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Abstract

A graph is called 1-planar if it can be drawn in the plane so that each
edge is crossed by at most one other edge. We prove that each 1-planar graph
of minimum degree δ ≥ 4 contains an edge with degrees of its endvertices of
type (4,≤ 13) or (5,≤ 9) or (6,≤ 8) or (7, 7). We also show that for δ ≥ 5
these bounds are best possible and that the list of edges is minimal (in the
sense that, for each of the considered edge types there are 1-planar graphs
whose set of types of edges contains just the selected edge type).
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1. Introduction

The research on graph theory particularly deals with structural properties of
graphs. The knowledge of local graph structure is interesting by itself as well as
in study of other graph properties. A typical example is a classical consequence of
Euler polyhedral formula: every planar graph contains a vertex of degree at most
5. This result further developed into theory of unavoidable configurations widely
used in proofs of results on graph colourings (notably, the Four Colour Theorem).
Among several milestones on the way from Euler formula to modern structural
theory of planar graphs, an important position has the theorem of Kotzig [14]
which states that each 3-connected planar graph contains an edge with weight
(that is, the sum of degrees of its endvertices) at most 13, and at most 11 if
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the graph has minimum degree at least 4; in addition, the bounds 13 and 11 are
sharp. This result was generalized in many different directions: various authors
have studied the number of light edges in several families of plane graphs (see
[1, 3, 13]) or projective plane graphs ([16]), the existence of light edges in graphs
embedded in higher surfaces ([7, 9, 10]) or in graphs with given number of edges
([8]); the survey of research in the area of light configurations can be found in
survey papers [11] and [12].

The aim of this paper is to investigate light edges in certain nonplanar graphs
which can be drawn in the plane in such a way that each edge is crossed by at
most one other edge; such graphs are called 1-planar. These graphs were first
introduced by Ringel [15] in connection with simultaneous vertex-face colouring
of plane graphs. The local properties of 1-planar graphs were studied in [4] where,
among other results, the following analogy of Kotzig theorem, was proved: each
3-connected 1-planar graph contains an edge such that each its endvertex has
degree at most 20, and this bound is best possible. Other results on light edges
in 1-planar graphs with prescribed minimum degree and girth can be found in
[5] and [6]. However, the full analogy of Kotzig theorem concerning the weight of
light edges in the family of 1-planar graphs of minimum degree at least 3 is still
not known. In this paper, we prove such a partial analogy for 1-planar graphs of
minimum degree at least 4 and present examples of 1-planar graphs of minimum
degree at least 5 for which our result is best possible.

2. Preliminaries

In this paper we consider simple connected graphs. We use the standard graph
theory terminology [2]. The degree of a vertex v in a graph G is denoted by
degG(v). Similarly, the size of a face f in a plane graph G is denoted by degG(f).
A vertex of degree k (at least k, at most k) is called a k-vertex (≥ k-vertex,
≤ k-vertex, respectively). Similarly, a face of size r (at least r, at most r) is called
an r-face (≥ r-face, ≤ r-face, respectively).

Given a 1-planar graph G, let D(G) denote a 1-planar drawing of the graph.
Referring to the notation from [4], we denote byD(G)× the associated plane graph

of D(G), that is, a plane graph obtained by replacing each crossing in D(G) by
a new 4-vertex (called false in what follows). All other vertices of D(G)× will be
called true. All edges and faces of D(G)× incident to a false vertex will be called
false, all other elements will be called true.

Given an edge uv ∈ E(D(G)×) with endvertices of degree a and b, respec-
tively, we say that uv is of type (a, b); similarly, we say that a 3-face f is of type
(a, b, c) if its vertices have degrees a, b and c, respectively. For type entries, we
will also use the entries ≥ k or ≤ k if the corresponding vertices are of degree at



Light Edges in 1-planar Graphs with Prescribed... 547

least k or at most k. Finally, the symbol ⊗ in edge/face type indicates that the
corresponding vertex is a false vertex.

