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Abstract

In [1] Burger and Mynhardt introduced the idea of universal fixers. Let
G = (V,E) be a graph with n vertices and G′ a copy of G. For a bijective
function π : V (G) → V (G′), define the prism πG of G as follows: V (πG) =
V (G)∪ V (G′) and E(πG) = E(G)∪E(G′)∪Mπ, where Mπ = {uπ(u) | u ∈
V (G)}. Let γ(G) be the domination number of G. If γ(πG) = γ(G) for any
bijective function π, then G is called a universal fixer. In [9] it is conjectured
that the only universal fixers are the edgeless graphs Kn.
In this work we generalize the concept of universal fixers to the convex

universal fixers. In the second section we give a characterization for convex
universal fixers (Theorem 6) and finally, we give an in infinite family of
convex universal fixers for an arbitrary natural number n ≥ 10.
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1. Introduction

Let G = (V,E) be an undirected graph. The neighborhood of a vertex v ∈ V
in G is the set NG(v) of all vertices adjacent to v in G. For a set X ⊆ V, the
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open neighborhood NG(X) is defined as
⋃

v∈X NG(v) and the closed neighborhood
NG[X] = NG(X) ∪X.

A set D ⊆ V is a dominating set of G if NG[D] = V . The domination number
of G, denoted by γ(G), is the minimum cardinality of a dominating set in G.

The distance dG(u, v) between two vertices u and v in a connected graph G
is the length of a shortest uv-path in G. A uv-path of length dG(u, v) is called
uv−geodesic. A set X ⊆ V is a convex set of G if the vertices from all ab-
geodesic belong to X for every two vertices a, b ∈ X. A set X ⊆ V is a convex
dominating set if X is convex and dominating. The convex domination number
γcon(G) of a graph G is equal to the minimum cardinality of a convex dominating
set. The convex domination number was defined by Jerzy Topp from the Gdańsk
University of Technology in a verbal communication with the first author. In [5],
the first results concerning this topic were published and developed in [6] and [7].

Definition 1. Let G = (V,E) be a graph and G′ a copy of G. For a bijective
function π : V (G) → V (G′), define the prism πG of G as follows: V (πG) =
V (G)∪V (G′) and E(πG) = E(G)∪E(G′)∪Mπ, whereMπ = {uπ(u) | u ∈ V (G)}.

Notice that Mπ is a perfect matching of πG. It is clear that every permutation π
of V (G) defines a bijective function from V (G) to V (G′), so we will indistinctly
use the matching Mπ, the permutation π of V (G) or the associated bijection
π : V (G) → V (G′).

The graph G is called a universal fixer if γ(πG) = γ(G) for all permutations
π of V (G).

The universal fixers were studied in [9] for several classes of graphs and it
was conjectured that the edgeless graphs Kn are the only universal fixers. In [2],
[3] and [4] it is shown that regular graphs, claw-free graphs and bipartite graphs
are not universal fixers. This concept was also generalized for the other types of
domination; in [10] the idea of paired domination in prisms was introduced.

We generalize the above definition for the convex domination: if γcon(πG) =
γcon(G) for all permutation π of V (G),then we say that G is a convex universal
fixer.

2. Convex Universal Fixers

From now on we assume that the graph G = (V,E) is a connected undirected
graph with n vertices. For x ∈ V (G), the copy of x in V (G′) is denoted by x′.
Recall that the diameter of a graph G, denoted by diam(G), is defined to be the
maximum distance between any two vertices x, y ∈ V (G).

Proposition 2. Let G be a connected undirected graph.
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(1) If diam(G) ≤ 2, then both V (G) and V (G′) are convex dominating sets of
πG for any permutation π.

(2) If diam(G) ≥ 3, then there exist permutations π1 and π2 such that V (G) is
not a convex dominating set of π1G and V (G′) is not a convex dominating
set of π2G.

Proof. (1) It is clear that V (G) and V (G′) are dominating sets of πG. Let
x, y ∈ V (G). Since dπG(x, y) ≤ dG(x, y) ≤ 2, any xy-geodesic is contained in G,
so V (G) is a convex dominating set of πG. In a similar way, we can prove that
V (G′) is a convex dominating set of πG.

(2) Let x, y ∈ V (G) be such that dG(x, y) ≥ 3. Let wz ∈ E(G′) and consider
a permutation π1 such that π1(x) = w and π1(y) = z. Then xwzy is an xy-
geodesic in π1G with z, w /∈ V (G). In a similar way, we can prove that there
exists a permutation π2 such that V (G′) is not a convex dominating set in π2G.

From the above proposition we have the following observation.

Observation 3. For any permutation π, γcon(πG) ≤ n whenever diam(G) ≤ 2.

If D is a convex dominating set of πG, we define D1 as D ∩ V (G) and D2 as
D ∩ V (G′). Moreover, we write Dc

1 = V (G)−D1 and D
c
2 = V (G′)−D2.

Proposition 4. Let D be a convex dominating set of πG.
(1) If γcon(πG) < n, then D1 6= ∅ and D2 6= ∅.

(2) If D1 6= ∅ and D2 6= ∅, then there exists at least one edge xπ(x) ∈ Mπ with
x ∈ D1 and π(x) ∈ D2.

Proof. (1) Suppose that D1 = ∅. Then D = D2 ⊂ V (G′). Since |D| < n, V (G)
is not dominated by D. Similarly, if D2 = ∅, then V (G′) is not dominated by D.

