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Abstract

An i-chord of a cycle or path is an edge whose endpoints are a distance
1 > 2 apart along the cycle or path. Motivated by many standard graph
classes being describable by the existence of chords, we investigate what
happens when i-chords are required for specific values of . Results include
the following: A graph is strongly chordal if and only if, for i € {4,6}, every
cycle C with |V/(C)| > i has an (i/2)-chord. A graph is a threshold graph if
and only if, for i € {4,5}, every path P with |V (P)| > i has an (¢ — 2)-chord.
Keywords: chord, chordal graph, strongly chordal graph, ptolemaic graph,
trivially perfect graph, threshold graph.
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1. INTRODUCTION

A chord of a cycle C or path P is an edge vw between two nonconsecutive vertices
v and w of C or P, and vw is an i-chord if the distance between v and w is 4
within C or P. Chords vw and xy are crossing chords of C' if the four vertices
v, x,w,y come in that order around C.

Many graph classes have been characterized by chords existing in long-enough
cycles (or, less often, paths). Using i-chords for specific i allows finer distinctions
to be made. Section 2 will discuss several graph classes in terms of ¢-chords of
cycles, with similar—yet only somewhat similar—results in Section 3 for i-chords
of paths. Sections 4 and 5 will discuss some of the corresponding results for
bipartite graphs.
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2. CHORDS OF CYCLES IN GRAPHS

Asin [2, 9], a graph is chordal if every cycle C with |V (C)| > 4 has a chord (equiv-
alently, every cycle long enough to have a chord does have a chord). Theorem 1
is a very simple characterization of being chordal.

Theorem 1. A graph is chordal if and only if every cycle C with |V (C)| > 4 has
a 2-chord.

Proof. The ‘if direction’ is immediate. The ‘only if direction’ follows immedi-
ately from the well-known result that every induced subgraph of a chordal graph
has a simplicial verter, meaning a vertex whose open neighborhood induces a
complete subgraph [2, 9]. [ |

For comparison with Theorems 2 and 5, note that Theorem 1 could be rephrased
as follows: A graph is chordal if and only if, for i € {4}, every cycle C with
|[V(C)| > has an (i/2)-chord.

Theorem 2 characterizes strongly chordal graphs—the chordal graphs in
which every cycle of even length at least 6 has an i-chord where ¢ is odd [2, 4, 8, 9]
(equivalently, for each i € {2,3}, every cycle long enough to have an i-chord does
have an i-chord).

Theorem 2. A graph is strongly chordal if and only if, fori € {4,6}, every cycle
C with |V(C)| > i has an (i/2)-chord.

Proof. The ‘if direction’ is immediate. The ‘only if direction’ follows from the
well-known result that every induced subgraph of a strongly chordal graph has
a simple verter, meaning a vertex v such that the closed neighborhoods of every
two neighbors of v are comparable by inclusion [2, 9]. [

The chordal graph formed from a 6-cycle by inserting three noncrossing 2-chords
shows that cycles of chordal graphs with |V (C)| > 6 might not have 3-chords. The
strongly chordal graph shown in Figure 1 shows that cycles of strongly chordal
graphs with |V(C)| > 8 might not have 4-chords.

A graph G is distance-hereditary if the distance between vertices in connected
induced subgraphs of G always equals the distance between them in G. A graph
is ptolemaic if it is both chordal and distance-hereditary. Reference [2] contains
many other characterizations of these concepts. In particular, from [5], a graph
is ptolemaic if and only if it is chordal with no induced subgraph isomorphic to a
gem—the graph obtained from a 5-cycle by inserting two noncrossing 2-chords.
Also, a graph is ptolemaic if and only if it is chordal and every cycle of length
at least 5 has crossing chords. Every ptolemaic graph is strongly chordal [2] (but
the strongly chordal graph in Figure 1 is not ptolemaic). Theorem 5 will show
that, for each i € {2,3,4}, every cycle of a ptolemaic graph that is long enough
to have an i-chord in fact does have an i-chord.
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Figure 1. A strongly chordal graph spanned by an 8-cycle that has a 2-chord and a
3-chord, but no 4-chord.

