequence of $C_{m} \times C_{m}$ defined in the proof of Case 1 of Theorem 3.12. It is obvious that $\sum_{i=1}^{m}\left|T_{i}\right|=m \cdot(k+1)=\left\lceil\frac{m \gamma_{t}\left(C_{m}\right)}{2}\right\rceil$.

From the construction of the T-sequence, we have $\left|T_{1}\right|+\left|T_{2}\right|=\gamma_{t}\left(C_{m}\right)$. We insert $n-m$ terms between T_{1} and T_{2} which are alternately equal to T_{2} and T_{1}. We obtain a sequence

$$
S=\left\{S_{1}, \ldots, S_{n}\right\}=\left\{T_{1}, T_{2}, T_{1}, T_{2}, \ldots, T_{1}, T_{2}, T_{3}, T_{4}, \ldots, T_{m}\right\}
$$

of length n. Thus $D=\left\{(i, j) \mid j \in S_{i}, 1 \leq i \leq n\right\}$ is a total dominating set for $C_{n} \times C_{m}$. Similarly as in Case 1 of Theorem 3.12, D is a total restrained dominating set for $C_{n} \times C_{m}$. As a consequence, $\gamma_{r}^{t}\left(C_{n} \times C_{m}\right) \leq|D|=\left\lceil\frac{n \gamma_{t}\left(C_{m}\right)}{2}\right\rceil$.

Case 2. Suppose $m=4 k+1$. Let $T=\left\{T_{1}, T_{2}, \ldots, T_{m}\right\}$ be the T-sequence for $C_{m} \times C_{m}$ defined in the proof of Case 2 of Theorem 3.12. Similarly to the proof of Case 1, we have $\gamma_{r}^{t}\left(C_{n} \times C_{m}\right) \leq|D|=\left\lceil\frac{n \gamma_{t}\left(C_{m}\right)}{2}\right\rceil$. The result follows from (2).

Theorem 3.14. Let n and m be even and $n>m$. Then
(A) $\gamma_{r}^{t}\left(C_{n} \times C_{m}\right)=\frac{n}{2} \gamma_{t}\left(C_{m}\right)$ if $m=4 k$.
(B) $\gamma_{r}^{t}\left(C_{n} \times C_{m}\right)=\frac{n}{2} \gamma_{t}\left(C_{m}\right)$ if $m=4 k+2$ for odd k.
(C) $\frac{n}{2} \gamma_{t}\left(C_{m}\right) \leq \gamma_{r}^{t}\left(C_{n} \times C_{m}\right) \leq \frac{n}{2} \gamma_{t}\left(C_{m}\right)+2$ if $m=4 k+2$ for even k.

Proof. Consider the following three cases.
(A) Suppose $m=4 k$. Let $T=\left\{T_{1}, T_{2}, \ldots, T_{m}\right\}$ be a T-sequence for $C_{m} \times C_{m}$, where
(a) $T_{1}=\{4 j+1 \mid 0 \leq j \leq k-1\}$ and
(b) $T_{i+1}=\left\{j+1(\bmod 4 k) \mid j \in T_{i}\right\}, 1 \leq i \leq 4 k-1$.

Similarly as in Case 1 of Theorem 3.13, we have $\gamma_{r}^{t}\left(C_{n} \times C_{m}\right) \leq \frac{n}{2} \gamma_{t}\left(C_{m}\right)$ and the result follows from (2).
(B) Suppose $m=4 k+2$ for odd k. Let $T=\left\{T_{1}, T_{2}, \ldots, T_{m}\right\}$ be the T sequence of $C_{m} \times C_{m}$ defined in the proof of Case 4.2 of Theorem 3.12. Similarly as in Case 1 of Theorem 3.13, we have $\gamma_{r}^{t}\left(C_{n} \times C_{m}\right) \leq \frac{n}{2} \gamma_{t}\left(C_{m}\right)$ and the result follows from (2).
(C) Suppose $m=4 k+2$ for even k. Let $T=\left\{T_{1}, T_{2}, \ldots, T_{m}\right\}$ be the T sequence of $C_{m} \times C_{m}$ defined in the proof of Case 4.1 of Theorem 3.12. Similarly as in Case 1 of Theorem 3.13, we have

$$
\begin{aligned}
\gamma_{r}^{t}\left(C_{n} \times C_{m}\right) & \leq \frac{n-(4 k+2)}{2} \cdot \gamma_{t}\left(C_{4 k+2}\right)+\left(4 k^{2}+6 k+4\right) \\
& =[n-(4 k+2)](k+1)+\left(4 k^{2}+6 k+4\right) \\
& =n(k+1)+2=\frac{n}{2} \gamma_{t}\left(C_{m}\right)+2
\end{aligned}
$$

