Note

CONVEX UNIVERSAL FIXERS

Magdalena Lemańska
Gdańsk University of Technology
Narutowicza 11/12
80-233 Gdańsk, Poland
e-mail: magda@mif.pg.gda.pl
AND
Rita Zuazua
Departamento de Matematicas, Facultad de Ciencias
UNAM, Mexico
e-mail: ritazuazua@gmail.com

Abstract

In [1] Burger and Mynhardt introduced the idea of universal fixers. Let $G=(V, E)$ be a graph with n vertices and G^{\prime} a copy of G. For a bijective function $\pi: V(G) \rightarrow V\left(G^{\prime}\right)$, define the prism πG of G as follows: $V(\pi G)=$ $V(G) \cup V\left(G^{\prime}\right)$ and $E(\pi G)=E(G) \cup E\left(G^{\prime}\right) \cup M_{\pi}$, where $M_{\pi}=\{u \pi(u) \mid u \in$ $V(G)\}$. Let $\gamma(G)$ be the domination number of G. If $\gamma(\pi G)=\gamma(G)$ for any bijective function π, then G is called a universal fixer. In [9] it is conjectured that the only universal fixers are the edgeless graphs $\overline{K_{n}}$.

In this work we generalize the concept of universal fixers to the convex universal fixers. In the second section we give a characterization for convex universal fixers (Theorem 6) and finally, we give an in infinite family of convex universal fixers for an arbitrary natural number $n \geq 10$.

Keywords: convex sets, dominating sets, universal fixers.
2010 Mathematics Subject Classification: 05C69, 05C99.

1. Introduction

Let $G=(V, E)$ be an undirected graph. The neighborhood of a vertex $v \in V$ in G is the set $N_{G}(v)$ of all vertices adjacent to v in G. For a set $X \subseteq V$, the
open neighborhood $N_{G}(X)$ is defined as $\bigcup_{v \in X} N_{G}(v)$ and the closed neighborhood $N_{G}[X]=N_{G}(X) \cup X$.

A set $D \subseteq V$ is a dominating set of G if $N_{G}[D]=V$. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set in G.

The distance $d_{G}(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u v$-path in G. A $u v$-path of length $d_{G}(u, v)$ is called $u v-$ geodesic. A set $X \subseteq V$ is a convex set of G if the vertices from all $a b$ geodesic belong to X for every two vertices $a, b \in X$. A set $X \subseteq V$ is a convex dominating set if X is convex and dominating. The convex domination number $\gamma_{c o n}(G)$ of a graph G is equal to the minimum cardinality of a convex dominating set. The convex domination number was defined by Jerzy Topp from the Gdańsk University of Technology in a verbal communication with the first author. In [5], the first results concerning this topic were published and developed in [6] and [7].

Definition 1. Let $G=(V, E)$ be a graph and G^{\prime} a copy of G. For a bijective function $\pi: V(G) \rightarrow V\left(G^{\prime}\right)$, define the prism πG of G as follows: $V(\pi G)=$ $V(G) \cup V\left(G^{\prime}\right)$ and $E(\pi G)=E(G) \cup E\left(G^{\prime}\right) \cup M_{\pi}$, where $M_{\pi}=\{u \pi(u) \mid u \in V(G)\}$.

Notice that M_{π} is a perfect matching of πG. It is clear that every permutation π of $V(G)$ defines a bijective function from $V(G)$ to $V\left(G^{\prime}\right)$, so we will indistinctly use the matching M_{π}, the permutation π of $V(G)$ or the associated bijection $\pi: V(G) \rightarrow V\left(G^{\prime}\right)$.

The graph G is called a universal fixer if $\gamma(\pi G)=\gamma(G)$ for all permutations π of $V(G)$.

The universal fixers were studied in [9] for several classes of graphs and it was conjectured that the edgeless graphs $\overline{K_{n}}$ are the only universal fixers. In [2], [3] and [4] it is shown that regular graphs, claw-free graphs and bipartite graphs are not universal fixers. This concept was also generalized for the other types of domination; in [10] the idea of paired domination in prisms was introduced.

We generalize the above definition for the convex domination: if $\gamma_{\text {con }}(\pi G)=$ $\gamma_{c o n}(G)$ for all permutation π of $V(G)$,then we say that G is a convex universal fixer.

