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Abstract

The Gyárfás tree packing conjecture asserts that any set of trees with
2, 3, . . . , k vertices has an (edge-disjoint) packing into the complete graph
on k vertices. Gyárfás and Lehel proved that the conjecture holds in some
special cases. We address the problem of packing trees into k-chromatic
graphs. In particular, we prove that if all but three of the trees are stars
then they have a packing into any k-chromatic graph. We also consider
several other generalizations of the conjecture.
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1. Introduction

A set of (simple) graphsG1, G2, . . . , Gk has a packing into a graphH ifG1, G2, . . . ,
Gk appear as edge-disjoint subgraphs of H. In general we are concerned with the
case when each Gi is a tree. One of the best-known packing problems is the Tree
Packing Conjecture (TPC) posed by Gyárfás [8]:
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Conjecture 1 (TPC). For 2 ≤ i ≤ n, let Ti be a tree on i vertices. Then the set

of trees T2, . . . , Tn has a packing into the complete graph on n vertices.

A number of partial results related to the TPC have been found. The first results
are by Gyárfás and Lehel [8] who proved that the TPC holds with the additional
assumption that all but two of the trees are stars. Gyárfás and Lehel also showed
that the TPC is true if each tree is either a path or a star. A second proof is by
Zaks and Liu [14]. Bollobás [1] showed that the trees T2, . . . , Ts have a packing
into Kn if s ≤ n/

√
2 and Ti has i vertices. From the other side, Hobbs, Bourgeois

and Kasiraj [10] showed that any three trees Tn, Tn−1, Tn−2 have a packing into
Kn if Ti has i vertices. A series of papers by Dobson [4, 5, 6] concerns packing
trees with some technical conditions.

Instead of packing trees into the complete graph, a number of papers have
examined packing trees into complete bipartite graphs. Hobbs et al. [10] conjec-
tured that the trees T2, . . . , Tn have a packing into the complete bipartite graph
Kn−1,⌈n/2⌉ if Ti has i vertices. The conjecture is true if each of the trees is a
star or path. The case when n is even was shown by Zaks and Liu [14] and
when n is odd by Hobbs [9]. Yuster [13] showed that T2, . . . , Ts have a packing
into Kn−1,⌈n/2⌉ if s ≤ ⌊

√

5/8n⌋ and Ti has i vertices (improving the previously
best-known bound by Caro and Roditty [2]).

Now we introduce a conjecture that would imply the TPC:

Conjecture 2. For 2 ≤ i ≤ k, let Ti be a tree on i vertices. If G is a k-chromatic

graph, then the set of trees T2, . . . , Tk has a packing into G.

The main result of the present paper concerns a special case of Conjecture 2.

Theorem 3. For 2 ≤ i ≤ k, let Ti be a tree on i vertices. If G is a k-chromatic

graph and there are at most three non-stars among T2, . . . , Tk, then they can be

packed into G.

Note that Theorem 3 can be stated in a stronger way as the proof only requires
G to have a subgraph that has a Grundy k-coloring (see e.g. [3]) and minimum
degree k − 1. The immediate corollary of Theorem 3 for complete graphs was
proved by Roditty [11]3.

Corollary 4. The TPC is true with the additional assumption that all but three

of the trees are stars.

2. Proof of Theorem 3

Before moving to the proof let us introduce some additional definitions.

3This proof contains some errors which have recently been corrected by the author [12].
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Let x be a vertex with exactly one neighbor y of degree greater than 1 and at
least one neighbor of degree 1. The induced substar R spanned by x and its
neighbors of degree 1 is called a pending star. The vertex y will be referred to
as the neighbor of R. A spider is a tree that has a vertex whose removal results
in isolated vertices and edges (i.e. a spider is a graph with a central vertex and
some branches of length 1 or 2).

Proof. The proof will be by induction on k, but the precise form of the induction
depends on the structure of the largest trees. For k ≤ 3 the statement of the
theorem is trivial. Now let us assume that the statement of the theorem holds
for all values less than k.

Without loss of generality we can assume G is a vertex-critical k-chromatic
graph. Thus G has minimum degree at least k− 1. Let us choose a k-coloring of
G with color classes A1, A2, . . . , Ak such that any vertex x ∈ Ai has a neighbor
in each color class A1, A2, . . . , Ai−1. Let Gi = G \ (A1 ∪ A2 ∪ · · · ∪ Ak−i) be the
induced subgraph of G on the color classes Ak, Ak−1, . . . , Ak−i+1. Note that Gi

has chromatic number i.

