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Abstract

An i-chord of a cycle or path is an edge whose endpoints are a distance
i ≥ 2 apart along the cycle or path. Motivated by many standard graph
classes being describable by the existence of chords, we investigate what
happens when i-chords are required for specific values of i. Results include
the following: A graph is strongly chordal if and only if, for i ∈ {4, 6}, every
cycle C with |V (C)| ≥ i has an (i/2)-chord. A graph is a threshold graph if
and only if, for i ∈ {4, 5}, every path P with |V (P )| ≥ i has an (i−2)-chord.

Keywords: chord, chordal graph, strongly chordal graph, ptolemaic graph,
trivially perfect graph, threshold graph.
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1. Introduction

A chord of a cycle C or path P is an edge vw between two nonconsecutive vertices
v and w of C or P , and vw is an i-chord if the distance between v and w is i
within C or P . Chords vw and xy are crossing chords of C if the four vertices
v, x, w, y come in that order around C.

Many graph classes have been characterized by chords existing in long-enough
cycles (or, less often, paths). Using i-chords for specific i allows finer distinctions
to be made. Section 2 will discuss several graph classes in terms of i-chords of
cycles, with similar—yet only somewhat similar—results in Section 3 for i-chords
of paths. Sections 4 and 5 will discuss some of the corresponding results for
bipartite graphs.

http://dx.doi.org/10.7151/dmgt.1629
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2. Chords of Cycles in Graphs

As in [2, 9], a graph is chordal if every cycle C with |V (C)| ≥ 4 has a chord (equiv-
alently, every cycle long enough to have a chord does have a chord). Theorem 1
is a very simple characterization of being chordal.

Theorem 1. A graph is chordal if and only if every cycle C with |V (C)| ≥ 4 has

a 2-chord.

Proof. The ‘if direction’ is immediate. The ‘only if direction’ follows immedi-
ately from the well-known result that every induced subgraph of a chordal graph
has a simplicial vertex , meaning a vertex whose open neighborhood induces a
complete subgraph [2, 9].

For comparison with Theorems 2 and 5, note that Theorem 1 could be rephrased
as follows: A graph is chordal if and only if, for i ∈ {4}, every cycle C with

|V (C)| ≥ i has an (i/2)-chord.
Theorem 2 characterizes strongly chordal graphs—the chordal graphs in

which every cycle of even length at least 6 has an i-chord where i is odd [2, 4, 8, 9]
(equivalently, for each i ∈ {2, 3}, every cycle long enough to have an i-chord does
have an i-chord).

Theorem 2. A graph is strongly chordal if and only if, for i ∈ {4, 6}, every cycle

C with |V (C)| ≥ i has an (i/2)-chord.

Proof. The ‘if direction’ is immediate. The ‘only if direction’ follows from the
well-known result that every induced subgraph of a strongly chordal graph has
a simple vertex , meaning a vertex v such that the closed neighborhoods of every
two neighbors of v are comparable by inclusion [2, 9].

The chordal graph formed from a 6-cycle by inserting three noncrossing 2-chords
shows that cycles of chordal graphs with |V (C)| ≥ 6 might not have 3-chords. The
strongly chordal graph shown in Figure 1 shows that cycles of strongly chordal
graphs with |V (C)| ≥ 8 might not have 4-chords.

A graph G is distance-hereditary if the distance between vertices in connected
induced subgraphs of G always equals the distance between them in G. A graph
is ptolemaic if it is both chordal and distance-hereditary. Reference [2] contains
many other characterizations of these concepts. In particular, from [5], a graph
is ptolemaic if and only if it is chordal with no induced subgraph isomorphic to a
gem—the graph obtained from a 5-cycle by inserting two noncrossing 2-chords.
Also, a graph is ptolemaic if and only if it is chordal and every cycle of length
at least 5 has crossing chords. Every ptolemaic graph is strongly chordal [2] (but
the strongly chordal graph in Figure 1 is not ptolemaic). Theorem 5 will show
that, for each i ∈ {2, 3, 4}, every cycle of a ptolemaic graph that is long enough
to have an i-chord in fact does have an i-chord.
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Figure 1. A strongly chordal graph spanned by an 8-cycle that has a 2-chord and a
3-chord, but no 4-chord.