3. Main Result

Theorem 1. Every 1-planar graph of minimum degree δ ≥ 4 contains an edge

of type (4,≤ 13) or (5,≤ 9) or (6,≤ 8) or (7, 7).

Proof. In the proof of our result we use the classical strategy. Suppose there is a
counterexample G to Theorem 1. Consider a 1-planar drawing D(G) of G. Note
that G contains only edges of type (4,≥ 14) or (5,≥ 10) or (6,≥ 9) or (≥ 7,≥ 8).
We proceed by the Discharging method on the associated plane graph D(G)×.
Assigning the initial charge c(v) = degD(G)×(v)−4 to every vertex v ∈ V (D(G)×)
and c(f) = degD(G)×(f) − 4 to every face f ∈ F (D(G)×), we obtain, according
to the Euler polyhedral formula,

∑

v∈V (D(G)×)

(deg(v)−4)+
∑

f∈F (D(G)×)

(deg(f)−4) =
∑

x∈V (D(G)×)∪F (D(G)×)

c(x) = −8.

Then, we redistribute locally the initial charge of elements of D(G)× by
a set of rules in such a way that the total sum remains the same (negative).
After application of these rules, the initial charge is transformed to a new charge
c̄ : V (D(G)×) ∪ F (D(G)×) → Q. Finally, it is shown that the function c̄ is
nonnegative, yielding that the sum of all new charges is also nonnegative, a cont-
radiction.

Discharging Rules:

Rule 1: Every 5-vertex sends 1
4 to every incident false 3-face.

Rule 2: Every 6-vertex sends 1
3 to every incident false 3-face.

Rule 3: Every 7-vertex sends 1
2 to every incident false 3-face.

Rule 4: Every 8-vertex sends 1
2 to every incident 3-face.

Rule 5: Every 9-vertex sends

• 1
3 to every incident true 3-face of type (9,≥ 9,≥ 9),

• 1
2 to any other incident true 3-face,

• 2
3 to every incident false 3-face of type (9, 6,⊗),

• 1
2 to every incident false 3-face of type (9,≥ 7,⊗).
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Rule 6: For 10 ≤ k ≤ 13, every k-vertex sends

• 1
2 to every incident true 3-face,

• 3
4 to every incident false 3-face of type (k, 5,⊗),

• 2
3 to every incident false 3-face of type (k, 6,⊗),

• 1
2 to every incident false 3-face of type (k,≥ 7,⊗).

Rule 7: For l ≥ 14, every l-vertex sends

• 1
2 to every incident true 3-face,

• 1 to every incident false 3-face of type (l, 4,⊗),

• 3
4 to every incident false 3-face of type (l, 5,⊗),

• 2
3 to every incident false 3-face of type (l, 6,⊗),

• 1
2 to every incident false 3-face of type (l,≥ 7,⊗).

We collect these Rules in a compact table:

Rule deg(x) True 3-faces False 3-faces

1 5 - 1/4

2 6 - 1/3

3 7 - 1/2

4 8 1/2 1/2

5 9
(9,≥9,≥9) other. (9,≥7,⊗) (9,6,⊗)

1/3 1/2 1/2 2/3

6 10≤k≤13
(k,≥7,⊗) (k,6,⊗) (k,5,⊗)

1/2 1/2 2/3 3/4

7 l ≥ 14
(l,≥7,⊗) (l,6,⊗) (l,5,⊗) (l,4,⊗)

1/2 1/2 2/3 3/4 1

After application of Rules we have to consider several cases.

Let f be an r-face (r ≥ 4). The initial charge of f will not change by using
the Rules, hence, the new charge c̄(f) remains nonnegative. By the Rules the
charge is redistributed only from vertices to incident 3-faces. Now, we will check
all types of 3-faces:

Claim 2. After the application of Rules, the charge of every true 3-face is non-

negative.
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Proof. Let f = {abc} be a true 3-face. Note that f can be incident to at most
one vertex of degree 4, 5, 6 or 7.

