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Abstract

Hovey introduced A-cordial labelings in [4] as a simultaneous generaliza-
tion of cordial and harmonious labelings. If A is an abelian group, then a
labeling f : V (G) → A of the vertices of some graph G induces an edge-
labeling on G; the edge uv receives the label f(u) + f(v). A graph G is
A-cordial if there is a vertex-labeling such that (1) the vertex label classes
differ in size by at most one and (2) the induced edge label classes differ in
size by at most one.

Research on A-cordiality has focused on the case where A is cyclic. In
this paper, we investigate V4-cordiality of many families of graphs, namely
complete bipartite graphs, paths, cycles, ladders, prisms, and hypercubes.
We find that all complete bipartite graphs are V4-cordial except Km,n where
m,n ≡ 2(mod 4). All paths are V4-cordial except P4 and P5. All cycles are
V4-cordial except C4, C5, and Ck, where k ≡ 2(mod 4). All ladders P2�Pk

are V4-cordial except C4. All prisms are V4-cordial except P2�Ck, where
k ≡ 2(mod 4). All hypercubes are V4-cordial, except C4.

Finally, we introduce a generalization of A-cordiality involving digraphs
and quasigroups, and we show that there are infinitely many Q-cordial di-
graphs for every quasigroup Q.
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1. Introduction

Graph labelings of diverse types are the subject of much study. The state of the
field is described in detail in Gallian’s dynamic survey [2]. Results obtained so
far, while numerous, are mainly piecemeal in nature and lack generality. In an
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attempt to provide something of a framework for these results, Hovey introduced
A-cordial labelings in [4] as a common generalization of cordial labeling (intro-
duced by Cahit [1]) and harmonious labeling (introduced by Graham and Sloane
[3]).

If A is an additive abelian group, then a vertex-labeling f : V (G) → A of
the vertices of some graph G induces an edge-labeling on G as well by giving the
edge uv the label f(u) + f(v).

Definition 1.1. Let A be an abelian group. We say that a graph G is A-cordial
if there is a vertex-labeling f : V (G) → A such that:

(1) the vertex label classes differ in size by at most one, and

(2) the induced edge label classes differ in size by at most one.

Such a labeling is balanced. If the sizes of the vertex label classes are exactly
equal, then that vertex labeling is perfectly balanced. Similarly, if the sizes of the
edge label classes are exactly equal, then that edge labeling is perfectly balanced.

Cordial graphs are simply the Z2-cordial graphs, while harmonious graphs are
simply the Z|E(G)|-cordial graphs. Both of these concepts have been much studied.
Almost all other works on A-cordiality have also focused on the case where A
is cyclic. This case is indeed very interesting, particularly in light of Hovey’s
conjecture from [4] that all trees are A-cordial for all cyclic groups A (which he
proved for |A| < 6). The conjecture does not extend even to the smallest non-
cyclic group, V4 (i.e. Z2 × Z2); the paths P4 and P5 are easily seen to be not
V4-cordial. Hence, it is natural to investigate V4-cordiality to see how it differs
from A-cordiality when A is cyclic, as we do in Section 3.

Throughout this paper, all graphs are finite and simple, and all quasigroups
are finite. Section 2 considers some conditions guaranteeing that a graph G is
not A-cordial for certain A. Section 3 considers the case A ∼= V4. Finally, Section
4 introduces a generalization of A-cordiality involving digraphs and quasigroups,
showing that there are infinitely many Q-cordial digraphs for every quasigroup
Q.

2. Necessary Conditions for A-Cordiality

The following propositions will be used in the next section. The exponent of an
additive abelian group A is the least n ∈ Z

+ such that na = 0 for all a ∈ A.

Lemma 2.1. If A is an abelian group of exponent 2, then |A| is even. If further

|A| > 2, then
∑

a∈A

a = 0.
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Proof. By the Fundamental Theorem of Finitely Generated Abelian Groups,
an abelian group of exponent 2 is a direct product of copies of Z2. The lemma
follows.

Proposition 2.2. Let A be an abelian group of exponent 2 and order N > 2. If

G is an Eulerian graph with m = |E(G)| ≡ ±2(mod N), then G is not A-cordial.