Lemma 3 (Howorka [5]). Every 4-cycle, 5-cycle, and 6-cycle in a ptolemaic

graph will have, respectively, at least 1, 3, or 4 chords (and so, respectively, at

most 1, 2, or 5 nonadjacent pairs of vertices).

Proof. This follows from the characterization of ptolemaic graphs in [5] by every
k-cycle having at least ⌊3(k − 3)/2⌋ chords (and so having at most k(k − 3)/2−
⌊3(k − 3)/2⌋ nonadjacent pairs of vertices).

Let v ∼ w and v 6∼ w denote that vertices v and w are, respectively, adjacent or
nonadjacent.

Lemma 4. If a, b, c, d, e, f is a path (possibly a closed path with a = f) in a

ptolemaic graph with b 6∼ d and c 6∼ e, then b 6∼ e. If also a 6=f , then a 6∼ e and

b 6∼f .

Proof. Inserting an edge be (or ae or bf if a 6= f) would violate Lemma 3 by
creating a cycle with too few chords.

Theorem 5. In a ptolemaic graph, if i ∈ {4, 6, 8}, then every cycle C with

|V (C)| ≥ i has an (i/2)-chord.

Proof. Suppose G is ptolemaic (and so is strongly chordal). By Theorem 2,
every cycle C with |V (C)| ≥ 4 has a 2-chord and every C with |V (C)| ≥ 6 has a
3-chord. Suppose C = v1, v2, . . . , vk, v1 is a k-cycle in G. Argue by induction on
k ≥ 8 that C has a 4-chord.

For the basis step, suppose k = 8, but C has no 4-chord (arguing by contra-
diction); thus v1 6∼ v5, v2 6∼ v6, v3 6∼ v7, and v4 6∼ v8. Since G is strongly chordal,
C has a 3-chord; without loss of generality, say v3v6 is a chord. Lemma 4 on
the path v1, v2, v3, v6, v7, v8 implies v1 6∼ v7 6∼ v2 6∼ v8. Therefore, the 6-cycle
C− = v1, v2, v3, v6, v7, v8, v1 has five nonadjacent pairs of vertices and so, by
Lemma 3, C− has all the other four possible chords v1v3, v1v6, v3v8 and v6v8.
Lemma 4 on the path v4, v5, v6, v1, v2, v3 now implies v3 6∼ v5. Similarly, the
path v5, v4, v3, v8, v7, v6 implies v4 6∼ v6. But the chordless 4-cycle v3, v4, v5, v6, v3
would now contradict Lemma 3.
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Therefore suppose k ≥ 9 and every k′-cycle with 8 ≤ k′ < k has a 4-chord, but
also suppose that C has no 4-chord (arguing by contradiction); thus v1 6∼ vk−3,
v2 6∼ vk−2, v3 6∼ vk−1, v4 6∼ vk, v1 6∼ v5, v2 6∼ v6, and v3 6∼ v7. Since G is chordal,
C has a 2-chord; without loss of generality, say v1vk−1 is a chord. Let C ′ be the
cycle with edge set E(C)− {vk−1vk, v1vk} ∪ {v1vk−1} and length k − 1 ≥ 8. The
inductive hypothesis implies that C ′ has a 4-chord (that is not a 4-chord of C),
and so k ≥ 10 and either v1 ∼ vk−4 or v2 ∼ vk−3 or v3 ∼ vk−2 or v4 ∼ vk−1.
Observe that v2 6∼ vk−3; otherwise Lemma 4 on the path vk, v1, v2, vk−3, vk−2, vk−1

would contradict v1 ∼ vk−1. Similarly, v3 6∼ vk−2. Therefore, either v1 ∼ vk−4 or
v4 ∼ vk−1; without loss of generality, suppose v4 ∼ vk−1.

Lemma 4 on the path v2, v3, v4, vk−1, vk, v1 implies v1 6∼ v3 6∼ vk 6∼ v2.
Lemma 3 on the 5-cycle v1, v2, v3, v4, vk−1, v1 with the two nonadjacent pairs
{v1, v3} and {v3, vk−1} implies v1 ∼ v4 ∼ v2 ∼ vk−1. Lemma 4 on the path
vk−3, vk−2, vk−1, v2, v3, v4 then implies v4 6∼ vk−2, and also, now on the path
vk−1, vk, v1, v4, v5, v6, implies vk−1 6∼ v5 6∼ vk 6∼ v6. Finally, Lemma 4 on the path
vk−3, vk−2, vk−1, v4, v5, v6 implies v5 6∼ vk−2.