Lemma 3 (Howorka [5]). Every 4-cycle, 5-cycle, and 6-cycle in a ptolemaic
graph will have, respectively, at least 1, 3, or 4 chords (and so, respectively, at
most 1, 2, or 5 nonadjacent pairs of vertices).

Proof. This follows from the characterization of ptolemaic graphs in [5] by every
k-cycle having at least [3(k — 3)/2] chords (and so having at most k(k — 3)/2 —
|3(k — 3)/2| nonadjacent pairs of vertices). |

Let v ~ w and v ¢ w denote that vertices v and w are, respectively, adjacent or
nonadjacent.

Lemma 4. If a,b,c,d,e, f is a path (possibly a closed path with a = f) in a
ptolemaic graph with b 4 d and c £ e, then b+ e. If also a # f, then a % e and
bif.

Proof. Inserting an edge be (or ae or bf if a # f) would violate Lemma 3 by
creating a cycle with too few chords. [

Theorem 5. In a ptolemaic graph, if i € {4,6,8}, then every cycle C with
|[V(C)| > i has an (i/2)-chord.

Proof. Suppose G is ptolemaic (and so is strongly chordal). By Theorem 2,
every cycle C' with |V (C)| > 4 has a 2-chord and every C with |[V(C)| > 6 has a
3-chord. Suppose C' = vy, vs,...,v,v1 is a k-cycle in G. Argue by induction on
k > 8 that C' has a 4-chord.

For the basis step, suppose k = 8, but C has no 4-chord (arguing by contra-
diction); thus vy 7 vs, vo % vg, v3 %% vy, and vy # vg. Since G is strongly chordal,
C has a 3-chord; without loss of generality, say wvsvg is a chord. Lemma 4 on
the path wv1,vq,vs, vg, v7,vs implies v1 0 v7 % vy ¢ vg. Therefore, the 6-cycle
C~ = wvi1,v9,vs,v,V7,Us,v1 has five nonadjacent pairs of vertices and so, by
Lemma 3, C'~ has all the other four possible chords viv3, vivg, v3vs and vgvsg.
Lemma 4 on the path vy, vs, v, v1,v2,v3 now implies v % vs. Similarly, the
path vs, vy, v3, v8, v7, v implies v4 % vg. But the chordless 4-cycle vs, v4, v5, vg, V3
would now contradict Lemma 3.
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Therefore suppose k > 9 and every k’-cycle with 8 < k’ < k has a 4-chord, but
also suppose that C has no 4-chord (arguing by contradiction); thus v; % vg_3,
V9 b Vg_2, U3 b Vp_1, Vg % Uk, V1 % V5, V2 % vg, and vz oL vr. Since G is chordal,
C has a 2-chord; without loss of generality, say vivg_1 is a chord. Let C’ be the
cycle with edge set E(C) — {vg_1vg, v1vr} U{vivk_1} and length k —1 > 8. The
inductive hypothesis implies that C” has a 4-chord (that is not a 4-chord of C),
and so k > 10 and either v1 ~ vi_4 Or Vg ~ Vi_3 OT U3 ~ Vp_g OF Vg ~ Up_1.
Observe that ve % vi_3; otherwise Lemma 4 on the path vy, v1, ve, Vg_3, Vk_9, Up_1
would contradict vq ~ vi_1. Similarly, vs % vgp_5. Therefore, either vq ~ vi_4 or
Vg ~ Vg_1; without loss of generality, suppose vq ~ vg_1.

Lemma 4 on the path wvs,vs,v4, Vp_1,V%,v1 implies v1 % vy & v % vs.
Lemma 3 on the 5-cycle vy, v9,vs, v4,vr_1,v1 with the two nonadjacent pairs
{v1,v3} and {vs,vg_1} implies v; ~ vy ~ vy ~ vg_1. Lemma 4 on the path
Vk_3, Vk_2, Vk_1, V2, U3, V4 then implies vy # vp_o, and also, now on the path
Vk—_1, Uk, V1, V4, Us, Vg, implies vi_1 % v5 L vp 4 vg. Finally, Lemma 4 on the path
Vk_3, Vk—2, Vk_1, V4, U5, Ug Implies v5 o vg_o.