Proof. Take an Eulerian circuit through G, and label the vertices along it
g1, . . . , gm in order. For all i, let hi = gi + gi+1 (taking the indices modulo
m); these are precisely the labels assigned to corresponding edges. In particular,
∑m

i=1 hi is the sum of all the edge labels. Clearly,

m

2
∑

i=1

h2i−1 =
m
∑

i=1

gi =

m

2
∑

i=1

h2i.

Since any element added to itself equals 0, we conclude that

m
∑

i=1

hi =

m

2
∑

i=1

h2i−1 +

m

2
∑

i=1

h2i = 2
m
∑

i=1

gi = 0.

If the edge label classes were balanced, all but two edge labels would appear
an equal number of times. By Lemma 2.1, the sum of all the elements of A is
0. Canceling sets of N distinct summands implies that there are two distinct
elements of A that sum to 0, which is impossible, since every element of A is
its own inverse. Hence, the edge label classes cannot be balanced and G is not
A-cordial.

Definition 2.3. A graph G is 1-factorable if the edges of G can be partitioned
into disjoint perfect matchings.

Proposition 2.4. Let A be an abelian group of exponent 2 and order N > 2.
Let G be a 1-factorable graph with kN vertices and ℓN ± 2 edges, where k, ℓ ∈ N.

Then G is not A-cordial.

Proof. In an A-cordial labeling of G, the vertices must be perfectly balanced,
since the number of vertices is divisible by N . Partition the edges of G into edge-
disjoint perfect matchings. In each perfect matching, the sum of the vertex labels
must be equal to the sum of the edge labels. Thus by Lemma 2.1, the sum of the
labels on the edges in each of these matchings must be 0. Thus, the sum of all
the edge labels of G is 0. But G has ℓN ± 2 edges, and we have assumed that the
edge labeling is balanced. Canceling sets of N edges with distinct labels implies
that there are two distinct elements of A that sum to 0, which is impossible, since
every element of A is its own inverse. Thus, G is not A-cordial.
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3. V4-Cordiality for Some Families of Graphs

We denote the elements of V4 by 0, a, b, c; the sum of any two of {a, b, c} is the
third, and g + g = 0 for any g ∈ V4.

The study of V4-cordiality was initiated by Riskin [6], who claimed the fol-
lowing results.

Claim 3.1 (Riskin, [6]). The complete graph Kn is V4-cordial if and only if n < 4.

Claim 3.2 (Riskin, [6]). All complete bipartite graphs Km,n are V4-cordial except

K2,2.

Riskin’s proof of Claim 3.1 is essentially correct, except for some arithmetical
errors. However, Claim 3.2 is not true.1 We provide a corrected version of it.

Theorem 3.3. The complete bipartite graph Km,n is V4-cordial if and only if m
and n are not both congruent to 2(mod 4).

Proof. Let X and Y be the partite sets, with |X| = m and |Y | = n. Suppose
that max{m,n} ≥ 4 and suppose that we have a V4-cordial labeling of Km,n.
We note that in V4, for distinct s, t, u, w, we have s + t = u + w. We claim
that one of the partite sets has four vertices with distinct labels. If not, then
some label u appears only in X and some other label w appears only in Y .
This implies that the number of edges joining u-vertices to w-vertices is at least
((m+ n)/4− 1)2 = (m+ n)2/16− (m+ n)/2+ 1. We will derive a contradiction
by showing that there are more than ⌈mn/4⌉ (u+ w)-edges.

By the inequality of arithmetic and geometric means, (m+ n)2/16 ≥ mn/4.
It remains to show that there are more than (m+ n)/2− 1 other (u+ w)-edges,
which we do by counting those joining s-vertices to t-vertices. Let sX , tX be
the number of vertices in X labeled s, t respectively. Then ignoring rounding we
see that the number of such edges is (sX + tX)(m + n)/4 − 2sXtX . Since there
must be at least ⌊mn/4⌋ edges labeled 0, again ignoring rounding we have that
(sX + tX)(m+n)/4−s2X − t2X ≥ mn/4. Therefore (sX + tX)(m+n)/4−2sXtX ≥
(m+n)/2− 1, except in very small cases, which may be verified by hand. Hence
the number of edges labeled u+w is strictly greater than ⌈mn/4⌉, a contradiction.
Thus one of the partite sets has four vertices with distinct labels.