Case (T1). Let a be a 4-vertex; then b and c are ≥ 14-vertices. By Rule 7
each of b and c sends 1

2 to the face f and c̄(f) = 3− 4 + 2 · 1
2 = 0.

Case (T2). Let a be a 5-vertex; then b and c are ≥ 10-vertices. By Rule 6
(or 7) each of b and c sends 1

2 to the face f , hence c̄(f) = 3− 4 + 2 · 1
2 = 0.

Case (T3). Let a be a 6-vertex; then b and c are ≥ 9-vertices. By Rule 5 (6
or 7) both vertices b and c send 1

2 to the face f , c̄(f) = 3− 4 + 2 · 1
2 = 0.

Case (T4). Let a be a ≥ 7-vertex; then b and c are ≥ 8-vertices. Let
deg(a) ≤ deg(b) ≤ deg(c). If deg(a) ∈ {7, 8} then by Rule 4 (5, 6 or 7) both b

and c send 1
2 to the face f , therefore c̄(f) ≥ 3− 4 + 2 · 1

2 = 0. If deg(a) ≥ 9 then
all three vertices send at least 1

3 to f , that means c̄(f) ≥ 3− 4 + 3 · 1
3 = 0.

Claim 3. After the application of Rules, the charge of every false 3-face is non-

negative.

Proof. Let f = {abc} be a false 3-face with a false vertex c.

Case (F1). Let a be a 4-vertex; then b is a ≥ 14-vertex. By Rule 7 the vertex
b sends 1 to the face f , c̄(f) = 3− 4 + 1 = 0.

Case (F2). Let a be a 5-vertex; then b is a ≥ 10-vertex. The vertex a

sends 1
4 to f by Rule 1 and the vertex b sends 3

4 to f by Rule 6 (or 7), hence
c̄(f) = 3− 4 + 1

4 + 3
4 = 0.

Case (F3). Let a be a 6-vertex; then b is a ≥ 9-vertex. The vertex a sends 1
3

to f by Rule 2 and the vertex b sends 2
3 by Rule 5 (6 or 7) to the face f , therefore

c̄(f) = 3− 4 + 1
3 + 2

3 = 0.

Case (F4). Let a be a ≥ 7-vertex; then b is a ≥ 8-vertex. Both vertices a

and b send 1
2 to the face f by Rule 3 (4, 5, 6 or 7). Hence c̄(f) = 3− 4+2 · 12 = 0.

We can conclude that all faces have nonnegative value of new charge. Next we
consider vertices of D(G)×. We can see that 4-vertices (false or true) are not
influenced by any Rule, so their charge remains zero.

For k ∈ {4, 5, 6, 7} we denote by sk the minimal degree of a vertex adjacent
to a k-vertex in G. Note that s4 = 14, s5 = 10, s6 = 9, and s7 = 8. Furthermore
call a false 3-face of type (k,≥ sk,⊗) a k-small 3-face.

Each edge of type (⊗,≥ sk) can be incident to at most one k-small 3-face
(otherwise two edges of type (k,⊗) from two k-small 3-faces sharing the same
edge of type (⊗,≥ sk) correspond in G to an edge of forbidden type (k, k)). Now,
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we determine Sn
k (x), the number of k-small 3-faces incident to the n-vertex x

(n ≥ sk). In following the Lemmas 4–7 we give an upper bound on Sn
k (x), for

k ∈ {4, 5, 6, 7}.

Lemma 4. For an n-vertex x (n ≥ sk), S
n
k (x) ≤ ⌊2n3 ⌋.