Let C ′′ be the cycle with edge set E(C) − {v1v2, v2v3, v3v4} ∪ {v1v4} and
length k − 2 ≥ 8. The inductive hypothesis implies that C ′′ has a 4-chord (that
is not a 4-chord of C), and so k ≥ 11 and either v4 ∼ vk−2 or v5 ∼ vk−1 or
v6 ∼ vk or v1 ∼ v7. Since we have proved that v4 6∼ vk−2 and v5 6∼ vk−1

and v6 6∼ vk, it follows that v1 ∼ v7. Observe that v1 6∼ v6, since otherwise
Lemma 4 on the path v4, v5, v6, v1, v2, v3 would contradict v2 ∼ v4. Lemma 3
on the 5-cycle v1, v4, v5, v6, v7, v1 with the two nonadjacent pairs {v1, v5} and
{v1, v6} then implies v5 ∼ v7 ∼ v4 ∼ v6. Note that v2 6∼ v5, since otherwise
the 5-cycle v1, v2, v5, v6, v7, v1 with the three nonadjacent pairs {v1, v5}, {v1, v6}
and {v2, v6} would contradict Lemma 3. Furthermore, Lemma 3 on the 5-cycle
v1, v2, v4, v5, v7, v1 with the two nonadjacent pairs {v1, v5} and {v2, v5} implies
v2 ∼ v7. But then Lemma 4 on the path v5, v6, v7, v2, v3, v4 would contradict
v4 ∼ v6.
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Figure 2. A ptolemaic graph spanned by a 14-cycle that has a 2-chord, a 3-chord, and a
4-chord (and a 6-chord and a 7-chord), but no 5-chord.
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The gem graph shows that the converse of Theorem 5 fails. The graph in Figure
2 is ptolemaic—Corollary 6 of [1] is an easy way to verify this—and shows that
cycles of ptolemaic graphs with |V (C)| ≥ 10 might not have 5-chords. (This is
a minimum-order counterexample: cycles with 10 ≤ |V (C)| ≤ 13 in ptolemaic
graphs turn out to always have 5-chords.)

3. Chords of Paths in Graphs

Let Cn and Pn denote, respectively, a cycle and path on n vertices (so Cn has
length n and Pn has length n − 1). For any graph H, a graph G is H-free if G
contains no induced subgraph isomorphic to H.

Theorem 6. For every i ≥ 3, a graph is both Pi-free and chordal if and only if

every path P with |V (P )| ≥ i has a 2-chord.

Proof. First suppose G is Pi-free and chordal with a path P where |V (P )| ≥
i ≥ 3. Consider the minimum j such that P has a j-chord. If j ≥ 3, then that
j-chord would combine with P to form a chordless (j +1)-cycle where j +1 ≥ 4,
contradicting that G is chordal. Therefore, j = 2.

Conversely, suppose every path P of G with |V (P )| ≥ i ≥ 3 has a 2-chord.
Therefore, G contains no induced subgraph isomorphic to any such Pi or to any
Cn with n ≥ 4, and so G is Pi-free chordal.

The trivially perfect graphs have many names and characterizations [2, 9], one
of which is that they are precisely the P4-free chordal graphs. Corollary 7 is the
path analog of Theorem 1.

Corollary 7. A graph has complete components if and only if every path P with

|V (P )| ≥ 3 has a 2-chord. A graph is trivially perfect if and only if every path P
with |V (P )| ≥ 4 has a 2-chord.

Proof. These are the i = 3 and i = 4 cases of Theorem 6.

The threshold graphs also have many characterizations [2, 7, 9], one of which is
that they are precisely the 2K2-free trivially perfect graphs (2K2 is the comple-
ment of C4). For a connected graph, this is equivalent—see Theorem 1.2.4 of
[7] for the history—to being constructible from a single vertex by recursively ap-
pending either an isolated vertex or a dominating vertex (often called a universal

vertex , meaning a vertex adjacent to all the previously-existing vertices). Thus,
a graph is a threshold graph if and only if every induced subgraph has either an
isolated vertex or a dominating vertex. Theorem 8 is a path analog of Theorem 2.
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Theorem 8. The following are equivalent for all graphs G:

(8.1) G is a threshold graph.