For simplicity we will use edge-coloring terminology. A partial edge-coloring

of a graph G is an assignment of colors to some of the edges of G. (We will omit
the word “partial”.) An edge that receives no color is referred to as uncolored.

We will construct an edge-coloring of G such that the subgraph consisting
of the edges of color i is isomorphic to the tree Ti. Clearly this edge-coloring
problem is equivalent to packing the trees into G.

The proof is divided into several claims and cases according to the structure
of the trees in T2, . . . , Tk. In each case we remove parts from t ≤ 3 non-stars
and delete t stars from T2, . . . , Tk such that we are left with a sequence of trees
of order 2, . . . , k − t containing at most three non-stars. By induction we have
a (k − t − 1)-edge-coloring of Gk−t such that each tree in the new sequence is
isomorphic to a subgraph spanned by the edges of a single color. To complete the
desired edge-coloring of G we have two steps. First we color a few more edges to
finish the non-stars in the original sequence. Second we introduce t new colors
and color edges of G to get the deleted stars. Generally the (easy) details of the
second step are left to the reader.

Throughout the proof if we remove some vertices of a tree Ti we denote the
remaining graph by T ′

i . Note that although Ti denotes a tree with i vertices, T ′
i

will always have fewer than i vertices.

Let x be a vertex in the tree T . After the inductive step we have an iso-
morphism between T and a (monochromatic) subgraph of G. For simplicity the
image of x in G will also be called x.

Claim 5. If Tk is a star and k ≥ 3, then T2, . . . , Tk have a packing into G.
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Proof. By induction there is a (k− 2)-edge-coloring of Gk−1 such that each tree
T2, . . . , Tk−1 is isomorphic to a subgraph spanned by the edges of a single color.
There is at least one vertex a in A1 and its degree is at least k− 1 in G. Thus we
can color k−1 edges incident to a with a new color to complete the edge-coloring
of G.

Claim 6. If Tk−1 is a star and k ≥ 3, then T2, . . . , Tk have a packing into G.

Proof. Remove a leaf with neighbor u from Tk and let T ′
k be the resulting

graph. By induction there is a (k − 2)-edge-coloring of Gk−1 such that each
tree T2, . . . , Tk−2, T

′
k is isomorphic to a subgraph spanned by the edges of a single

color. We will call the color of T ′
k blue. The vertex u has a neighbor a ∈ A1. We

color the edge ua blue to get a blue Tk. The degree of a is at least k−1 and ua is
the only colored edge incident to a. Thus a has at least k− 2 uncolored incident
edges. We color k − 2 of these edges with a new color to get a monochromatic
Tk−2. This completes the edge-coloring of G.

Note that Claim 6 implies the theorem for k = 4.

Claim 7. If Tk and Tk−1 are not stars and Tk−2 and Tk−3 are both stars and

k ≥ 5, then T2, . . . , Tk have a packing into G.

Proof. The trees Tk and Tk−1 are not stars so we can remove two leaves with
neighbors u and v from Tk and two leaves with neighbors x and y from Tk−1 such
that u 6= v and x 6= y. Let T ′

k and T ′
k−1

be the remaining graphs.

By induction there is a (k − 3)-edge-coloring of Gk−2 such that each tree
T2, . . . , Tk−4, T

′
k−1

, T ′
k is isomorphic to a subgraph spanned by the edges of a

single color. We will call the color of T ′
k and T ′

k−1
blue and red respectively.

Without loss of generality we can suppose that u 6= x and v 6= y in G. There
is a neighbor a ∈ A1 of u, a neighbor b ∈ A2 of v, a neighbor a′ ∈ A1 of x and a
neighbor b′ ∈ A2 of y.

We color the edges ua and vb blue to get a blue Tk. We color the edges xa′

and yb′ red to get a red Tk−1. The vertex a is incident to at least k− 3 uncolored
edges. We color k − 3 of these edges with a new color to get a monochromatic
Tk−2. Now the vertex b is incident to at least k − 4 uncolored edges. We color
k − 4 of these edges with another new color to get a monochromatic Tk−3. This
completes the edge-coloring of G.

Note that Claim 7 implies the theorem for k = 5. Furthermore, the above three
claims are essentially the same as the proof of the first theorem in [8].

Claim 8. If there is a pending star R of order r in Tk and Tk−r is a star, then

T2, . . . , Tk have a packing into G.
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Proof. Let u be the neighbor of R. Remove R from Tk and let T ′
k be the

remaining graph.