Deleting these four vertices yields a V4-cordial labeling of Km−4,n or Km,n−4.
Thus it suffices to consider m,n < 4. In this family, case analysis shows that
Km,n is V4-cordial if and only if m and n are not both equal to 2.

1An anonymous reviewer has informed us that some of these mistakes were also identified
in an unpublished undergraduate thesis [5]. This thesis may also anticipate some of our other
results. We were unable to obtain a copy.
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Let Pn denote the n-vertex path. As noted above, the paths P4 and P5 are not
V4-cordial. However they are exceptional in this regard.

Theorem 3.4. The path Pn is V4-cordial unless n ∈ {4, 5}.

Proof. If n < 4, the path Pn is obviously V4-cordial.

The path P6 has a V4-cordial labeling with vertices labeled (c, c, 0, b, 0, a) in
order. The path P8 has a V4-cordial with vertices labeled (a, c, a, b, b, c, 0, 0) in or-
der. The path P12 has a V4-cordial labeling with vertices labeled (a, 0, b, 0, c, c, c,
a, b, b, a, 0) in order.

The following two claims complete the proof by induction.

Claim 1. If Pn is V4-cordial and n 6≡ 3(mod 4), then Pn+1 is V4-cordial.

Claim 2. For all n ∈ N, if Pn is V4-cordial, then Pn+8 is V4-cordial.

We begin by proving Claim 1. Given a V4-cordial labeling of Pn, we append a
vertex v to one end and extend the labeling to v, while maintaining V4-cordiality.
We consider three cases for n modulo 4. Let w be the neighbor of v.

When n = 4k, there are exactly k vertices with each label, so the vertex
label classes will be balanced in Pn+1 regardless of how we label v. One edge
label appears k − 1 times, the others k times. Label v so that the edge vw
receives the label that was deficient.

When n = 4k+1, there are exactly k edges with each label, so the edge label
classes will be balanced in Pn+1 regardless of how we label v. Label v so that the
vertex label classes remain balanced.

When n = 4k + 2, there are two labels we could use on v to keep the vertex
label classes balanced. Only one label on vw would cause an imbalance in the
edge label classes, so at least one of the two potential labels for v avoids this label
on vw.

We now prove Claim 2. If Pn has a V4-cordial labeling with an endver-
tex labeled 0, extend by eight edges at that vertex and label the new vertices
a, c, a, b, b, c, 0, 0 in order.

Otherwise, without loss of generality, Pn has an endvertex labeled a. In this
case, extend by eight edges at that vertex and label the new vertices 0, 0, c, b, b, a,
c, a in order.

We now determine which cycles Cn are V4-cordial. Obviously, C3 is V4-cordial
and the square C4 is not. By an easy but somewhat tedious consideration of
cases, it can also be seen that C5 is not V4-cordial.

Theorem 3.5. The cycle Cn is V4-cordial if and only if n /∈ {4, 5} and n 6≡ 2
(mod 4).



562 O. Pechenik and J. Wise

Proof. It follows from Proposition 2.2 that Cn is not V4-cordial when n ≡ 2
(mod 4), since V4 has exponent 2 and order 4.

We now prove that Cn is V4-cordial whenever n is a nontrivial multiple of
4. We proceed by induction with base cases C8 and C12. The vertex labels
(a, c, a, b, b, c, 0, 0) in order show C8 is V4-cordial. The vertex labels (0, a, b, b, a, c,
c, c, 0, b, 0, a) in order show C12 is V4-cordial.

Consider a V4-cordial labeling of Cn, where n 6= 3. There is an edge labeled
0; its endpoints have the same label. Without loss of generality, assume the end-
points are either both labeled 0 or both labeled a. In either case, insert eight ver-
tices into the cycle between the two endpoints and label them (a, c, a, b, b, c, 0, 0)
in order to obtain a V4-cordial labeling of Cn+8.

Finally, we show that if Cn is V4-cordial and n is a multiple of 4, then Cn−1

and Cn+1 are also V4-cordial. Let n = 4k. In a V4-cordial labeling of C4k, there
are exactly k vertices with each label and exactly k edges with each label. In
particular, there is an edge labeled 0, the endpoints of which must share the same
label, say g. Contracting this edge or subdividing it by a new vertex with label
g yields V4-cordial labelings of C4k−1 and C4k+1, respectively.

