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Abstract

Let G be a simple 4-regular plane graph and let S be a decomposition
of G into edge-disjoint cycles. Suppose that every two adjacent edges on a
face belong to different cycles of S. Such a graph G arises as a superposition
of simple closed curves in the plane with tangencies disallowed. Studies of
coloring of graphs of this kind were originated by Grötzsch. Two 4-chromatic
graphs generated by circles in the plane were constructed by Koester in 1984
[10, 11, 12]. Until now, no other examples of such graphs were known. We
present fourteen new 4-chromatic graphs generated by circles in the plane.
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graph.
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1. Introduction

A simple graph is called k-chromatic if its chromatic number is equal to k. A
graph is edge (vertex)-4-critical if it is 4-chromatic and the removal of any edge
(vertex) decreases its chromatic number. Numerous results and problems related
to critical graphs can be found in [9]. Consider a graph G = G(S) formed by the
superposition of a set S of simple closed curves in the plane, no two of which are
tangent and no three of which meet at a point. Vertices and edges of G correspond
to crossing points and arcs of S, respectively (see, for example, Figure 1). Since,
in the plane, every two closed curves have an even number of crossing points, G
is a 4-regular planar graph with even number of vertices. Such 4-regular planar
graphs will be called Grötzsch-Sachs graphs. If all curves are circles, then such
graphs will be referred to as Koester graphs.

1This work is supported by Russian Foundation for Basic Research (project numbers 12-01-
00093 and 12-01-00631) and the Ministry of Education and Science of the Russian Federation
(contract number 14.740.11.0868).
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Figure 1. 4-chromatic and edge 4-critical Koester graphs.

The first discussions concerning coloring of graphs generated by curves in the
plane are due to Grötzsch. Vertex coloring of these graphs and related problems
were studied in [6, 7, 10, 11, 12, 14, 15]. The closed curves in S can be partitioned
into several parallel classes, where the curves in each class are pairwise disjoint.
The minimum number of parallel classes in S is called the class number of S.
Many results concerning Grötzsch-Sachs graphs were stated in terms of this pa-
rameter. Instead of the class number, we shall consider the characteristic graph

H = H(S) for a curve set S. Vertices of H(S) correspond to curves of S and two
vertices are adjacent if and only if the corresponding curves intersect, i.e. H(S)
is the intersection graph of the curves. The chromatic number of H(S) is equal
to the class number of S. The characteristic graph will be also denoted as H(G),
where G is generated by the curves of S.

Jaeger proved [6, 7] that if χ(H(G)) ≤ 3, then χ(G) ≤ 3. In 1984, Koester
constructed two 4-chromatic Grötzsch-Sachs graphs K20 and K40 generated by
sets of 5 and 7 circles in the plane, respectively (see Figure 1). SinceH(K20) ∼= K5

and H(K40) ∼= K7 − e, we have χ(H(K20)) = 5 and χ(H(K40)) = 6 [10, 11,
12]. Infinite families of 4-chromatic Grötzsch-Sachs graphs have been recently
presented in [1, 2, 3, 4]. These examples disproved Grötzsch-Sachs-Koester’s
conjecture which stated that if χ(H(G)) = 4 then χ(G) ≤ 3 [5, 8, 11, 12, 16].
The first Koester graph K20 has order 20 and it is neither vertex critical, nor
edge critical. The second graph K40 of order 40 is the first example of a 4-regular
edge 4-critical planar graph. Up to the present time, two Koester graphs have
been the only known examples of 4-chromatic graphs generated by circles in the
plane. Attempts to find similar graphs lead to the following question [13].

Question. Do there exist 4-chromatic Koester graphs except K20 and K40?

In this paper, we answer this question in the affirmative. We present fourteen
new 4-chromatic Koester graphs.
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2. New Koester Graphs

Consider the family of fourteen Koester graphs of order 28 generated by six circles
in the plane shown in Figure 2. Here almost straight lines are arcs of circles with
huge radii and several big circles are presented by their arcs. Every curve set has
a unique pair of non-crossing circles, i.e. H(G) ∼= K6 − e for all graphs G of this
family.

In order to show that these graphs are pairwise non-isomorphic, we use the
notion of black-white signature of graphs. Since every graph is 4-regular, there
is a chess 2-coloring of its faces (see Figure 3). Denote by fw and fb the numbers
of white and black faces, respectively. The signature sgn(G) of a graph G gives
information about sizes of faces and their colors:

sgn(G) =
wn1

1
, wn2

2
, . . . , wnr

r

bm1

1
, bm2

2
, . . . , bms

s
,

where wi, i = 1, 2, . . . , r, and bj , j = 1, 2, . . . , s, are the sizes of white and
black faces, respectively. Parameters ni, i = 1, 2, . . . , r, and mj , j = 1, 2, . . . , s,
count the numbers of faces of the corresponding sizes, n1 + n2 + · · · + nr = fw
and m1 + m2 + · · · + ms = fb. We choose colors so that (w1, w2, . . . , wr) ≥
(b1, b2, . . . , bs) in the lexicographic order. If (w1, w2, . . . , wr) = (b1, b2, . . . , bs)
then we assume that (n1, n2, . . . , nr) ≥ (m1,m2, . . . ,ms).

Lemma 1. Graphs G1, G2, . . . , G14 are pairwise non-isomorphic.