By induction there is a (k − 2)-edge-coloring of Gk−1 such that each tree
T2, . . . , Tk−r−1, T

′
k, Tk−r+1, . . . , Tk−1 is isomorphic to a subgraph spanned by the

edges of a single color. We will call the color of T ′
k blue.

There is a neighbor a ∈ A1 of u and a has at least k−2 other neighbors in G.
Then there are at least r − 1 vertices d1, . . . , dr−1 which are neighbors of a but
are not in T ′

k i.e. there are no blue edges incident to d1, . . . , dr−1. We color the
edges ua and ad1, . . . , adr−1 blue to get a blue Tk. Now the vertex a is incident
to at least k − r − 1 uncolored edges. We color k − r − 1 of these edges with a
new color to get a monochromatic Tk−r. This completes the edge-coloring of G.

Claim 9. For 2 ≤ i ≤ k ≤ 6, let Ti be a tree on i vertices. If G is a k-chromatic

graph, then T2, . . . , Tk can be packed into G.

Proof. By the above claims, the only remaining case is when k = 6 and none of
T6, T5, T4 are stars. It is easy to see that T2, T3, T4 are unique (they are all paths)
and T5 and T6 each have two possible configurations (either a path or a spider).

Remove a pending star of order 2 from T6 and a leaf from T4 and let T ′
6 and

T ′
4 be the remaining graphs. Note that both of these remaining graphs are paths.

We can reconstruct T4 by adding an edge to either endpoint of T ′
4. Similarly, we

can reconstruct T6 by adding a pending star of order 2 to either endpoint (if T6

is a path) or to either interior point (if T6 is a spider).

Because the statement of the claim holds for k = 5 there is a 4-edge-coloring
of G5 such that each tree T2, T

′
4, T

′
6, T5 is isomorphic to a subgraph spanned by

the edges of a single color. We will call the color of T ′
6 and T ′

4 blue and red

respectively.

First we consider the case when T6 is a spider (if T6 is a path, then the
argument below works if we replace “interior point” with “endpoint” everywhere).
We distinguish two subcases.

Case A. The two endpoints u and v of T ′
4 are equal to the two interior points

of T ′
6 in G5. The vertex u has a neighbor a ∈ A1 and a has a neighbor d1 ∈ G

which is not in T ′
6. We color ua and ad1 blue to get a monochromatic T6. The

vertex v has a neighbor b ∈ A1 (note that b and a can be the same vertex, but
still the edge vb is uncolored). We color vb red to get a monochromatic T4. Now
there are at least two uncolored edges incident to a. We can color them with a
new color to get a monochromatic T3 to complete the edge-coloring of G.

Case B. There is an interior point u of T ′
6 which is not an endpoint of T ′

4.
The vertex u has a neighbor a ∈ A1 and a has a neighbor d1 ∈ G which is not in
T ′
6. We color ua and ad1 blue to get a monochromatic T6. One of the endpoints
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v of T ′
4 is not equal to d1. The vertex v has a neighbor b ∈ A1 (note that b and

a can be the same vertex, but still the edge vb is uncolored). We color vb red to
get a monochromatic T4. Now there are at least two uncolored edges incident to
a. We can color them with a new color to get a monochromatic T3 to complete
the edge-coloring of G.

From now on we can suppose that none of the conditions of the above five claims
hold. In particular, k > 6 and Tk, Tk−1 plus exactly one of Tk−2 and Tk−3 are
not stars. Thus all other trees are stars. Furthermore, all the pending stars in Tk

have order 2 (in the case Tk−2 is not a star) or order 3 (in the case Tk−3 is not a
star).

We now distinguish two cases and several subcases.

Case 1. Every pending star in Tk is of order 3 (i.e. the case Tk−3 is not a
star). Let R be a pending star of order 3 in Tk with neighbor u and let v be the
neighbor of a leaf such that u 6= v and v is not in R (such a leaf can be easily
found as k > 6). Let x be the neighbor of a leaf in Tk−1. Remove R and a leaf
which is a neighbor of v from Tk and let T ′

k be the remaining graph. Remove a
leaf which is a neighbor of x from Tk−1 and let T ′

k−1
be the remaining graph.

By induction there is a (k − 3)-edge-coloring of Gk−2 such that each tree
T2, . . . , Tk−5, T

′
k, Tk−3, T

′
k−1

is isomorphic to a subgraph spanned by the edges of
a single color. We will call the color of T ′

k and T ′
k−1

blue and red respectively.

