Discussiones Mathematicae Graph Theory 32 (2012) 807–812 doi:10.7151/dmgt.1631

Note

CONVEX UNIVERSAL FIXERS

Magdalena Lemańska

Gdańsk University of Technology Narutowicza 11/12 80-233 Gdańsk, Poland

e-mail: magda@mif.pg.gda.pl

AND

RITA ZUAZUA

Departamento de Matematicas, Facultad de Ciencias UNAM, Mexico

e-mail: ritazuazua@gmail.com

Abstract

In [1] Burger and Mynhardt introduced the idea of universal fixers. Let G = (V, E) be a graph with n vertices and G' a copy of G. For a bijective function $\pi: V(G) \to V(G')$, define the prism πG of G as follows: $V(\pi G) = V(G) \cup V(G')$ and $E(\pi G) = E(G) \cup E(G') \cup M_{\pi}$, where $M_{\pi} = \{u\pi(u) \mid u \in V(G)\}$. Let $\gamma(G)$ be the domination number of G. If $\gamma(\pi G) = \gamma(G)$ for any bijective function π , then G is called a universal fixer. In [9] it is conjectured that the only universal fixers are the edgeless graphs $\overline{K_n}$.

In this work we generalize the concept of universal fixers to the convex universal fixers. In the second section we give a characterization for convex universal fixers (Theorem 6) and finally, we give an in infinite family of convex universal fixers for an arbitrary natural number $n \geq 10$.

Keywords: convex sets, dominating sets, universal fixers.

2010 Mathematics Subject Classification: 05C69, 05C99.

1. Introduction

Let G = (V, E) be an undirected graph. The neighborhood of a vertex $v \in V$ in G is the set $N_G(v)$ of all vertices adjacent to v in G. For a set $X \subseteq V$, the

open neighborhood $N_G(X)$ is defined as $\bigcup_{v \in X} N_G(v)$ and the closed neighborhood $N_G[X] = N_G(X) \cup X$.

A set $D \subseteq V$ is a dominating set of G if $N_G[D] = V$. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set in G.

The distance $d_G(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest uv-path in G. A uv-path of length $d_G(u, v)$ is called uv-geodesic. A set $X \subseteq V$ is a convex set of G if the vertices from all abgeodesic belong to X for every two vertices $a, b \in X$. A set $X \subseteq V$ is a convex dominating set if X is convex and dominating. The convex domination number $\gamma_{con}(G)$ of a graph G is equal to the minimum cardinality of a convex dominating set. The convex domination number was defined by Jerzy Topp from the Gdańsk University of Technology in a verbal communication with the first author. In [5], the first results concerning this topic were published and developed in [6] and [7].

Definition 1. Let G = (V, E) be a graph and G' a copy of G. For a bijective function $\pi : V(G) \to V(G')$, define the prism πG of G as follows: $V(\pi G) = V(G) \cup V(G')$ and $E(\pi G) = E(G) \cup E(G') \cup M_{\pi}$, where $M_{\pi} = \{u\pi(u) \mid u \in V(G)\}$.

Notice that M_{π} is a perfect matching of πG . It is clear that every permutation π of V(G) defines a bijective function from V(G) to V(G'), so we will indistinctly use the matching M_{π} , the permutation π of V(G) or the associated bijection $\pi: V(G) \to V(G')$.

The graph G is called a universal fixer if $\gamma(\pi G) = \gamma(G)$ for all permutations π of V(G).

The universal fixers were studied in [9] for several classes of graphs and it was conjectured that the edgeless graphs $\overline{K_n}$ are the only universal fixers. In [2], [3] and [4] it is shown that regular graphs, claw-free graphs and bipartite graphs are not universal fixers. This concept was also generalized for the other types of domination; in [10] the idea of paired domination in prisms was introduced.

We generalize the above definition for the convex domination: if $\gamma_{con}(\pi G) = \gamma_{con}(G)$ for all permutation π of V(G), then we say that G is a convex universal fixer.

2. Convex Universal Fixers

From now on we assume that the graph G = (V, E) is a connected undirected graph with n vertices. For $x \in V(G)$, the copy of x in V(G') is denoted by x'. Recall that the diameter of a graph G, denoted by diam(G), is defined to be the maximum distance between any two vertices $x, y \in V(G)$.

Proposition 2. Let G be a connected undirected graph.

- (1) If $diam(G) \leq 2$, then both V(G) and V(G') are convex dominating sets of πG for any permutation π .
- (2) If $diam(G) \geq 3$, then there exist permutations π_1 and π_2 such that V(G) is not a convex dominating set of π_1G and V(G') is not a convex dominating set of π_2G .
- **Proof.** (1) It is clear that V(G) and V(G') are dominating sets of πG . Let $x, y \in V(G)$. Since $d_{\pi G}(x, y) \leq d_{G}(x, y) \leq 2$, any xy-geodesic is contained in G, so V(G) is a convex dominating set of πG . In a similar way, we can prove that V(G') is a convex dominating set of πG .
- (2) Let $x, y \in V(G)$ be such that $d_G(x, y) \geq 3$. Let $wz \in E(G')$ and consider a permutation π_1 such that $\pi_1(x) = w$ and $\pi_1(y) = z$. Then xwzy is an xy-geodesic in π_1G with $z, w \notin V(G)$. In a similar way, we can prove that there exists a permutation π_2 such that V(G') is not a convex dominating set in π_2G .