2. Convex Universal Fixers

From now on we assume that the graph $G=(V, E)$ is a connected undirected graph with n vertices. For $x \in V(G)$, the copy of x in $V\left(G^{\prime}\right)$ is denoted by x^{\prime}. Recall that the diameter of a graph G, denoted by $\operatorname{diam}(G)$, is defined to be the maximum distance between any two vertices $x, y \in V(G)$.

Proposition 2. Let G be a connected undirected graph.
(1) If $\operatorname{diam}(G) \leq 2$, then both $V(G)$ and $V\left(G^{\prime}\right)$ are convex dominating sets of πG for any permutation π.
(2) If $\operatorname{diam}(G) \geq 3$, then there exist permutations π_{1} and π_{2} such that $V(G)$ is not a convex dominating set of $\pi_{1} G$ and $V\left(G^{\prime}\right)$ is not a convex dominating set of $\pi_{2} G$.
Proof. (1) It is clear that $V(G)$ and $V\left(G^{\prime}\right)$ are dominating sets of πG. Let $x, y \in V(G)$. Since $d_{\pi G}(x, y) \leq d_{G}(x, y) \leq 2$, any $x y$-geodesic is contained in G, so $V(G)$ is a convex dominating set of πG. In a similar way, we can prove that $V\left(G^{\prime}\right)$ is a convex dominating set of πG.
(2) Let $x, y \in V(G)$ be such that $d_{G}(x, y) \geq 3$. Let $w z \in E\left(G^{\prime}\right)$ and consider a permutation π_{1} such that $\pi_{1}(x)=w$ and $\pi_{1}(y)=z$. Then $x w z y$ is an $x y$ geodesic in $\pi_{1} G$ with $z, w \notin V(G)$. In a similar way, we can prove that there exists a permutation π_{2} such that $V\left(G^{\prime}\right)$ is not a convex dominating set in $\pi_{2} G$.

From the above proposition we have the following observation.
Observation 3. For any permutation $\pi, \gamma_{c o n}(\pi G) \leq n$ whenever $\operatorname{diam}(G) \leq 2$.
If D is a convex dominating set of πG, we define D_{1} as $D \cap V(G)$ and D_{2} as $D \cap V\left(G^{\prime}\right)$. Moreover, we write $D_{1}^{c}=V(G)-D_{1}$ and $D_{2}^{c}=V\left(G^{\prime}\right)-D_{2}$.
Proposition 4. Let D be a convex dominating set of πG.
(1) If $\gamma_{\text {con }}(\pi G)<n$, then $D_{1} \neq \emptyset$ and $D_{2} \neq \emptyset$.
(2) If $D_{1} \neq \emptyset$ and $D_{2} \neq \emptyset$, then there exists at least one edge $x \pi(x) \in M_{\pi}$ with $x \in D_{1}$ and $\pi(x) \in D_{2}$.

Proof. (1) Suppose that $D_{1}=\emptyset$. Then $D=D_{2} \subset V\left(G^{\prime}\right)$. Since $|D|<n, V(G)$ is not dominated by D. Similarly, if $D_{2}=\emptyset$, then $V\left(G^{\prime}\right)$ is not dominated by D.
(2) Let $x \in D_{1}$ and $\pi(y) \in D_{2}$. Since D is convex, any $x \pi(y)$-geodesic should use the edge $x \pi(x)$ or the edge $y \pi(y)$.

Lemma 5. Suppose that $\operatorname{diam}(G) \leq 2$. Let D be a minimum convex dominating set of πG. If $D=D_{1} \cup D_{2}$ with $D_{1} \neq \emptyset$ and $D_{2} \neq \emptyset$, then we have the following statements:
(1) if $\pi\left(D_{1}\right) \subseteq D_{2}$, then D_{2} is a convex dominating set of G^{\prime}, and
(2) if $\pi^{-1}\left(D_{2}\right) \subseteq D_{1}$, then D_{1} is a convex dominating set of G.

Proof. Assume that $\pi\left(D_{1}\right) \subseteq D_{2}$. Then, since D is a dominating set of πG, every vertex of D_{2}^{c} has a neighbor in D_{2}. Moreover, $\operatorname{diam}\left(G^{\prime}\right) \leq 2$ and $d_{\pi G}(a, b) \leq 2$ for every two vertices $a, b \in D_{2}$, so the vertices from all $a b$-geodesics belong to D_{2}, because D is convex. Thus D_{2} is a convex dominating set of G^{\prime}. Similarly, we can prove the second part of the lemma.