Proof. Each edge of type (k, n) can be incident to at most two k-small 3-faces.
For i = 1, 2, let mi denote the number of k-vertices y adjacent to x, where the
edge xy is incident to exactly i k-small 3-faces. The number of k-small 3-faces
incident to x is Sn

k (x) = m1 + 2m2. Let y be a k-vertex adjacent to x. If the
edge xy is incident to exactly one k-small 3-face α, then α covers exactly two
edges incident to x. We see that no edge incident to α can be incident to another
k-small 3-face incident to x. If the edge xy is incident to exactly two k-small
3-faces, say α, β, then α, β cover exactly three edges incident to x. Again, no
edge incident to α, β can be incident to another k-small 3-face incident to x.
From the number of edges incident to x we have 2m1 + 3m2 ≤ n, which gives
4
3m1+2m2 ≤

2n
3 . Hence m1+2m2 ≤

4
3m1+2m2 ≤

2
3n, which gives Sn

k (x) ≤ ⌊2n3 ⌋.

Lemma 5. Let x be an n-vertex (n ≥ sk) incident to 3-faces only, then

Sn
k (x) ≤

{

⌊n2 ⌋ − 1, n ≡ 2(mod 4),
⌊n2 ⌋, n 6≡ 2(mod 4).

Proof. If an n-vertex x is incident to 3-faces only, then x can be adjacent to at
most ⌊n2 ⌋ false vertices, hence Sn

k (x) ≤ ⌊n2 ⌋. Now, consider an n-vertex where
n = 4m + 2. Since ⌊n2 ⌋ = 2m + 1 we have at most 2m + 1 false vertices. If the
number of false vertices incident to x is at most 2m, then there are at most 2m
k-small 3-faces incident to x. If x is incident to exactly 2m + 1 false vertices,
then since no two k-vertices can be adjacent in G, it follows that the number
of k-vertices incident to x is at most ⌊2m+1

2 ⌋ = m. Hence the vertex x can be
incident to at most 2m = ⌊n2 ⌋−1 k-small 3-faces. Due to this fact, Sn

k (x) ≤ ⌊n2 ⌋−1
for all n = 4m+ 2.

Lemma 6. Let x be an n-vertex (n ≥ sk) incident to exactly one ≥ 4-face. Then

Sn
k (x) ≤ ⌈n2 ⌉.

Proof. If an n-vertex x is incident to exactly one ≥ 4-face, then x can be adjacent
to at most ⌈n2 ⌉ false vertices, hence Sn

k (x) ≤ ⌈n2 ⌉.

Lemma 7. Let x be an n-vertex (n ≥ sk) incident to exactly two ≥ 4-faces. Then
Sn
k (x) ≤ ⌈n2 ⌉+ 1.

Proof. If an n-vertex x is incident to exactly two ≥ 4-faces, then x can be adja-
cent to at most ⌈n2 ⌉+ 1 false vertices, hence Sn

k (x) ≤ ⌈n2 ⌉+ 1.
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Claim 8. After the application of Rules, the charge of every vertex is nonnegative.

Proof. Let x be a k-vertex (k ≥ 5). Note that vertices send charge only to
incident 3-faces and x can be incident with at most 2⌊k2⌋ false 3-faces.

Case (V1). Let k = 5. The vertex x is involved only in Rule 1 and sends a
charge only to incident false 3-faces. Since the degree of x is odd, it follows that
x is incident to at most four false 3-faces and c̄(x) ≥ 5− 4− 4 · 1

4 = 0.

Case (V2). Let k = 6. The vertex x sends 1
3 to every incident false 3-face by

Rule 2. It follows that c̄(x) ≥ 6− 4− 6 · 1
3 = 0.

Case (V3). Let k = 7. The vertex x sends 1
2 to every incident false 3-face

by Rule 3. Again since the degree of x is odd, it follows that x is incident to at
most six false 3-faces and c̄(x) ≥ 7− 4− 6 · 1

2 = 0.

Case (V4). Let k = 8. The vertex x sends 1
2 to every incident 3-face by Rule

4. It follows c̄(x) ≥ 8− 4− 8 · 1
2 = 0.

Case (V5). Let k = 9. Let a (b, b′, c and d) denote the number of ≥ 4-faces
(true 3-faces of type (9,≥ 9,≥ 9), true 3-faces of other types, false 3-faces of type
(≥ 7, 9,⊗) and false 3-faces of type (6, 9,⊗), respectively) incident to x. Note
that a+ b+ b′ + c+ d = 9, which gives d = 9− a− b− b′ − c.