The vertex v has a neighbor a ∈ A1 and u has a neighbor b ∈ A2. There are
at least k − 2 neighbors of b which are different from a. There are k − 4 vertices
in T ′

k, hence there are at least two vertices d1 and d2 adjacent to b that are not
in T ′

k and not equal to a.

The edges va, ub, bd1 and bd2 are colored blue to get a blue Tk. There are at
least k− 2 uncolored edges incident to a and k− 4 uncolored edges incident to b.
Although x could coincide with u or v, in any case there is at least one uncolored
edge between x and a vertex in A1 or A2. We color this edge red to get a red
Tk−1. Then a and b have either at least k − 3 and k − 4 or at least k − 2 and
k − 5 uncolored incident edges. In either case, it is easy to see that we can color
edges incident to a or b with two new colors to get Tk−2 and Tk−4 to complete
the edge-coloring of G.

Case 2. Every pending star in Tk is of order 2 (i.e. the case Tk−2 is not a
star).

Case 2.1. Tk is not a spider. Let R1 and R2 be pending stars in Tk of order
2 with neighbors u and v such that u 6= v. Let x 6= y be neighbors of leaves in
Tk−1. Remove R1 and R2 from Tk and let T ′

k be the remaining graph. Remove
a leaf with neighbor x and a leaf with neighbor y from Tk−1 and let T ′

k−1
be the

remaining graph.
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By induction there is a (k− 3)-edge-coloring of Gk−2 such that each tree T2, . . . ,
Tk−5, T

′
k, T

′
k−1

, Tk−2 is isomorphic to a subgraph spanned by the edges of a single
color. We will call the color of T ′

k and T ′
k−1

blue and red respectively.

Without loss of generality we can suppose u 6= x and v 6= y. There is a
neighbor a ∈ A1 of u and a neighbor b ∈ A2 of v. There are at least two vertices
adjacent to a and at least two vertices adjacent to b which are not in T ′

k and are
different from a and b. Thus we can find two vertices d1, d2 6∈ T ′

k such that d1 is
adjacent to a and d2 is adjacent to b and either d1 6= x and d2 6= y or d1 = x and
d2 = y.

Then the edges ua, ad1, vb, bd2 are colored blue to get a blue Tk. Now there
is an uncolored edge between x and A1 ∪ A2 and an uncolored edge between y
and A1 ∪A2. Color these two edges red to get a red Tk−1 Now a is incident to at
least k− 4 uncolored edges. We color k− 4 of these edges with a new color to get
a monochromatic Tk−3. Now b is incident to at least k − 5 uncolored edges. We
color k − 5 of these edges with another new color to get a monochromatic Tk−4.
This completes the edge-coloring of G.

Case 2.2. Tk is a spider. As k > 6, we can suppose that there exist three
distinct vertices u1, u2, u3 in Tk each with at least one neighbor that is a leaf.

Case 2.2.1. Tk−1 has a pending star R of order r ≥ 4. Let x be the neighbor
of R. Let w 6= z be neighbors of leaves in Tk−2. Remove a neighboring leaf
from each vertex u1, u2, u3 in Tk and let T ′

k be the remaining graph. Remove
the pending star R from Tk−1 and let T ′

k−1
be the remaining graph. Remove a

leaf with neighbor w and a leaf with neighbor z from Tk−2 and let T ′
k−2

be the
remaining graph.

By induction there is a (k − 4)-edge-coloring of Gk−3 such that each tree
T2, . . . , Tk−r−2, T

′
k−1

, Tk−r, . . . , Tk−5, T
′
k−2

, T ′
k is isomorphic to a subgraph span-

ned by the edges of a single color. We will call the color of T ′
k, T

′
k−1

and T ′
k−2

blue, red and green respectively.

The vertex x has a neighbor a ∈ A1. There are at least k − 1 neighbors of a
and at least k− 1− (k− 1− r) = r of them, say d1, . . . , dr are not in T ′

k−1
. If any

of them is equal to u1, u2, u3 then without loss of generality we can assume that
dr is equal to u3 (other equalities are also possible). If not, we still can suppose
without loss of generality that u3 6= x. We color the edges xa, ad1, . . . , adr−1 red
to get a red Tk−1.