From the above proposition we have the following observation.

Observation 3. For any permutation π , $\gamma_{con}(\pi G) \leq n$ whenever $diam(G) \leq 2$.

If D is a convex dominating set of πG , we define D_1 as $D \cap V(G)$ and D_2 as $D \cap V(G')$. Moreover, we write $D_1^c = V(G) - D_1$ and $D_2^c = V(G') - D_2$.

Proposition 4. Let D be a convex dominating set of πG .

- (1) If $\gamma_{con}(\pi G) < n$, then $D_1 \neq \emptyset$ and $D_2 \neq \emptyset$.
- (2) If $D_1 \neq \emptyset$ and $D_2 \neq \emptyset$, then there exists at least one edge $x\pi(x) \in M_{\pi}$ with $x \in D_1$ and $\pi(x) \in D_2$.
- **Proof.** (1) Suppose that $D_1 = \emptyset$. Then $D = D_2 \subset V(G')$. Since |D| < n, V(G) is not dominated by D. Similarly, if $D_2 = \emptyset$, then V(G') is not dominated by D.
- (2) Let $x \in D_1$ and $\pi(y) \in D_2$. Since D is convex, any $x\pi(y)$ -geodesic should use the edge $x\pi(x)$ or the edge $y\pi(y)$.

Lemma 5. Suppose that $diam(G) \leq 2$. Let D be a minimum convex dominating set of πG . If $D = D_1 \cup D_2$ with $D_1 \neq \emptyset$ and $D_2 \neq \emptyset$, then we have the following statements:

- (1) if $\pi(D_1) \subseteq D_2$, then D_2 is a convex dominating set of G', and
- (2) if $\pi^{-1}(D_2) \subseteq D_1$, then D_1 is a convex dominating set of G.

Proof. Assume that $\pi(D_1) \subseteq D_2$. Then, since D is a dominating set of πG , every vertex of D_2^c has a neighbor in D_2 . Moreover, $diam(G') \leq 2$ and $d_{\pi G}(a,b) \leq 2$ for every two vertices $a, b \in D_2$, so the vertices from all ab-geodesics belong to D_2 , because D is convex. Thus D_2 is a convex dominating set of G'. Similarly, we can prove the second part of the lemma.

. _ Our main result is the following.

Theorem 6. Let G be a connected undirected graph. If $\gamma_{con}(G) = n$ and $diam(G) \leq 2$, then $\gamma_{con}(\pi G) = n$, that is, G is a convex universal fixer.

Proof. By Observation 3, if $diam(G) \leq 2$, then $\gamma_{con}(G) \leq n$ for all permutations π . By contradiction, suppose that $\gamma_{con}(G) = n$ and $\gamma_{con}(\pi G) < n$. If diam(G) = 1, then $\gamma_{con}(G) < n$, so we can assume diam(G) = 2.

Let $D = D_1 \cup D_2$ be a minimum convex dominating set of πG with |D| < n. From the first part of Proposition 4, we have that $D_1 \neq \emptyset$ and $D_2 \neq \emptyset$. In order to have a partition of $V(\pi G)$, we define the following subsets of vertices:

$$D_1^+ = \{ u \in D_1 | \pi(u) \in D_2 \}, \quad D_2^+ = \{ u' \in D_2 | \pi^{-1}(u') \in D_1 \} = \pi(D_1^+),$$

$$D_1^- = \{ u \in D_1 | \pi(u) \notin D_2 \}, \quad D_2^- = \{ u' \in D_2 | \pi^{-1}(u') \notin D_1 \},$$

$$E_1 = \pi^{-1}(D_2^-), \quad E_2 = \pi(D_1^-),$$

$$F_1 = V(G) - D_1 - E_1 \quad \text{and} \quad F_2 = \pi(F_1).$$

From the second part of Proposition 4, we have that $D_1^+ \neq \emptyset$ and $D_2^+ \neq \emptyset$. If $\pi(D_1) \subseteq D_2$, then by Lemma 5, the set D_2 is a convex dominating set of G', which is a contradiction since $\gamma_{con}(G') = n$. Therefore, $D_1^- \neq \emptyset$. In a similar way, $D_2^- \neq \emptyset$. In consequence $E_1 \neq \emptyset$ and $E_2 \neq \emptyset$. Since |D| < n, $|D_1^+ \cup D_1^- \cup D_2^+ \cup D_2^-| < n$ and $|E_1 \cup E_2| = |D_1^- \cup D_2^-| < n$. Therefore, F_1 and F_2 are nonempty.

We claim that there are no edges between E_1 and D_1 . Suppose $x \in D_1, y \in E_1$ and $xy \in E(G)$. Then $d_{\pi G}(x, \pi(y)) = 2$, and $x, \pi(y) \in D$ implies that $y \in D_1$, which leads us to a contradiction.