(8.2) For all i ≥ 4, every path P with |V (P )| ≥ i has an (i− 2)-chord.

(8.3) For i ∈ {4, 5}, every path P with |V (P )| ≥ i has an (i− 2)-chord.

Proof. Suppose G is any connected graph.

(8.1) ⇒ (8.2): Suppose G is a threshold graph (and so is trivially perfect)
and i ≥ 4. Corollary 7 implies that every path P with |V (P )| ≥ 4 has a 2-chord.
Therefore assume path P = v1, . . . , vp has p = |V (P )| ≥ i > 4 with subpath
Q = v1, . . . , vi. Suppose P has no (i − 2)-chord (arguing by contradiction), and
so v1 6∼ vi−1 and v2 6∼ vi. But then the subgraph induced by {v1, v2, vi−1, vi}
would be isomorphic to 2K2 or P4 or C4 (contradicting that G is a threshold
graph).

(8.2) ⇒ (8.3): This implication is immediate.

(8.3) ⇒ (8.1): Suppose every path with |V (P )| ≥ 4 has a 2-chord and every
path with |V (P )| ≥ 5 has a 3-chord, yet G is not a threshold graph (arguing by
contradiction). By Corollary 7, G is trivially perfect. Since G is not a threshold
graph, G must contain two edges vw and v′w′ in an induced 2K2. Suppose P
is a minimum-length path that contains both vw and v′w′. But v 6∼ v′ 6∼ w and
v 6∼ w′ 6∼ w imply V (P ) ≥ 5. Therefore, P would have a 3-chord (contradicting
the minimality of P ).

4. Chords of Cycles in Bipartite Graphs

As in [2, 9], a graph G is chordal bipartite if G is bipartite and every cycle C with
|V (C)| ≥ 6 has a chord (equivalently, every cycle long enough to have a chord
does have a chord).

Theorem 9. A graph is chordal bipartite if and only if every cycle C with

|V (C)| ≥ 6 has a 3-chord.

Proof. The ‘if direction’ is immediate. The ‘only if direction’ follows from the
well-known result that every induced subgraph of a chordal bipartite graph has
a simplicial edge, meaning an edge vw such that the union of the neighborhoods
of v and w induce a complete subgraph [2, 9].

A graph is bipartite distance-hereditary if it is both bipartite and distance-hered-
itary; see section 6 of [1]. This is equivalent to being chordal bipartite with no
induced subgraph isomorphic to a domino—the graph obtained from a 6-cycle
by inserting one 3-chord. Theorem 10 is a bipartite analog of Theorems 2 and 5
simultaneously.
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Theorem 10. In a bipartite distance-hereditary graph, if i ∈ {6, 10}, then every

cycle C with |V (C)| ≥ i has an (i/2)-chord.

Proof. Suppose G is a bipartite distance-hereditary graph. By [1], G is chordal
bipartite with no induced subgraph isomorphic to a domino. By Theorem 9,
every cycle C with |V (C)| ≥ 6 has a 3-chord. Suppose C = v1, v2, . . . , vk, v1 is a
k-cycle in G (k is even, of course). Argue by induction on even k ≥ 10 that C
has a 5-chord.

For the basis step, suppose k = 10, but C has no 5-chord (arguing by con-
tradiction); thus v1 6∼ v6, v2 6∼ v7, v3 6∼ v8, v4 6∼ v9, and v5 6∼ v10. Since
G is chordal bipartite, C has a 3-chord; without loss of generality, say v3v6 is
a chord. Thus v1 6∼ v8 (to avoid v1, v2, v3, v6, v7, v8, v1 being a 6-cycle with no
chords), v2 6∼ v9 (to avoid v2, v3, v6, v7, v8, v9, v2 either being a 6-cycle with no
chords or spanning an induced domino), and v7 6∼ v10 (similarly). Therefore,
the 8-cycle v1, v2, v3, v6, v7, v8, v9, v10, v1 must have both of the only possible 3-
chords v3v10 and v6v9 (both of them, to avoid inducing a domino). But then
v1, v2, v3, v6, v9, v10, v1 would span an induced domino, a contradiction.