Let C” be the cycle with edge set E(C) — {viva, vovs, v3v4} U {v1v4} and
length k£ — 2 > 8. The inductive hypothesis implies that C” has a 4-chord (that
is not a 4-chord of C), and so k > 11 and either vy ~ vg_o or vs ~ vg_1 or
vg ~ v Or v1 ~ v7. Since we have proved that vy # vi_o and vs % vp_1
and vg o4 v, it follows that v; ~ v7. Observe that v; ¢ vg, since otherwise
Lemma 4 on the path vy, vs,vg, v1,v2,v3 would contradict vo ~ v4. Lemma 3
on the 5-cycle vy, vy, vs,v6,v7,v1 with the two nonadjacent pairs {vi,vs} and
{v1,v6} then implies vs ~ v7 ~ vg ~ vg. Note that vy o vs, since otherwise
the 5-cycle vy, va, vs, vg, U7, v1 with the three nonadjacent pairs {vi,vs}, {v1,vs}
and {ve2,vs} would contradict Lemma 3. Furthermore, Lemma 3 on the 5-cycle
v1, V2, U4, U5, U7, v1 With the two nonadjacent pairs {v1,vs} and {ve,vs} implies
v9 ~ vy. But then Lemma 4 on the path vs,vg, v7,v2,v3,v4 would contradict
V4 ~ Vg. |

Figure 2. A ptolemaic graph spanned by a 14-cycle that has a 2-chord, a 3-chord, and a
4-chord (and a 6-chord and a 7-chord), but no 5-chord.
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The gem graph shows that the converse of Theorem 5 fails. The graph in Figure
2 is ptolemaic—Corollary 6 of [1] is an easy way to verify this—and shows that
cycles of ptolemaic graphs with |V(C)| > 10 might not have 5-chords. (This is
a minimum-order counterexample: cycles with 10 < |V(C')| < 13 in ptolemaic
graphs turn out to always have 5-chords.)

3. CHORDS OF PATHS IN GRAPHS

Let C,, and P, denote, respectively, a cycle and path on n vertices (so C,, has
length n and P, has length n — 1). For any graph H, a graph G is H-free if G
contains no induced subgraph isomorphic to H.

Theorem 6. For every i > 3, a graph is both P;-free and chordal if and only if
every path P with |V (P)| > i has a 2-chord.

Proof. First suppose G is Pj-free and chordal with a path P where |V(P)| >
i > 3. Consider the minimum j such that P has a j-chord. If j > 3, then that
j-chord would combine with P to form a chordless (7 + 1)-cycle where j +1 > 4,
contradicting that G is chordal. Therefore, j = 2.

Conversely, suppose every path P of G with |V (P)| > ¢ > 3 has a 2-chord.
Therefore, G contains no induced subgraph isomorphic to any such P; or to any
C,, with n > 4, and so G is P;-free chordal. [ |

The trivially perfect graphs have many names and characterizations [2, 9], one
of which is that they are precisely the Ps-free chordal graphs. Corollary 7 is the
path analog of Theorem 1.

Corollary 7. A graph has complete components if and only if every path P with
|[V(P)| > 3 has a 2-chord. A graph is trivially perfect if and only if every path P
with |V (P)| > 4 has a 2-chord.

Proof. These are the i = 3 and ¢ = 4 cases of Theorem 6. |

The threshold graphs also have many characterizations [2, 7, 9], one of which is
that they are precisely the 2Ks-free trivially perfect graphs (2K is the comple-
ment of C4). For a connected graph, this is equivalent—see Theorem 1.2.4 of
[7] for the history—to being constructible from a single vertex by recursively ap-
pending either an isolated vertex or a dominating vertezx (often called a universal
verter, meaning a vertex adjacent to all the previously-existing vertices). Thus,
a graph is a threshold graph if and only if every induced subgraph has either an
isolated vertex or a dominating vertex. Theorem 8 is a path analog of Theorem 2.
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Theorem 8. The following are equivalent for all graphs G:
(8.1) G is a threshold graph.