The result follows from (2).
We conclude this section with an upper bound for $\gamma_{r}^{t}\left(G \times K_{n}\right)$ which is in terms of the total 2 -tuple domination number.
$S \subseteq V$ is a k-tuple dominating set of G if for every vertex $v \in V,|N[v] \cap S| \geq$ k. The k-tuple domination number $\gamma^{k}(G)$ is the minimum cardinality of a k-tuple dominating set of $G . S \subseteq V$ is a total k-tuple dominating set of G if for every vertex $v \in V,|N(v) \cap S| \geq k$, that is, v is dominated by at least k neighbors in S. The total k-tuple domination number $\gamma_{t}^{k}(G)$ is the minimum cardinality of a total k-tuple dominating set of G.

Theorem 3.15. Let G be a graph with $\delta(G) \geq 2$ and let $n \geq \max \left\{3, \gamma_{t}^{2}(G)\right\}$. Then $\gamma_{r}^{t}\left(G \times K_{n}\right) \leq \gamma_{t}^{2}(G)$.

Proof. Let $S=\left\{s_{1}, \ldots, s_{k}\right\}$ be a minimum total 2-tuple dominating set of G and let $V\left(K_{n}\right)=\left\{v_{1}, \ldots, v_{n}\right\}$. We claim that $T=\left\{\left(s_{i}, v_{i}\right) \mid 1 \leq i \leq k\right\}$ is a minimum total restrained dominating set of $G \times K_{n}$. Note that T is well-defined since $n \geq \gamma_{t}^{2}(G)=k$. Let $\left(x, v_{l}\right)$ be an arbitrary vertex of $G \times K_{n}$ and assume that x is dominated by vertices s_{i} and s_{j}. Then s_{i}, s_{j} and x are distinct vertices. Suppose without loss of generality that $l \neq i$. Then $\left(x, v_{l}\right)$ is dominated by $\left(s_{i}, v_{i}\right)$ and hence T is a total dominating set of $G \times K_{n}$. Suppose $\left(x, v_{l}\right) \in V\left(G \times K_{n}\right) \backslash T$. Since $n \geq 3$, there is a vertex $v_{h} \in V\left(K_{n}\right) \backslash\left\{v_{i}, v_{l}\right\}$. Thus $\left(x, v_{l}\right)$ is dominated by $\left(s_{i}, v_{h}\right) \in V\left(G \times K_{n}\right) \backslash T$ and hence T is a total restrained dominating set of $G \times K_{n}$. We conclude that $\gamma_{r}^{t}\left(G \times K_{n}\right) \leq \gamma_{t}^{2}(G)$.

Theorem 3.6 is a direct consequence of Theorem 3.15 and we give another proof of it.
Theorem 3.16. $\gamma_{r}^{t}\left(C_{n} \times K_{m}\right)=n$ for $n, m \geq 3$.
Proof. Clearly, $\gamma_{t}^{2}\left(C_{n}\right)=n$, hence $\gamma_{r}^{t}\left(C_{n} \times K_{m}\right) \leq n$ by Theorem 3.15. On the other hand, the lower bound directly follows from Theorem 2.5.

References

[1] R. Chérifi, S. Gravier, X. Lagraula, C. Payan and I. Zigham, Domination number of cross products of paths, Discrete Appl. Math. 94 (1999) 101-139. doi:10.1016/S0166-218X(99)00016-5
[2] X.G. Chen, W.C. Shiu and H.Y. Chen, Trees with equal total domination and total restrained domination numbers, Discuss. Math. Graph. Theory 28 (2008) 59-66. doi:10.7151/dmgt. 1391
[3] M. El-Zahar, S. Gravier and A. Klobucar, On the total domination number of cross products of graphs, Discrete Math. 308 (2008) 2025-2029. doi:10.1016/j.disc.2007.04.034
[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[5] D.X. Ma, X.G. Chen and L. Sun, On total restrained domination in graphs, Czechoslovak Math. J. 55 (2005) 165-173.
doi:10.1007/s10587-005-0012-2
[6] D.F. Rall, Total domination in categorical products of graphs, Discuss. Math. Graph Theory 25 (2005) 35-44. doi:10.7151/dmgt. 1257
[7] M. Zwierzchowski, Total domination number of the conjunction of graphs, Discrete Math. 307 (2007) 1016-1020.
doi:10.1016/j.disc.2005.11.047

[^0]: ${ }^{1}$ This work is supported by FRG, Hong Kong Baptist University.