We next determine which ladders P2�Pn are V4-cordial. The copies of P2 that
appear in each ladder will be referred to as rungs. A rung whose vertices are
labeled g and h will be called a (g, h)-rung.

Theorem 3.6. All ladders P2�Pk are V4-cordial, except P2�P2.

Proof. We first note that the ladders P2�P3, P2�P4, P2�P5, and P2�P6 are
V4-cordial, as shown in Figure 1. In particular, there is a V4-cordial labeling of
these ladders such that one of the end rungs is a (0, 0)-rung.

0 b c c 0 b c b b

0 a a b 0 c a a a

0 c b 0 c b 0 b a

0 a b 0 c b a c a

Figure 1. V4-cordial labelings of the ladders P2�P3, P2�P4, P2�P5, and P2�P6.

If the (b, c)-rung of the 4-ladder P2�P4 shown in Figure 1 is made adjacent to an
end (0, 0)-rung of any labeled ladder (as suggested in Figure 1), then the added
vertices and edges are both perfectly balanced. Using this process, we construct
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a V4-cordial P2�Pk+4 with an end (0, 0)-rung from a V4-cordial P2�Pk with an
end (0, 0)-rung. With the base cases, we construct V4-cordial labelings for all
ladders except P2�P2.

We next determine which prisms P2�Cn are V4-cordial, using “rungs” as above.

Theorem 3.7. The prism P2�Ck is V4-cordial if and only if k 6≡ 2(mod 4).

Proof. We first note that the prisms P2�C3, P2�C4, and P2�C5 are V4-cordial,
as shown in Figure 2. In particular, there is a V4-cordial labeling of these prisms
such that one of the rungs is a (0, 0)-rung.

0 c b 0 b c c 0 b c b b

0 a b 0 a a b 0 c a a a

Figure 2. V4-cordial labelings of the prisms P2�C3, P2�C4, and P2�C5.

From a V4-cordial labeling of P2�Ck with a (0, 0)-rung, we will construct a V4-
cordially-labeled prism P2�Ck+4 with a (0, 0)-rung. Take a V4-cordially-labeled
prism P2�Ck with a (0, 0)-rung and cut it into a ladder by removing two edges, so
that the (0, 0)-rung becomes an end rung. Now make the (b, c)-rung of the ladder
P2�P4 from Figure 1 adjacent to this (0, 0)-rung and add two edges to turn the
resulting ladder into a prism. This operation has not changed the balance of the
labelings. By induction, all prisms P2�Cn with n 6≡ 2(mod 4) are V4-cordial.

Proposition 2.4 shows that P2�C4k+2 is not V4-cordial.

We next determine which hypercubes Qd are V4-cordial. As we saw previously,
the square Q2 is not V4-cordial.

Theorem 3.8. The d-dimensional hypercube Qd is V4-cordial, unless d = 2.

Proof. We prove a stronger statement by induction. We show that if d > 2, then
Qd not only has a V4-cordial labeling, but it has such a labeling with the property
that we can cut Qd into a pair of (d − 1)-dimensional subcubes by removing a
perfectly balanced set of 2d−1 edges.

A V4-cordial-labeling of the cube Q3 is shown in Figure 3. This labeling has
the property that the inside square is cut from the outside square by removing a
perfectly balanced set of four edges.
Now suppose that Qd has a V4-cordial labeling as specified. Let F1 and F2 be
the two (d− 1)-dimensional subcubes obtained by deleting a balanced cut of size
2d−1. We construct a V4-cordial-labeling of Qd+1 by joining two copies of each of
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b

a a

0

b

0 c

c

Figure 3. A V4-cordial labeling of the cube Q3.

F1 and F2 as shown in Figure 4. The hypercubes F1 and F2 are labeled as in a
V4-cordial-labeling of Qd. Each of the four sets of 2d−1 edges between F1 and F2

is perfectly balanced. Furthermore this labeling of Qd+1 has the property that
it may be cut into two d-dimensional subcubes by removing a perfectly balanced
set of 2d edges.

F2

F2

F1

F1

Figure 4. A V4-cordial labeling of the hypercube Qd+1.