There is a neighbor b ∈ A2 of u1 and a neighbor c ∈ A3 of u2 and there is
an uncolored edge between u3 and A1. Now we color the edges u1b, u2c and the
uncolored edge between u3 and A1 with color blue to get a blue Tk. It is easy to
see that we can color either an edge between w and A2 and an edge between z
and A3, or an edge between w and A3 and an edge between z and A2 with color
green to get a green Tk−2.
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Now a is incident to at least k − r − 2 uncolored edges, so we can color edges
incident to a with a new color to get Tk−r−1. After this, b and c both are still
incident to at least k − 4 uncolored edges (note that the edge ba and ca may be
colored red or with the new color corresponding to Tk−1). It is easy to see that
we can color edges incident to b and c with two new colors to get Tk−3 and Tk−4

to complete the edge-coloring of G.

Case 2.2.2. Tk−1 has a pending star R of order 3.

Case 2.2.2.1. Tk−2 has a pending star R
′ of order r ≥ 3. Let x be the neighbor

of R. Let w be the neighbor of R′. Remove a neighboring leaf from each vertex
u1, u2, u3 in Tk and let T ′

k be the remaining graph. Remove the pending star R
from Tk−1 and let T ′

k−1
be the remaining graph. Remove the pending star R′

from Tk−2 and let T ′
k−2

be the remaining graph.

By induction there is a (k − 4)-edge-coloring of Gk−3 such that each tree
T2, . . . , Tk−r−3, T

′
k−2

, Tk−r−1, . . . , Tk−5, T
′
k−1

, T ′
k is isomorphic to a subgraph span-

ned by the edges of a single color. We will call the color of T ′
k, T

′
k−1

and Tk−2

blue, red and green respectively.

Without loss of generality we can suppose x 6= u3 and w 6= u2. Then x has a
neighbor c in A3. We color the edge xc, an edge between c and A1 and an edge
between c and A2 with color red to get a red Tk−1. There is a neighbor a ∈ A1 of
w. The vertex a has at least k − 2 neighbors different from c, at least r of them,
say d1, . . . , dr are not in T ′

k−2
. If any di is equal to u1, u2, u3 then let dr be equal

to u2 (other equalities are also possible). We color the edges wa, ad1, . . . , adr−1

green to get a green Tk−2.

There is an uncolored edge between u3 and A3, an uncolored edge between
u2 and A1 and an uncolored edge between u1 and A2. We color these edges blue
to get a blue Tk. It is easy to see that there are enough uncolored edges incident
to a, b and c such that we can complete the edge-coloring of G with three new
colors to get Tk−r−2, Tk−4 and Tk−3.

Case 2.2.2.2. All pending stars in Tk−2 are of order 2. Let x be the neighbor
of R. Let R′ be a pending star of order 2 in Tk−2. Let w be the neighbor of R′.
As k > 6, there is a leaf in Tk−2 with neighbor z 6= w. Remove a neighboring
leaf from each vertex u1, u2, u3 in Tk and let T ′

k be the remaining graph. Remove
the pending star R from Tk−1 and let T ′

k−1
be the remaining graph. Remove

the pending star R′ and a leaf with neighbor z from Tk−2 and let T ′
k−2

be the
remaining graph.

By induction there is a (k − 4)-edge-coloring of Gk−3 such that each tree
T2, . . . , Tk−6, T

′
k−2

, T ′
k−1

, T ′
k is isomorphic to a subgraph spanned by the edges of

a single color. We will call the color of T ′
k, T

′
k−1

and Tk−2 blue, red and green

respectively.

Without loss of generality we can suppose that x 6= u3, w 6= u2 and z 6= u1.
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Then x has a neighbor c ∈ A3. We color the edge xc, an edge between c and
A1 and an edge between c and A2 with color red to get a red Tk−1. There is a
neighbor a ∈ A1 of w. There is a neighbor b ∈ A2 of z. The vertex a has at least
k − 3 neighbors different from c and b, at least two of them, d1 and d2, are not
in T ′

k−2
. Without loss of generality we can suppose that u2 6= d1. We color the

edges wa, ad1 and zb green to get a green Tk−2. There is an edge between u3 and
A3, an edge between u2 and A1 and an edge between u1 and A2. These edges are
uncolored. We color these edges blue to get a blue Tk.

It is easy to see that there are enough uncolored edges incident to a, b and
c such that we can complete the edge-coloring of G with three new colors to get
Tk−5, Tk−4 and Tk−3.

Case 2.2.3. Every pending star in Tk−1 is of order 2.