Proof. Koester graphs G1, G2,. . . ,G14 have the following signatures:
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Ten of these graphs have pairwise distinct signatures. Graphs of pairs {G11, G12}
and {G10, G13} have the same signatures. There is an edge of G11 such that its
incident vertices belong to black and white faces of size 6. Graph G12 does not
have such an edge. Graphs G10 and G13 have a unique white face of size 6. This
exterior 6-face is adjacent with several 3-faces and with precisely one 5-face in
both these graphs. Further, this 5-face has a common vertex with another 5-face
in graph G13 but graph G10 does not contain such a fragment. Therefore, we can
conclude that Koester graphs G1, G2, . . . , G14 are pairwise non-isomorphic.
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Figure 2. 4-chromatic Koester graphs of order 28.
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Figure 2. 4-chromatic Koester graphs of order 28 (continued).
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G13 G14

Figure 2. 4-chromatic Koester graphs of order 28 (conclusion).

G2 G8

Figure 3. Chess coloring of faces in graphs G2 and G8.

3. Coloring of Graphs

Now we prove that Koester graph G1 is 4-chromatic. The described technique
can be applied to all graphs G2, G3, . . . , G14 in Figure 2 (a proof for all graphs is
available from the authors).

Theorem 2. Graph G1 is 4-chromatic.

Proof. First consider graph G1 with the vertex numbering depicted in Figure 4.
By Brooks theorem (see, e.g., [9]), χ(G1) ≤ 4. Since G1 contains triangles,
χ(G1) ≥ 3. Suppose that G1 is a 3-chromatic graph and try to color G1. The
initial step of the coloring procedure is to assign colors to vertices of some 5-face
in all possible ways. Then we show that any extension of the initial coloring
implies that it is impossible to color G1 by three colors.
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Figure 4. Extensions of 3-colorings for the graph G1.

Consider the 5-face (12,4,5,15,16) of the graph G1 in Figure 4. We will depict
vertex color as a star, a triangle, or a diamond. To color vertices of any 5-face
in a 3-chromatic graph, one needs exactly 3 colors. One vertex of a 5-face has
a color that is distinct from the colors of the other four vertices. Assume that
this color is depicted as a star. The total number of 3-colorings of the initial
5-face is five. Because of symmetry, it is sufficient to examine only three different
colorings of this face.

Three cases of a coloring of the initial face are shown in Figure 4. The first
colored vertex is 12, 4, and 5 for Case A, B , and C , respectively. The unique
possible extension of the initial coloring for every case is also presented in Figure 4.
The italic number near every vertex indicates the number of the step at which
this vertex gets a forced color during the coloring procedure. The question mark
indicates a vertex that cannot be properly colored.
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Figure 5. Two infinite families of 4-chromatic Koester graphs.

For Case A, the structure of the graph forces a simple coloring: every uncolored
vertex will always have two previously colored neighbors. In order to extend the
initial coloring for Cases B and C , the following helpful simple observations have
been used.

1) Let a graph G be obtained from P4 by joining a new vertex v with the
non-pendant vertices of P4. If the pendant vertices of G have the same color in
some proper 3-coloring, then v always has this color. For example, the pendant
vertices 2 and 11 in the path (2,9,10,11) of G1 get the same color (star) at Steps
11 and 15 in Case B . Therefore, vertex 22 gets this color at Step 17. For Case
C , vertex 25 gets its color from the path (26,27,28,18) at Step 19.

2) In any proper 3-coloring of K4−e, the non-adjacent vertices of it have the
same color. This rule is applied in Steps 22 and 24 for coloring vertices 28 and
24 in Case B and in step 22 for coloring vertex 9 in Case C .

The considered cases A–C imply the equality χ(G1) = 4.

All graphs in Figure 2 are vertex-critical but not edge 4-critical. For example,
graph G1 has exactly two non-critical symmetrical edges. After removal edge
(2,3) or (14,26), graph G1 becomes edge 4-critical.
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4. Infinite Families of Koester Graphs

The existence of non-critical edges in Koester graphs allows the construction of
infinite families of 4-chromatic graphs. Any number of circles can be added to a 4-
chromatic Koester graph G in various ways such that they cross only non-critical
edges of G. It is obvious that the new graphs are always vertex non-critical.

Two examples of infinite families are presented in Figure 5. A member of
the first family, Hk, k ≥ 1, is obtained from k copies of Koester graph K20 in
which exterior edge (a, b) is non-critical (see Figure 1). A 4-chromatic fragment
of Hk is depicted near the graph. Graphs of the second family, Fk, k ≥ 1, are
constructed from k copies of graph G6 with exterior non-critical edge (a, b) (see
Figure 2). A circle with this arc is presented as an almost straight line in Figure 5.
A 4-chromatic fragment of Fk is also shown.

5. Open Problems

Graph K20 is the minimal known 4-chromatic Koester graph. What is the min-
imal number of vertices in such graphs other than K20 ? Our intensive search
gives graphs only with 28 vertices.

Problem 3. Find minimal Koester graphs in the following classes: a) 4-chroma-
tic graphs; b) vertex 4-critical graphs; c) edge 4-critical graphs.

The graph K40 is the only edge 4-critical graph among all known Koester graphs.

Problem 4. Find edge (vertex) 4-critical Koester graphs generated by 5, 6, or
7 circles.

There are no known examples of infinite families consisting of 4-critical graphs.

Problem 5. Find infinite families of edge (vertex) 4-critical Koester graphs.
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