(8.2) For alli >4, every path P with |V (P)| > i has an (i — 2)-chord.
(8.3) Fori € {4,5}, every path P with |V (P)| > i has an (i — 2)-chord.

Proof. Suppose G is any connected graph.

(8.1) = (8.2): Suppose G is a threshold graph (and so is trivially perfect)
and ¢ > 4. Corollary 7 implies that every path P with |V (P)| > 4 has a 2-chord.
Therefore assume path P = vq,...,v, has p = |[V(P)| > ¢ > 4 with subpath
Q = v1,...,v;. Suppose P has no (i — 2)-chord (arguing by contradiction), and
so v1 % v;—1 and vg % v;. But then the subgraph induced by {vi,ve,v;—1,v;}
would be isomorphic to 2K or Py or Cy (contradicting that G is a threshold
graph).

(8.2) = (8.3):

(8.3) = (8.1): Suppose every path with |V (P)| > 4 has a 2-chord and every
path with |V(P)| > 5 has a 3-chord, yet G is not a threshold graph (arguing by
contradiction). By Corollary 7, G is trivially perfect. Since G is not a threshold
graph, G must contain two edges vw and v'w’ in an induced 2K5. Suppose P
is a minimum-length path that contains both vw and v'w’. But v # v’ 4 w and
v b w' o wimply V(P) > 5. Therefore, P would have a 3-chord (contradicting
the minimality of P). [

8.3): This implication is immediate.
8.1

4. CHORDS OF CYCLES IN BIPARTITE GRAPHS

Asin [2, 9], a graph G is chordal bipartite if G is bipartite and every cycle C' with
|[V(C)| > 6 has a chord (equivalently, every cycle long enough to have a chord
does have a chord).

Theorem 9. A graph is chordal bipartite if and only if every cycle C with
|[V(C)| > 6 has a 3-chord.

Proof. The ‘if direction’ is immediate. The ‘only if direction’ follows from the
well-known result that every induced subgraph of a chordal bipartite graph has
a simplicial edge, meaning an edge vw such that the union of the neighborhoods
of v and w induce a complete subgraph [2, 9]. [

A graph is bipartite distance-hereditary if it is both bipartite and distance-hered-
itary; see section 6 of [1]. This is equivalent to being chordal bipartite with no
induced subgraph isomorphic to a domino—the graph obtained from a 6-cycle
by inserting one 3-chord. Theorem 10 is a bipartite analog of Theorems 2 and 5
simultaneously.
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Theorem 10. In a bipartite distance-hereditary graph, if i € {6,10}, then every
cycle C with |V(C)| > i has an (i/2)-chord.

Proof. Suppose G is a bipartite distance-hereditary graph. By [1], G is chordal
bipartite with no induced subgraph isomorphic to a domino. By Theorem 9,
every cycle C' with |V(C)| > 6 has a 3-chord. Suppose C' = vy, v, ..., v, v1 is &
k-cycle in G (k is even, of course). Argue by induction on even k& > 10 that C
has a 5-chord.

For the basis step, suppose k£ = 10, but C has no 5-chord (arguing by con-
tradiction); thus vy ¢ vg, va % w7, v3 % vg, vy % vg, and vs o v1g. Since
G is chordal bipartite, C' has a 3-chord; without loss of generality, say vsvg is
a chord. Thus v1 o vsg (to avoid vy, ve, vs, vg, v7,vs,v1 being a 6-cycle with no
chords), vy 2 vg (to avoid v, vs,vs, vy, vs, Vg, v2 either being a 6-cycle with no
chords or spanning an induced domino), and v; # wvyg (similarly). Therefore,
the 8-cycle vy, v9,vs, vg, U7, Us, Vg, V10, v1 must have both of the only possible 3-
chords vsv1g and wvgvg (both of them, to avoid inducing a domino). But then
v1, U2, V3, Vg, Vg, U109, v1 would span an induced domino, a contradiction.