Case 2.2.3.1. Tk−1 is not a spider. Let R and R′ be pending stars in Tk−1

of order 2 with neighbors x and y such that x 6= y. Let w 6= z be neighbors of
leaves in Tk−2. Remove a neighboring leaf from each vertex u1, u2, u3 in Tk and
let T ′

k be the remaining graph. Remove R and R′ from Tk−1 and let T ′
k−1

be the
remaining graph. Remove a leaf with neighbor z and a leaf with neighbor w from
Tk−2 and let T ′

k−2
be the remaining graph.

By induction there is a (k − 4)-edge-coloring of Gk−3 such that each tree
T2, . . . , Tk−6, T

′
k−1

, T ′
k−2

, T ′
k is isomorphic to a subgraph spanned by the edges of

a single color. We will call the color of T ′
k, T

′
k−1

and T ′
k−2

blue, red and green

respectively.
There is a neighbor a ∈ A1 of x and a neighbor b ∈ A2 of y. There are at

least three neighbors d1, d2, d3 of a not in T ′
k−1

and other than b and at least
three neighbors f1, f2, f3 of b not in T ′

k−1
and other than a. If there is a ui = dj

and/or ui = fl, we can suppose j = 3 and/or l = 3. Also we can suppose d1 6= f1.
We color the edges xa, ad1, yb and bf1 red to get a red Tk−1.

There are at most two of u1, u2 and u3 equal to some of x, y, d1 and f1,
moreover, we can suppose that they are not u1 and u2. Then there is a neighbor
c ∈ A3 of u3. We color the edge u3c blue. At most one of u1 and u2, say u1 is
connected by a red edge to a vertex in A1 or A2, say A1, then we color an edge
between u1 and A2 and an edge between u2 and A1 with color blue to get a blue
Tk. Any vertex in Gk−3 is connected by a colored edge to at most two of A1, A2

or A3 and there are no two distinct vertices in Gk−3 connected by colored edges
to the same two of A1, A2 or A3. Thus we can find an uncolored edge from w to
one class A1, A2, A3 and an uncolored edge from z to a different class A1, A2, A3.
We color these two edges green to get a green Tk−2.

There are at least k − 5, k − 4 and k − 3 or at least k − 5, k − 5 and k − 2
uncolored edges incident to a, b and c respectively. It is easy to see that we can
complete the edge-coloring of G with three new colors to get Tk−5, Tk−4 and
Tk−3.
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Case 2.2.3.2. Tk−1 is a spider. As k > 6, there exist three distinct vertices
x1, x2, x3 in Tk−1 each with at least one neighbor that is a leaf.

Case 2.2.3.2.1. Tk−2 has a pending star R of order r ≥ 3. Let w be the
neighbor of R. Remove a neighboring leaf from each vertex u1, u2, u3 in Tk and
let T ′

k be the remaining graph. Remove a neighboring leaf from each vertex
x1, x2, x3 in Tk−1 and let T ′

k−1
be the remaining graph. Remove the pending star

R from Tk−2 and let T ′
k−2

be the remaining graph.

By induction there is a (k − 4)-edge-coloring of Gk−3 such that each tree
T2, . . . , Tk−r−3, T

′
k−2

, Tk−r−1, . . . , Tk−5, T
′
k−1

, T ′
k is isomorphic to a subgraph span-

ned by the edges of a single color. We will call the color of T ′
k, T

′
k−1

and T ′
k−2

blue, red and green respectively.

Without loss of generality we can suppose that u3, w, x2 are pairwise distinct.
There is a neighbor a of w in A1. There are at least r+1 neighbors d1, d2 . . . , dr+1

of a not in T ′
k−2

. If there is ui = dj , then we can suppose dr+1 = u3. If xl = dr+1

also, then we can suppose l = 3. If one of d1, d2, . . . , dr is equal to some xp, then
we can suppose dr = x2.

Now we color the edges wa, ad1, ad2, . . . , dr−1 green to get a green Tk−2.
There is a neighbor b ∈ A2 of u1 and a neighbor c ∈ A3 of u2. We color the edges
u3a, u1b and u2c blue to get a blue Tk. We color the edge x2a red. Now there is
only one colored edge in G incident to b and only one colored edge in G incident
to c. Furthermore, these two colored edges are not adjacent. Hence we can color
either the edges x1b and x3c or the edges x1c and x3b with color red to get a red
Tk−1.

Now there are at least k − 3 uncolored edges incident to b, k − 3 uncolored
edges incident to c and k − r − 3 uncolored edges incident to a. It is easy to see
that we can complete the edge-coloring of G with three new colors to get Tk−r−2,
Tk−4 and Tk−3.