Therefore suppose k ≥ 12 and every k′-cycle with 10 ≤ k′ < k has a 5-
chord, and again suppose that C has no 5-chord arguing by contradiction. By
Theorem 9, C has a 3-chord; without loss of generality, say v3v6 is a chord.
Let C ′ be the cycle with edge set E(C) − {v3v4, v4v5, v5v6} ∪ {v3v6} and length
k − 2 ≥ 10. The inductive hypothesis implies that C ′ has a 5-chord (that is not
a 5-chord of C), and so either v1 ∼ v8 or v2 ∼ v9 or v3 ∼ v10 or v6 ∼ vk−1 or
v7 ∼ vk. Thus k ≥ 14 (since those five edges would be 5-chords of C if k = 12).
By the same argument used in the basis step, v1 6∼ v8 and v2 6∼ v9 and v7 6∼
vk. Therefore either v3 ∼ v10 or v6 ∼ vk−1; without loss of generality, suppose
v3 ∼ v10. Since v3 6∼ v8 (because C has no 5-chords) and v3, v6, v7, v8, v9, v10, v3
must have a 3-chord without spanning an induced domino, it follows that v6 ∼ v9
and v7 ∼ v10. But then the cycle v3, v4, v5, v6, v9, v10, v3 would span an induced
domino [a contradiction].

The domino graph shows that the converse of Theorem 10 fails. The graph in
Figure 3 is bipartite distance-hereditary—Corollary 3 of [1] is an easy way to
verify this—and shows that cycles of bipartite distance-hereditary graphs with
|V (C)| ≥ 14 might not have 7-chords.

5. Chords of Paths in Bipartite Graphs

Theorem 11 is the bipartite analog of Theorem 6.

Theorem 11. For every i ≥ 4, a bipartite graph is both Pi-free and chordal

bipartite if and only if every path P with |V (P )| ≥ i has a 3-chord.
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Figure 3. A bipartite distance-hereditary graph spanned by a 20-cycle that has a 3-chord
and a 5-chord (and a 9-chord), but no 7-chord.

Proof. This is proved in the same way as Theorem 6 (with i ≥ 4 and j ≥ 4 in
the first paragraph and with n ≥ 5 in the second).

The bipartite graphs that are P5-free chordal bipartite graphs have been charac-
terized—see Corollary 3.2 of [3] or Theorem 4 of [6]—by every connected induced
subgraph of G having either a dominating vertex or a dominating edge (meaning
an edge vw such that every vertex is adjacent to v or w). Thus, a bipartite graph
is P5-free chordal bipartite if and only if every induced subgraph has an isolated
vertex or a dominating edge.

Corollary 12. Every connected bipartite graph is complete bipartite if and only

if every path P with |V (P )| ≥ 4 has a 3-chord. Every connected induced subgraph

of a bipartite graph has a dominating vertex or edge if and only if every path P
with |V (P )| ≥ 5 has a 3-chord.

Proof. These are the i = 4 and i = 5 cases of Theorem 11.

Comparing Corollary 12 to Corollary 7, reference [10] shows that a graph is
trivially perfect if and only if every connected induced subgraph of G has a
dominating vertex.

The difference graphs—these are close relatives of threshold graphs and are
also called chain graphs, see [7, 9]—are the P5-free bipartite graphs. The chordal
bipartite difference graphs are the 2K2-free (and so P5-free) chordal bipartite
graphs. Theorem 13 is a bipartite analog of Theorem 8. When comparing it to
Corollary 12, note that the second condition in the second part of Corollary 12
could be rephrased as for i ∈ {5}, every path P with |V (P )| ≥ i has an (i − 2)-
chord.

Theorem 13. The following are equivalent for all bipartite graphs G:

(13.1) G is a chordal bipartite difference graph.

(13.2) For all odd i ≥ 5, every path P with |V (P )| ≥ i has an (i− 2)-chord.
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(13.3) For i ∈ {5, 7}, every path P with |V (P )| ≥ i has an (i− 2)-chord.

Proof. This is proved in the same way as Theorem 8 (for (13.1) ⇒ (13.2), the
subgraph induced by {v1, v2, vi−1, vi} would be isomorphic to 2K2).

References

[1] H.-J. Bandelt and H.M. Mulder, Distance-hereditary graphs , J. Combin. Theory (B)
41 (1986) 182–208.
doi:10.1016/0095-8956(86)90043-2
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