Now, we determine the new charge of the vertex x. Precisely, c̄(x) = 9−4− 1
3 ·

b− 1
2 ·b

′− 1
2 ·c−

2
3 ·d = 5− 1

2(b
′+c)− 1

3b−
2
3(9−a−b−b′−c) = −1+ 2a

3 + 1
6(b

′+c)+ 1
3b.

To ensure the nonnegativity of c̄(x) we need −1 + 2a
3 + 1

6(b
′ + c) + 1

3b ≥ 0, that
implies b′ + c ≥ 6− 4a− 2b, hence d = 9− a− b− b′ − c ≤ 3 + 3a+ b. Clearly, if
d ≤ 3 + 3a+ b then c̄(x) ≥ 0. We consider several cases:

Let a ≥ 1, then 6 ≤ 3 + 3a + b. From Lemmas 4, 6 and 7 it follows that
d ≤ 6, in total d ≤ 6 ≤ 3 + 3a+ b.

Let a = 0; then 3 ≤ 3 + 3a + b. Clearly, if d ≤ 3 then c̄(x) ≥ 0. From
Lemma 5 it follows that d ≤ 4. It remains to consider the case d = 4. Since
x is a 9-vertex incident to 3-faces only, x can be adjacent to at most four false
vertices. Each edge joining a false vertex and x can be incident to at most one
6-small 3-face. Since d = 4 we have b = 1; consequently, b′ = 0 and c = 4. So, it
holds c̄(x) = 9− 4− 1

3 · 1− 1
2 · 4− 2

3 · 4 = 0.

Case (V6). Let 10 ≤ k ≤ 13. Let a (b, c, d and e) denote the number
of ≥ 4-faces (true 3-faces, false 3-faces of type (≥ 7, k,⊗), false 3-faces of type
(6, k,⊗) and false 3-faces of type (5, k,⊗), respectively) incident to x. Note that
a+ b+ c+ d+ e = k, which yields d+ e = k − a− b− c.

Now, we determine the new charge of vertex the x. By computing c̄(x) =
k − 4− 1

2 · b− 1
2 · c− 2

3 · d− 3
4 · e ≥ k − 4− 1

2(b+ c)− 3
4(d+ e) = k − 4− 1

2(b+

c) − 3
4(k − a − b − c) = k

4 − 4 + 3a
4 + 1

4(b + c). To ensure the nonnegativity of

c̄(x) we need k
4 − 4 + 3a

4 + 1
4(b+ c) ≥ 0, which implies b+ c ≥ 16− k − 3a, hence
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d+e = k−a− b− c ≤ 2k+2a−16. Clearly, if d+e ≤ 2k+2a−16 then c̄(x) ≥ 0.
We consider several cases:

Let a ≥ 1. From Lemmas 6, 7 and 4 it follows that d + e ≤ ⌊2k3 ⌋. But, for

10 ≤ k ≤ 13, ⌊2k3 ⌋ ≤ 2k − 14 ≤ 2k + 2a− 16, so c̄(x) ≥ 0 in this case.
Let a = 0. In this case, we prove the following inequality: d+ e ≤ 2k− 16 =

2k+2a−16. In parts, for k = 10 it means that c̄(x) ≥ 0 if d+e ≤ 4. On the other
hand from Lemma 5 for k = 10 it follows that d+e ≤ 4. For k ∈ {11, 12, 13} from
Lemma 5 it follows that d+ e ≤ ⌊k2⌋. But, for k ∈ {11, 12, 13}, ⌊k2⌋ ≤ 2k− 16, so
c̄(x) ≥ 0 in this case.