Case 2.2.3.2.2. Every pending star in Tk−2 is of order 2. Let w be the
neighbor of a pending star R in Tk−2 of order 2. Let z 6= w be a neighbor of a
leaf in V (Tk−2) \R. Remove a neighboring leaf from each vertex u1, u2, u3 in Tk

and let T ′
k be the remaining graph. Remove a neighboring leaf from each vertex

x1, x2, x3 in Tk−1 and let T ′
k−1

be the remaining graph. Remove the pending star
R and a leaf with neighbor z from Tk−2 and let T ′

k−2
be the remaining graph.

By induction there is a (k − 4)-edge-coloring of Gk−3 such that each tree
T2, . . . , Tk−6, T

′
k−2

, T ′
k−1

, T ′
k is isomorphic to a subgraph spanned by the edges of

a single color. We will call the color of T ′
k, T

′
k−1

and T ′
k−2

blue, red and green

respectively.

Without loss of generality we can suppose that x1 6= w. There is a neighbor
a ∈ A1 of z and a neighbor b ∈ A2 of w. There are at least three neighbors
d1, d2, d3 of b which are not in T ′

k−2
and are different from a. We can suppose
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that if z is equal to some ui and/or some xj , then z = u1 and/or z = x2. We
also can suppose that u1, x1 and d1 are pairwise distinct.

We color the edges za, wb and bd1 green to get a green Tk−2. Then we color
an edge between u1 and A2 blue. We color an edge between x1 and A2 red. Now
none of u2, u3, x3 has a colored edge incident to A1 or A3, but it is possible that
there is a colored edge between x2 and a. We can color an edge from x2 to A3

and an edge from x3 to A1 red to get a red Tk−1. Now we can color either the
edges from u2 to A1 and from u3 to A3 or the edges from u2 to A3 and from u3
to A1 with color blue to get a blue Tk.

Now there are at least k − 4 uncolored edges incident to a, k − 5 uncolored
edges incident to b and k − 3 uncolored edges incident to some c ∈ A3.

It is easy to see that we can complete the edge-coloring of G with three new
colors to get Tk−5, Tk−4 and Tk−3.

3. Additional Conjectures and Results

In this section we prove simple propositions for tree packings into graphs with
minimum or average degree conditions. We also introduce some additional con-
jectures.

In the case of k-chromatic graphs, we could assume that the minimum degree
is at least k − 1. This suggests the following generalization of Conjecture 2.

Conjecture 10. For 2 ≤ i ≤ k, let Ti be a tree on i vertices. If a graph G has

minimum degree δ(G) ≥ k− 1, then the set of trees T2, . . . , Tk has a packing into

G.

When the number of vertices of G is large with respect to the minimum degree,
then Conjecture 10 is true:

Proposition 11. For 2 ≤ i ≤ k, let Ti be a tree on i vertices. There is a

constant n0(k) such that if G is a graph on n > n0(k) vertices and minimum

degree δ(G) ≥ k − 1, then T2, . . . , Tk can be packed into G.

This proposition is an easy corollary of the following lemma. Indeed, by the
lemma we can find and remove one by one all the required trees.

Lemma 12. There is a constant n0(k) such that if G is a graph on n > n0(k)
vertices and minimum degree δ(G) ≥ k − 1, and G′ is the graph remaining after

removing an arbitrary set of
(

k
2

)

edges from G, then any tree on k vertices is a

subgraph of G′.

Proof. Let B1 be the set of vertices with degree less than k − 1 in G′. Let
B2 ⊂ V (G′) \ B1 be the neighbors of B1 adjacent to less than k − 1 vertices in
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V (G′) \ B1. For 2 < i ≤ k, let Bi ⊂ V (G′) \ ∪j<iBj be the neighbors of ∪j<iBj

adjacent to less than k − 1 vertices in V (G′) \ ∪j<iBj . Finally let B = ∪i≤kBi.
Note that in each step i, each vertex in ∪j<iBj is adjacent to less than k − 1
vertices of V (G′) \ ∪j<iBj .

Clearly |B1| ≤ 2
(

k
2

)

= k2 − k. Then |B2| ≤ (k − 1)|B1| as each vertex in B2

is a neighbor of some vertex in B1. For 2 < i ≤ k, by the same argument we
have |Bi| ≤ (k− 1)| ∪j<i Bj |, thus | ∪j≤i Bj | ≤ k| ∪j<i Bj |. So |B| = | ∪j≤k Bj | ≤
kk−1(k2 − k) and thus the cardinality of B does not depend on n. Choose n0(k)
to be bigger then this constant, this way there is a vertex not in B.