Therefore suppose k& > 12 and every k’-cycle with 10 < k¥’ < k has a 5-
chord, and again suppose that C has no 5-chord arguing by contradiction. By
Theorem 9, C has a 3-chord; without loss of generality, say wvsvg is a chord.
Let C’ be the cycle with edge set E(C) — {vsvy, v4v5, v506} U {v3v6} and length
k —2 > 10. The inductive hypothesis implies that C’ has a 5-chord (that is not
a 5-chord of ('), and so either v; ~ vg or vy ~ vg or v3 ~ v1g Or Vg ~ Vk_1 OF
vy ~ vg. Thus k& > 14 (since those five edges would be 5-chords of C' if k = 12).
By the same argument used in the basis step, v1 ¢ vg and ve % vg and vy
vg. Therefore either v ~ v1g or vg ~ vg_1; without loss of generality, suppose
v3 ~ v19. Since vz o vg (because C' has no 5-chords) and vs, vg, vy, vs, vg, V10, U3
must have a 3-chord without spanning an induced domino, it follows that vg ~ vg
and vy ~ v19. But then the cycle vs, vy, vs, vg, Vg, V10, v3 Would span an induced
domino [a contradiction]. n

The domino graph shows that the converse of Theorem 10 fails. The graph in
Figure 3 is bipartite distance-hereditary—Corollary 3 of [1] is an easy way to
verify this—and shows that cycles of bipartite distance-hereditary graphs with
|V (C)| > 14 might not have 7-chords.

5. CHORDS OF PATHS IN BIPARTITE GRAPHS

Theorem 11 is the bipartite analog of Theorem 6.

Theorem 11. For every ¢ > 4, a bipartite graph is both P;-free and chordal
bipartite if and only if every path P with |V (P)| > i has a 3-chord.
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Figure 3. A bipartite distance-hereditary graph spanned by a 20-cycle that has a 3-chord
and a 5-chord (and a 9-chord), but no 7-chord.

Proof. This is proved in the same way as Theorem 6 (with ¢ > 4 and j > 4 in
the first paragraph and with n > 5 in the second). [

The bipartite graphs that are Ps-free chordal bipartite graphs have been charac-
terized—see Corollary 3.2 of [3] or Theorem 4 of [6]—Dby every connected induced
subgraph of G having either a dominating vertex or a dominating edge (meaning
an edge vw such that every vertex is adjacent to v or w). Thus, a bipartite graph
is Ps-free chordal bipartite if and only if every induced subgraph has an isolated
vertex or a dominating edge.

Corollary 12. Every connected bipartite graph is complete bipartite if and only
if every path P with |V (P)| > 4 has a 3-chord. Every connected induced subgraph
of a bipartite graph has a dominating vertex or edge if and only if every path P
with |V (P)| > 5 has a 3-chord.

Proof. These are the i = 4 and ¢ = 5 cases of Theorem 11. [

Comparing Corollary 12 to Corollary 7, reference [10] shows that a graph is
trivially perfect if and only if every connected induced subgraph of G has a
dominating vertex.

The difference graphs—these are close relatives of threshold graphs and are
also called chain graphs, see [7, 9]—are the Ps-free bipartite graphs. The chordal
bipartite difference graphs are the 2Ks-free (and so Ps-free) chordal bipartite
graphs. Theorem 13 is a bipartite analog of Theorem 8. When comparing it to
Corollary 12, note that the second condition in the second part of Corollary 12
could be rephrased as for i € {5}, every path P with |V (P)| > i has an (i — 2)-
chord.

Theorem 13. The following are equivalent for all bipartite graphs G-
(13.1) G is a chordal bipartite difference graph.

(13.2) For all odd i > 5, every path P with |V (P)| > i has an (i — 2)-chord.
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(13.3) For i€ {5,7}, every path P with |V (P)| > i has an (i — 2)-chord.

Proof. This is proved in the same way as Theorem 8 (for (13.1) = (13.2), the

subgraph induced by {v1, va, v;—1,v;} would be isomorphic to 2K5). [
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