Case (V7). Let k ≥ 14. Let a (b, c, d, e and f) denote the number of ≥ 4-faces
(true 3-faces, false 3-faces of type (≥ 7, k,⊗), false 3-faces of type (6, k,⊗), false
3-faces of type (5, k,⊗) and false 3-faces of type (4, k,⊗), respectively) incident
to x. Note that a+ b+ c+ d+ e+ f = k, which implies d+ e+ f = k− a− b− c.

Now, we determine the new charge of the vertex x: c̄(x) = k − 4− 1
2 · b−

1
2 ·

c− 2
3 ·d−

3
4 ·e−f ≥ k−4− 1

2(b+c)−(d+e+f) = k−4− 1
2(b+c)−(k−a−b−c) =

a−4+ 1
2(b+ c). To ensure the nonnegativity of c̄(x) we need a−4+ 1

2(b+ c) ≥ 0,
which implies b+ c ≥ 8− 2a, hence d+ e+ f = k− a− b− c ≤ k+ a− 8. Clearly,
if d+ e+ f ≤ k + a− 8 then c̄(x) ≥ 0. We consider several cases:

Let a ≥ 3. From Lemma 4 it follows that d+ e+ f ≤ ⌊2k3 ⌋. But, for k ≥ 14,

⌊2k3 ⌋ ≤ k − 5 ≤ k + a− 8, so c̄(x) ≥ 0 in this case.

Let a = 2. From Lemma 7 it follows that d + e + f ≤ ⌈k2⌉ + 1. But, for

k ≥ 14, ⌈k2⌉+ 1 ≤ k − 6 = k + a− 8, so c̄(x) ≥ 0 in this case.

Consider the case a = 1. From Lemma 6 it follows that d + e + f ≤ ⌈k2⌉.

But, for k ≥ 14, ⌈k2⌉ ≤ k − 7 = k + a− 8, so c̄(x) ≥ 0 in this case.
Finally, let a = 0. Then d+e+f ≤ k−8 = k+a−8. Clearly, if d+e+f ≤ k−8

then c̄(x) ≥ 0.
Particularly, for k = 14 it follows that c̄(x) ≥ 0 only if d+ e+ f ≤ 6. On the

other hand, from Lemma 5 for k = 14, it follows that d+ e+ f ≤ 6.
For k ≥ 15 we have ⌊k2⌋ ≤ k − 8, so c̄(x) ≥ 0 in this case.

The proof of Theorem 1 follows from the above Claims.

Corollary 9. Every 1-planar graph of minimum degree 5 contains an edge of

type (5,≤ 9) or (6,≤ 8) or (7, 7).

Corollary 10. Every 1-planar graph of minimum degree 6 contains an edge of

type (6,≤ 8) or (7, 7).

As a next corollary we get a result proved in [5].

Corollary 11. Every 1-planar graph of minimum degree 7 contains an edge of

type (7, 7).
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Figure 1. 1-planar graph A.

4. Concluding Remarks

Now we show that bounds 9 and 8 from Theorem 1 are best possible and that
the list of edges is minimal in every case (in the sense that, for each δ ≥ 4 and
each of the considered edge types there are 1-planar graphs whose set of types
of edges contains just the selected edge type). We construct 1-planar graphs of
minimum degree δ ≥ 5 such that the set of types of its edges contains only one
edge type from the list. To show the sharpness of the above mentioned bounds,
we use three graphs A,B and C from Figures 1, 2. All of them have a special
vertex v. The graph A on Figure 1 is a 1-planar graph of minimum degree 5.
In the middle of A, there are two 9-cycles C1 and C2 (drawn bold). The ring
between C1 and C2 is filled with nine copies of the grey configuration from Figure
1. It is easy to see that the graph A has only edges of type (5, 9), (5, 10) and
(9, 10).

The graph B on Figure 2 is a 1-planar graph of minimum degree 6 having
only edges of type (6, 8) and (8, 8). It is obtained from a cube graph subdividing
each its edge with a new vertex, then inserting additional vertices into all faces,
joining them with the subdivision vertices at face boundaries; finally, into each
quadrangular face obtained in this way, a pair of crossing diagonals is inserted.