Choose an arbitrary vertex of the tree as a root and note that each vertex has
a fixed distance in the tree from the root, which is at most k − 1. We denote by
level i the set of vertices of the tree of distance i from the root. Identify the root
with a vertex in V (G′)\B. There are at most k−1 vertices in level 1 and at least
k−1 neighbors of the root in V (G′)\ (B1∪B2∪· · ·∪Bk−1) so we can identify the
vertices in level 1 with the neighbors of the root in V (G′)\ (B1∪B2∪· · ·∪Bk−1).
Similarly by induction we can identify vertices in level i with vertices of distance i
from the root in V (G′)\(B1∪B2∪· · ·∪Bk−i). Indeed, suppose we have identified
levels 1 through i with vertices in G′. Denote by Vi the vertices of G′ that are
identified with vertices of level i of the tree. Each vertex of Vi has at least k − 1
adjacent vertices in V (G′) \ (B1 ∪B2 ∪ · · · ∪Bk−i−1). Since the order of the tree
is k, and since at least one vertex of the tree is already identified with vertices in
G′, we can easily identify the vertices of level i + 1 with vertices that have not
yet been used in the previous steps.

The bound on n given by the proof of Proposition 11 can probably be improved.
However, it seems unlikely that Conjecture 2 can be proved with this type of
argument.

We can weaken the minimum degree condition in Conjecture 10 to get an
even stronger conjecture.

Conjecture 13. For 2 ≤ i ≤ k, let Ti be a tree on i vertices. If the graph G has

average degree at least k− 1, i.e. G has at least k−1

2
n edges, then the set of trees

T2, . . . , Tk has a packing into G.

In this setting it is easy to prove an analogue of the previously-mentioned result
of Bollobás [1].

Proposition 14. Given a fixed s ≤ k/2, for 2 ≤ i ≤ s, let Ti be a tree on i
vertices. If G is a graph with n vertices and at least k−1

2
n edges where k ≤ n,

then the set of trees T2, . . . , Ts has a packing into G.

Proof. We proceed by induction on k. For k = 1 the statement of the propo-
sition obviously holds. Now let us assume that k > 1 and the statement of the
proposition holds for all values less than k.
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Let G be the graph in the statement of the proposition. Remove all vertices of
G with degree less than k−1

2
. Let us continue to remove all vertices with degree

less than k−1

2
from the resulting graphs until the procedure stops. In each round

the average degree cannot decrease, so when the procedure stops we are left with
a graph with minimum degree at least k−1

2
. Thus G contains a subgraph with

minimum degree at least k−1

2
≥ k

2
− 1.

It is easy to see that any tree Ti is a subgraph (i.e. has a packing) into a
graph with minimum degree i − 1. Thus Ts has a packing into G as s ≤ k

2
and

the minimum degree of G is at least k
2
− 1. If we remove the edges of Ts from G

we are left with a graph with at least k−1

2
n− (k

2
− 1) ≥ k−2

2
n edges as k ≤ n and

we are done by induction.

Moreover, from the proof it is easy to see that if we have a graph as in the
statement of Proposition 14, then any packing of Ti, . . . , Ts intoG can be extended
to a packing of T2, . . . , Ts using the remaining edges of G.

Conjecture 13 is strongly related to the following conjecture of Erdős and Sós
[7].

Conjecture 15 (Erdős and Sós [7]). Let Tk be a tree with k vertices. If G is a

graph with n vertices and more than k−2

2
n edges, then Tk is a subgraph of G.

At first glance, Conjecture 13 seems to ask for much more as we have only a few
more edges but we want to pack many more trees. However, for graphs G where
n ≥ 2k, if true, the Erdős-Sós Conjecture easily implies Conjecture 13.

In particular, let G be a graph given in Conjecture 13 and let us assume that
the Erdős-Sós Conjecture is true. Then Tk is a subgraph of G as G has more than
k−2

2
n edges. Removing Tk from G yields a graph G′ with e(G′) ≥ k−1

2
n−(k−1) >

k−2

2
n as n ≥ 2k. Thus by the Erdős-Sós Conjecture, G′ has Tk−1 as a subgraph.

This argument can be continued to find all the trees required by Conjecture 13.

In this paper we proved most of the known results concerning the TPC in the
more general setting where we pack trees into any k-chromatic graph. However,
missing from the more general setting is the analogue of the result of Gyárfás
and Lehel [8] that states that the trees can be packed into Kn if each tree is a
path or a star.
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