Further research on V4-cordiality could address which grids Ph�Pk are V4-cordial.
Our results on ladders resolve the case h = 2. Additionally, it is not hard to see
that the Petersen graph is V4-cordial. By Proposition 2.2, the Kneser graph
K(n, k) is not V4-cordial, if

(

n− k

k

)

is even and

(

n−k
k

)(

n
k

)

2
≡ 2( mod 4).

For example, K(7, 3) is not V4-cordial. Further research could address which
other generalized Petersen graphs or Kneser graphs are V4-cordial.

4. Beyond Abelian Groups

We now generalize the idea of A-cordial graphs to labelings from quasigroups.
A quasigroup Q is a set with a binary operation · such that for all a, b ∈ Q,
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there exist unique c, d ∈ Q such that a · c = b and d · a = b. In particular,
(non-abelian) groups are quasigroups. Lack of commutativity suggests labeling
digraphs. We do not delve deeply here into the study of Q-cordial graphs where
Q is a quasigroup; our goal is merely to motivate the definition by demonstrating
that, for each Q, there is an interesting theory of Q-cordial digraphs.

Definition 4.1. Let Q be a quasigroup. A labeling f : V (G) → Q of the vertices
of a digraph G induces a labeling of the edges of G in the following way. If (a, b)
is a directed edge with head b, then f(a, b) = f(a) · f(b). If there is a balanced
vertex labeling of G that induces a balanced edge labeling of G, then we say that
G is Q-cordial.

(13)

(12)

(123)

(132)

1

Figure 5. An S3-cordial labeling of an orientation of K2,3, with the convention that στ
means apply σ then τ .

Theorem 4.2. Let Q be an n-element quasigroup. If n is even, then for every

positive integer m, there are orientations of Cmn2 and Pmn2 that are Q-cordial.

If n is odd, then for every positive integer m, there are orientations of C2mn2 and

P2mn2 that are Q-cordial.

Proof. Enumerate the elements of Q as q1, . . . , qn. Consider the graph H =
Cn�Cn, where we name the vertices by elements of {1, . . . , n} × {1, . . . , n} in
the canonical way. We call an edge horizontal if its endpoints differ in their first
coordinate. Edges that are not horizontal are vertical.

When n is even, it is easy to find a Hamiltonian cycle through H that alter-
nates horizontal and vertical edges. Fix a direction along such a cycle. Label the
vertex (i, j) with the quasigroup element qi if we leave (i, j) by a vertical edge
and with qj if we leave by a horizontal edge. This gives a balanced labeling of
the vertices of Cn2 . Orient each vertical edge of Cn2 in the direction that it is
traversed and orient each horizontal edge in the opposite direction to how it is
traversed. As there is now one edge labeled with each entry of the multiplication
table for Q, this gives a balanced labeling of the edges of Cn2 , so this orientation
of Cn2 is Q-cordial.

When n is odd, we may modify the construction by finding an Eulerian circuit
through H that alternates vertical and horizontal moves, so that every vertex is
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visited twice, producing a circuit of length 2n2. We label C2n2 following the
labeling of this circuit.

For m > 1, splice together m copies of the appropriate labeled and oriented
cycle.

Deleting any edge, in a label class of maximal size, from any of the labeled
and oriented cycles constructed above gives a Q-cordially-labeled oriented path.

For abelian groups, the orientation of edges is irrelevant, so Theorem 4.2 gives
results for undirected graphs. In particular, we identify the following easy but
important consequence.

Corollary 4.3. For every abelian group A, there are infinitely many A-cordial
cycles and infinitely many A-cordial paths.

In the case where A was V4, we obtained much stronger results. Indeed by
Theorem 3.4, all paths with six or more vertices are V4-cordial. For any particular
abelian group A, Corollary 4.3 is fairly weak. However, it suggests that, for each
abelian group A, the class of A-cordial graphs will be an interesting object. It
would be of interest to study how the structure of the abelian group A relates
to the sequence of natural numbers n for which the path Pn is A-cordial. For
example, V4 has the special property that all sufficiently long paths are V4-cordial.
We can ask the following question:

Question 4.4. Is it true that, for each abelian group A, there exists N such that

Pn is A-cordial whenever n > N?

If the answer is no, then a characterization of the groups that have this property
would be very interesting. The only groups known to have this property are the
cyclic groups (Theorem 2 in [4]) and V4 (Theorem 3.4).
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