(2) Let x ∈ D1 and π(y) ∈ D2. Since D is convex, any xπ(y)-geodesic should
use the edge xπ(x) or the edge yπ(y).

Lemma 5. Suppose that diam(G) ≤ 2. Let D be a minimum convex dominating
set of πG. If D = D1 ∪D2 with D1 6= ∅ and D2 6= ∅, then we have the following
statements:

(1) if π(D1) ⊆ D2, then D2 is a convex dominating set of G
′, and

(2) if π−1(D2) ⊆ D1, then D1 is a convex dominating set of G.

Proof. Assume that π(D1) ⊆ D2. Then, sinceD is a dominating set of πG, every
vertex of Dc

2 has a neighbor in D2. Moreover, diam(G′) ≤ 2 and dπG(a, b) ≤ 2
for every two vertices a, b ∈ D2, so the vertices from all ab-geodesics belong to
D2, because D is convex. Thus D2 is a convex dominating set of G

′. Similarly,
we can prove the second part of the lemma.
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Our main result is the following.

Theorem 6. Let G be a connected undirected graph. If γcon (G) = n and
diam(G) ≤ 2, then γcon(πG) = n, that is, G is a convex universal fixer.

Proof. By Observation 3, if diam(G) ≤ 2, then γcon(G) ≤ n for all permutations
π. By contradiction, suppose that γcon(G) = n and γcon(πG) < n. If diam(G) =
1, then γcon(G) < n, so we can assume diam(G) = 2.

Let D = D1 ∪D2 be a minimum convex dominating set of πG with |D| < n.
From the first part of Proposition 4, we have that D1 6= ∅ and D2 6= ∅. In order
to have a partition of V (πG), we define the following subsets of vertices:

D+
1
= {u ∈ D1|π(u) ∈ D2}, D+

2
= {u′ ∈ D2|π

−1(u′) ∈ D1} = π(D+
1
),

D−

1
= {u ∈ D1|π(u) /∈ D2}, D−

2
= {u′ ∈ D2|π

−1(u′) /∈ D1},

E1 = π−1(D−

2
), E2 = π(D−

1
),

F1 = V (G)−D1 − E1 and F2 = π(F1).

From the second part of Proposition 4, we have that D+
1

6= ∅ and D+
2

6= ∅. If
π(D1) ⊆ D2,then by Lemma 5, the set D2 is a convex dominating set of G

′, which
is a contradiction since γcon(G

′) = n. Therefore, D−

1
6= ∅. In a similar way, D−

2
6=

∅. In consequence E1 6= ∅ and E2 6= ∅. Since |D| < n, |D+
1
∪D−

1
∪D+

2
∪D−

2
| < n

and |E1 ∪ E2| = |D−

1
∪D−

2
| < n. Therefore, F1 and F2 are nonempty.

We claim that there are no edges between E1 andD1. Suppose x ∈ D1, y ∈ E1

and xy ∈ E(G). Then dπG(x, π(y)) = 2, and x, π(y) ∈ D implies that y ∈ D1,
which leads us to a contradiction.

Let x be a vertex in D−

1
and y ∈ E1. Since diam(G) = 2, dG(x, y) = 2 and

there exists a vertex z ∈ F1 such that xz ∈ E(G) and yz ∈ E(G).

If dπG(x, π(y)) ≥ 3, then xzyπ(y) is an xπ(y)-geodesic, which is not possible,
since D is a convex dominating set of πG and y, z /∈ D. Thus dπG(x, π(y)) = 2.
But then there exists a vertex w ∈ D such that w is a common neighbor of x and
π(y), a contradiction. Therefore, γcon(πG) = n.

3. An Infinite Family of Convex Universal Fixers

Now we show that for an arbitrarily large n, there is a graph G with n vertices
such that G is a convex universal fixer. The following family F of graphs was
defined in [8].

Let G1 be the cycle of order five, C
1
5 = (v1,1, v1,2, v1,3, v1,4, v1,5, v1,1). For

i ≥ 2, the graph Gi is obtained recursively from Gi−1 by adding a cycle graph
Ci
5 = (vi,1, vi,2, vi,3, vi,4, vi,5, vi,1) and for every vertex vi,j , j ∈ {1, · · · , 5} of the
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cycle Ci
5 we add edges vi,jvl,j−1 and vi,jvl,j+1 with l ∈ {1, · · · , i − 1}. The sums

j − 1, j + 1 are done modulo five.
The authors denoted by F the family of graphs G obtained by adding to

the graph Gi, t ≥ 2 vertices u1, . . . , ut and edges ukvi,j , with k ∈ {1, . . . , t} and
j ∈ {1, . . . , 5}.

Figure 1. A graph belonging to the family F with n = 12, t = 2 and i = 2.

The following result was proved in [8].

Theorem 7. If G belongs to the family F, then γcon(G) = n and diam(G) = 2.

From the above theorem and our main result we can conclude the following

Corollary 8. For every natural number n ≥ 10, there is a graph G with n vertices
such that G is a convex universal fixer.

4. Acknowledgments and Conjectures

We conclude this paper with the following two conjectures.

Conjecture 9. If G is a convex universal fixer, then γcon(G) = n and diam(G) =
2.

Conjecture 10. If G is a convex universal fixer, then the only minimum convex
dominating sets of πG are V (G) and V (G′).
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