The graph C on Figure 2 is a 7-regular, 1-planar graph already constructed
in [4].

To show that the list of edge types is complete for δ = 5 we construct special
graphs in the following way: we take l > 1 copies of the graph B or C and
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v

v

B C

Figure 2. 1-planar graphs B and C.

identify their special vertex v in one vertex u, thereby obtaining the graph H.
Next, we take five copies H(1), . . . , H(5) of H, a new vertex w and we add new
edges wu(i), i = 1, . . . , 5 (where u(i) is the counterpart of u ∈ H in H(i)). The
resulting 1-planar graph is of minimum degree 5, and edge types from the list
occur only in the copies of graphs B and C. For δ = 6 we proceed similarly with
joining copies of graph C to a 6-vertex w. From these constructions it follows
that all types of edges are essential in the result.

For δ = 4 we show that the bound, although probably not the best possible,
cannot be less than 10: take the graph of Rhomb-Cubo-Octahedron and add to
every 4-face f = {abcd} two new vertices u and v joining them with vertices
a, b, c, d by new edges (see Figure 3). By this construction, we obtain a 1-planar
graph of minimum degree 4, with edges of type (4, 10) and (10, 10). By a similar
construction as in the previous cases for larger δ we can construct 1-planar graphs
of minimum degree 4 with only one desired type of edges.
Considering the infinite 1-planar graph S× which is obtained from the graph S

of the square tiling of the plane using above described completion of 4-faces, we
believe that the best upper bound in the edge type that involves a 4-vertex is
less than 12 (as in S× there are only edges of types (4,12) and (12,12)). It is an
open question whether there exists a 1-planar graph of minimum degree 4 whose
4-vertices are adjacent only with ≥ 11-vertices.

The previous corollaries yield the following analogy of Kotzig theorem:

Corollary 12. Every 1-planar graph with minimum degree δ ≥ 4 contains an

edge with weight at most 17. Moreover, if δ ≥ 5, then the bound is 14 and is best

possible.
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Figure 3. Rhomb-Cubo-Octahedron and a completion of a 4-face.

Since for all n ∈ N and δ = 1, 2 the (1-planar) graphs K1,n and K2,n contain
only edges with one endvertex of degree n, it shows that 1-planar graphs do
not contain, in general, light edges. Thus, it remains to resolve the case δ = 3
(note that the proof of Theorem in [4] uses the fact that the analyzed 1-planar
graph is 3-connected, hence, it cannot be used for 1-planar graphs of minimum
degree 3). To suggest the possible list of edge types in this case, take the graph
of a icosahedron. In each 3-face f = {abc} put three new vertices x, y, z. Then
add new edges ax, ay, az, bx, by, bz, cx, cy, cz preserving 1-planarity. The resulting
graph is 1-planar of minimum degree 3, with edges of type (3, 20) or (20, 20). This
rises a conjecture:

Conjecture 13. Let G be a 1-planar graph of minimum degree 3. Then G

contains an edge of type (3,≤ 20) or (4,≤ 13) or (5,≤ 9) or (6,≤ 8) or (7, 7).
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[13] E. Jucovič, Convex polytopes, Veda Bratislava, 1981 (in Slovak).

[14] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Math. Slovaca 5 (1955)
111–113.

[15] G. Ringel, Ein Sechsfarbenproblem auf der Kugel , Abh. Math. Sem. Univ. Hamburg
29 (1965) 107–117.
doi:10.1007/BF02996313

[16] D.P. Sanders, On light edges and triangles in projective planar graphs , J. Graph
Theory 21 (1996) 335–342.

Received 3 March 2011
Revised 29 September 2011

Accepted 29 September 2011

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.7151/dmgt.1454
http://dx.doi.org/10.1016/S0167-5060\(08\)70614-9
http://dx.doi.org/10.1007/s004930100001
http://dx.doi.org/10.1007/BF02996313
http://www.tcpdf.org