Let x be a vertex in D_1^- and $y \in E_1$. Since diam(G) = 2, $d_G(x, y) = 2$ and there exists a vertex $z \in F_1$ such that $xz \in E(G)$ and $yz \in E(G)$.

If $d_{\pi G}(x, \pi(y)) \geq 3$, then $xzy\pi(y)$ is an $x\pi(y)$ -geodesic, which is not possible, since D is a convex dominating set of πG and $y, z \notin D$. Thus $d_{\pi G}(x, \pi(y)) = 2$. But then there exists a vertex $w \in D$ such that w is a common neighbor of x and $\pi(y)$, a contradiction. Therefore, $\gamma_{con}(\pi G) = n$.

3. An Infinite Family of Convex Universal Fixers

Now we show that for an arbitrarily large n, there is a graph G with n vertices such that G is a convex universal fixer. The following family \mathcal{F} of graphs was defined in [8].

Let G_1 be the cycle of order five, $C_5^1 = (v_{1,1}, v_{1,2}, v_{1,3}, v_{1,4}, v_{1,5}, v_{1,1})$. For $i \geq 2$, the graph G_i is obtained recursively from G_{i-1} by adding a cycle graph $C_5^i = (v_{i,1}, v_{i,2}, v_{i,3}, v_{i,4}, v_{i,5}, v_{i,1})$ and for every vertex $v_{i,j}, j \in \{1, \dots, 5\}$ of the

cycle C_5^i we add edges $v_{i,j}v_{l,j-1}$ and $v_{i,j}v_{l,j+1}$ with $l \in \{1, \dots, i-1\}$. The sums j-1, j+1 are done modulo five.

The authors denoted by \mathcal{F} the family of graphs G obtained by adding to the graph G_i , $t \geq 2$ vertices u_1, \ldots, u_t and edges $u_k v_{i,j}$, with $k \in \{1, \ldots, t\}$ and $j \in \{1, \ldots, 5\}$.

Figure 1. A graph belonging to the family \mathcal{F} with $n=12,\,t=2$ and i=2.

The following result was proved in [8].

Theorem 7. If G belongs to the family \mathcal{F} , then $\gamma_{con}(G) = n$ and diam(G) = 2.

From the above theorem and our main result we can conclude the following

Corollary 8. For every natural number $n \ge 10$, there is a graph G with n vertices such that G is a convex universal fixer.

4. Acknowledgments and Conjectures

We conclude this paper with the following two conjectures.

Conjecture 9. If G is a convex universal fixer, then $\gamma_{con}(G) = n$ and diam(G) = 2.

Conjecture 10. If G is a convex universal fixer, then the only minimum convex dominating sets of πG are V(G) and V(G').

Acknowledgements

We thank Ilán Goldfeder, Bernardo Llano and the anonymous referees for useful comments. The authors thank the financial support received from Grant UNAM-PAPIIT IN-111309 and by Grant SEP-CONACyT 83856-E.

References

- A.P. Burger, C.M. Mynhardt and W.D. Weakley, On the domination number of prisms of graphs, Discuss. Math. Graph Theory 24 (2004) 303–318. doi:10.7151/dmgt.1233
- [2] A.P. Burger and C.M. Mynhardt, Regular graphs are not universal fixers, Discrete Math. 310 (2010) 364–368.
 doi:10.1016/j.disc.2008.09.016
- [3] E.J. Cockayne, R.G. Gibson and C.M. Mynhardt, Claw-free graphs are not universal fixers, Discrete Math. 309 (2009) 128–133. doi:10.1016/j.disc.2007.12.053
- [4] R.G. Gibson, Bipartite graphs are not universal fixers, Discrete Math. 308 (2008) 5937–5943.
 doi:10.1016/j.disc.2007.11.006
- [5] M. Lemańska, Weakly convex and convex domination numbers, Opuscula Math. 24 (2004) 181–188.
- [6] J. Cyman, M. Lemańska and J. Raczek, Graphs with convex domination number close to their order, Discuss. Math. Graph Theory 26 (2006) 307–316. doi:10.7151/dmgt.1322
- J. Raczek and M. Lemańska, A note of the weakly convex and convex domination numbers of a torus, Discrete Appl. Math. 158 (2010) 1708–1713. doi:10.1016/j.dam.2010.06.001
- [8] M. Lemańska, I. González Yero and J.A. Rodríguez-Velázquez, *Nordhaus-Gaddum results for a convex domination number of a graph*, Acta Math. Hungar., to appear (2011).
- [9] C.M. Mynhardt and Z. Xu, Domination in Prisms of Graphs: Universal Fixers, Util. Math. 78 (2009) 185–201.
- [10] C.M. Mynhardt and M. Schurch, Paired domination in prisms of graphs, Discuss. Math. Graph Theory 31 (2011) 5–23. doi:10.7151/dmgt.1526

Received 25 August 2011 Revised 14 November 2011 Accepted 18 November 2011