Our main result is the following.
Theorem 6. Let G be a connected undirected graph. If $\gamma_{c o n}(G)=n$ and $\operatorname{diam}(G) \leq 2$, then $\gamma_{c o n}(\pi G)=n$, that is, G is a convex universal fixer.

Proof. By Observation 3, if $\operatorname{diam}(G) \leq 2$, then $\gamma_{c o n}(G) \leq n$ for all permutations π. By contradiction, suppose that $\gamma_{c o n}(G)=n$ and $\gamma_{c o n}(\pi G)<n$. If $\operatorname{diam}(G)=$ 1 , then $\gamma_{c o n}(G)<n$, so we can assume $\operatorname{diam}(G)=2$.

Let $D=D_{1} \cup D_{2}$ be a minimum convex dominating set of πG with $|D|<n$. From the first part of Proposition 4, we have that $D_{1} \neq \emptyset$ and $D_{2} \neq \emptyset$. In order to have a partition of $V(\pi G)$, we define the following subsets of vertices:

$$
\begin{gathered}
D_{1}^{+}=\left\{u \in D_{1} \mid \pi(u) \in D_{2}\right\}, \quad D_{2}^{+}=\left\{u^{\prime} \in D_{2} \mid \pi^{-1}\left(u^{\prime}\right) \in D_{1}\right\}=\pi\left(D_{1}^{+}\right), \\
D_{1}^{-}=\left\{u \in D_{1} \mid \pi(u) \notin D_{2}\right\}, \quad D_{2}^{-}=\left\{u^{\prime} \in D_{2} \mid \pi^{-1}\left(u^{\prime}\right) \notin D_{1}\right\}, \\
E_{1}=\pi^{-1}\left(D_{2}^{-}\right), \quad E_{2}=\pi\left(D_{1}^{-}\right), \\
F_{1}=V(G)-D_{1}-E_{1} \text { and } F_{2}=\pi\left(F_{1}\right) .
\end{gathered}
$$

From the second part of Proposition 4, we have that $D_{1}^{+} \neq \emptyset$ and $D_{2}^{+} \neq \emptyset$. If $\pi\left(D_{1}\right) \subseteq D_{2}$, then by Lemma 5 , the set D_{2} is a convex dominating set of G^{\prime}, which is a contradiction since $\gamma_{\text {con }}\left(G^{\prime}\right)=n$. Therefore, $D_{1}^{-} \neq \emptyset$. In a similar way, $D_{2}^{-} \neq$ \emptyset. In consequence $E_{1} \neq \emptyset$ and $E_{2} \neq \emptyset$. Since $|D|<n,\left|D_{1}^{+} \cup D_{1}^{-} \cup D_{2}^{+} \cup D_{2}^{-}\right|<n$ and $\left|E_{1} \cup E_{2}\right|=\left|D_{1}^{-} \cup D_{2}^{-}\right|<n$. Therefore, F_{1} and F_{2} are nonempty.

We claim that there are no edges between E_{1} and D_{1}. Suppose $x \in D_{1}, y \in E_{1}$ and $x y \in E(G)$. Then $d_{\pi G}(x, \pi(y))=2$, and $x, \pi(y) \in D$ implies that $y \in D_{1}$, which leads us to a contradiction.

Let x be a vertex in D_{1}^{-}and $y \in E_{1}$. Since $\operatorname{diam}(G)=2, d_{G}(x, y)=2$ and there exists a vertex $z \in F_{1}$ such that $x z \in E(G)$ and $y z \in E(G)$.

If $d_{\pi G}(x, \pi(y)) \geq 3$, then $x z y \pi(y)$ is an $x \pi(y)$-geodesic, which is not possible, since D is a convex dominating set of πG and $y, z \notin D$. Thus $d_{\pi G}(x, \pi(y))=2$. But then there exists a vertex $w \in D$ such that w is a common neighbor of x and $\pi(y)$, a contradiction. Therefore, $\gamma_{c o n}(\pi G)=n$.

3. An Infinite Family of Convex Universal Fixers

Now we show that for an arbitrarily large n, there is a graph G with n vertices such that G is a convex universal fixer. The following family \mathcal{F} of graphs was defined in [8].

Let G_{1} be the cycle of order five, $C_{5}^{1}=\left(v_{1,1}, v_{1,2}, v_{1,3}, v_{1,4}, v_{1,5}, v_{1,1}\right)$. For $i \geq 2$, the graph G_{i} is obtained recursively from G_{i-1} by adding a cycle graph $C_{5}^{i}=\left(v_{i, 1}, v_{i, 2}, v_{i, 3}, v_{i, 4}, v_{i, 5}, v_{i, 1}\right)$ and for every vertex $v_{i, j}, j \in\{1, \cdots, 5\}$ of the
cycle C_{5}^{i} we add edges $v_{i, j} v_{l, j-1}$ and $v_{i, j} v_{l, j+1}$ with $l \in\{1, \cdots, i-1\}$. The sums $j-1, j+1$ are done modulo five.

The authors denoted by \mathcal{F} the family of graphs G obtained by adding to the graph $G_{i}, t \geq 2$ vertices u_{1}, \ldots, u_{t} and edges $u_{k} v_{i, j}$, with $k \in\{1, \ldots, t\}$ and $j \in\{1, \ldots, 5\}$.

Figure 1. A graph belonging to the family \mathcal{F} with $n=12, t=2$ and $i=2$.
The following result was proved in [8].
Theorem 7. If G belongs to the family \mathcal{F}, then $\gamma_{c o n}(G)=n$ and $\operatorname{diam}(G)=2$.
From the above theorem and our main result we can conclude the following
Corollary 8. For every natural number $n \geq 10$, there is a graph G with n vertices such that G is a convex universal fixer.

4. Acknowledgments and Conjectures

We conclude this paper with the following two conjectures.
Conjecture 9. If G is a convex universal fixer, then $\gamma_{c o n}(G)=n \operatorname{and} \operatorname{diam}(G)=$ 2.

Conjecture 10. If G is a convex universal fixer, then the only minimum convex dominating sets of πG are $V(G)$ and $V\left(G^{\prime}\right)$.

Acknowledgements

We thank Ilán Goldfeder, Bernardo Llano and the anonymous referees for useful comments. The authors thank the financial support received from Grant UNAMPAPIIT IN-111309 and by Grant SEP-CONACyT 83856-E.

References

[1] A.P. Burger, C.M. Mynhardt and W.D. Weakley, On the domination number of prisms of graphs, Discuss. Math. Graph Theory 24 (2004) 303-318. doi:10.7151/dmgt. 1233
[2] A.P. Burger and C.M. Mynhardt, Regular graphs are not universal fixers, Discrete Math. 310 (2010) 364-368. doi:10.1016/j.disc.2008.09.016
[3] E.J. Cockayne, R.G. Gibson and C.M. Mynhardt, Claw-free graphs are not universal fixers, Discrete Math. 309 (2009) 128-133. doi:10.1016/j.disc.2007.12.053
[4] R.G. Gibson, Bipartite graphs are not universal fixers, Discrete Math. 308 (2008) 5937-5943. doi:10.1016/j.disc.2007.11.006
[5] M. Lemańska, Weakly convex and convex domination numbers, Opuscula Math. 24 (2004) 181-188.
[6] J. Cyman, M. Lemańska and J. Raczek, Graphs with convex domination number close to their order, Discuss. Math. Graph Theory 26 (2006) 307-316.
doi:10.7151/dmgt. 1322
[7] J. Raczek and M. Lemańska, A note of the weakly convex and convex domination numbers of a torus, Discrete Appl. Math. 158 (2010) 1708-1713. doi:10.1016/j.dam.2010.06.001
[8] M. Lemańska, I. González Yero and J.A. Rodríguez-Velázquez, Nordhaus-Gaddum results for a convex domination number of a graph, Acta Math. Hungar., to appear (2011).
[9] C.M. Mynhardt and Z. Xu, Domination in Prisms of Graphs: Universal Fixers, Util. Math. 78 (2009) 185-201.
[10] C.M. Mynhardt and M. Schurch, Paired domination in prisms of graphs, Discuss. Math. Graph Theory 31 (2011) 5-23.
doi:10.7151/dmgt. 1526

