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Abstract

A (p,q)-graph G is (a,d)-edge antimagic total if there exists a bijection
f V(@) UE(G) — {1,2,...,p + q} such that the edge weights A(uv) =
f(u) + fluww) + f(v), wv € E(G) form an arithmetic progression with first
term a and common difference d. It is said to be a super (a, d)-edge antimagic
total if the vertex labels are {1,2,...,p} and the edge labels are {p+1,p +
2,...,p+ q}. In this paper, we study the super (a,d)-edge antimagic total
labeling of special classes of graphs derived from copies of generalized ladder,
fan, generalized prism and web graph.
Keywords: edge weight, magic labeling, antimagic labeling, ladder, fan
graph, prism and web graph.
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1. INTRODUCTION

By a graph G we mean a finite, undirected, connected graph without any loops
or multiple edges. Let V(G) and E(G) be the set of vertices and edges of a graph
G, respectively. The order and size of a graph G is denoted as p = |V (G)| and
q = |E(G)| respectively. For general graph theoretic notions we refer Harrary [6].
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By a labeling we mean a one-to-one mapping that carries the set of graph elements
onto a set of numbers (usually positive or non-negative integers), called labels.
There are several types of labelings and a detailed survey of many of them can
be found in the dynamic survey of graph labeling by Gallian [5].

Kotzig and Rosa [9] introduced the concept of magic labeling. They define an
edge magic total labeling of a (p,q)-graph G as a bijection f from V(G) U E(G)
to the set {1,2,...,p + ¢} such that for each edge uv € E(G), the edge weight
f(u) + f(uv) + f(v) is a constant.

Enomoto et al. [3] defined a super edge magic labeling as an edge magic
total labeling such that the vertex labels are {1,2,...,p} and edge labels are
{p+1,p+2,...,p+ q}. They have proved that if a graph with p vertices and
q edges is super edge magic then, ¢ < 2p — 3. They also conjectured that every
tree is super edge magic.

As a natural extension of the notion of edge magic total labeling, Hartsfield
and Ringel [7] introduced the concept of an antimagic labeling and they defined
an antimagic labeling of a (p,q)-graph G as a bijection f from E(G) to the set
{1,2,...,q} such that the sums of label of the edges incident with each vertex
v € V(G) are distinct.

Simanjuntak et al. [10] defined an (a,d)-edge antimagic total labeling as a
one to one mapping f from V(G)U E(G) to {1,2,...,p+ ¢} such that the set of
edge weight { f(u)+ f(uv)+ f(v) : uwv € E(G)} is equal to {a,a+d,a+2d,...,a+
(¢ — 1)d} for any two integers a > 0 and d > 0.

An (a, d)-edge antimagic total labeling of a (p, ¢)-graph G is said to be super
(a,d)-edge antimagic total if the vertex labeles are {1,2,...,p} and the edge
labeles are {p+1,p+2,...,p+¢q}. The super (a,0)-edge antimagic total labeling
is usually called as super edge magic in the literature (see [3, 4]).

An (a,d)-edge antimagic vertex labeling of a (p,q)-graph G is defined as a
one to one mapping f from V(G) to the set {1,2,...,p} such that the set of edge
weight {f(u) + f(v) : wv € E(G)} is equal to {a,a+d,a+2d,...,a+ (¢ — 1)d}
for any two integers a > 0 and d > 0.

In [2] Baca et al. proved that if a (p, ¢)-graph G has an (a, d)-edge antimagic
vertex labeling then d(¢ —1) <2p—1—a < 2p—4.

Also in [1] Ba¢a and Barrientos proved the following: if a graph with ¢ edges
and ¢ + 1 vertices has an a-labeling, then it has an (a, 1)-edge antimagic vertex
labeling. A tree has (3, 2)-edge antimagic vertex labeling if and only if it has an
a-labeling and the number of vertices in its two partite set differ by at most 1. If
a tree with at least two vertices has a super (a, d)-edge antimagic total labeling,
then d is at most 3. If a graph has an (a, 1)-edge antimagic vertex labeling, then
it also has a super (a1, 0)-edge antimagic total labeling and a super (ag, 2)-edge
antimagic total labeling.

In [12] Sugeng et al. studied the super (a,d)-edge antimagic total properties
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of ladders, generalized prisms and antiprisms.
We make use of the following lemmas for our further discussion.

Lemma 1. If a (p,q)-graph G is super (a,d)-edge antimagic total, then d <
2p+q—5
qg—1 -

Lemma 2. If a (p,q)-graph G has an (a,1)-edge antimagic vertex labeling and
odd number of edges, then it has a super (a’,1)-edge antimagic total labeling,

! _ a+
where @' = a+p+ 5.

Lemma 3. If a (p,q)-graph G has an (a,d)-edge antimagic vertex labeling, then
G has a super (a’,d')-edge antimagic total labeling, where o' = a +p + 1 and
d=d+1lord =a+p+qgandd =d—1.

Lemma 2 appeared in [11] and Lemma 3 appeared in [2].

In this paper, we study the super (a, d)-edge antimagic total labeling of spe-
cial classes of graphs derived from copies of generalized ladder, fan, generalized
prism and web graph.

2. A GrAPH DERIVED FROM COPIES OF GENERALIZED LADDER

Let (ui1, wi2, - ..y Uin, Vi1, Vi2, --., Vin), 1 <i <t, be a collection of ¢ disjoint
copies of the generalized ladder £,, n > 2, such that u;; is adjacent to wu; j41,
v;,j+1 and v; j is adjacent to v; j41 for 1 < j < n—1 and u; ; is adjacent to v; ; for
1 < j < n. We denote the graph obtained by joining u; , to wit1,1, Ui+1,2, Vig1,1,
1<i<t—1, as ££f). Clearly, the vertex set V' and the edge set E of the graph
£$f ) are given by

V(£7(f)) ={ui;,vj:1<i<t,1<j<n}and E(£7(f)) = F1UEyU E35 where

By = {u jui 41, 0ij0i 1, w41 1 1 < i <81 < j <m— 1},

Ey ={u;jvij:1<i<t,1<j<n},

B3 = {tintiy1,1, Uintiy1,2, UinVipr 0 1 <4 <t — 1}

It is easy to see that for .£,(~f), we have p = 2nt and ¢ = 4nt — 3.

Lemma 4. The graph ££f), n,t > 2 has an (a, 1)-edge antimagic vertex labeling.
Proof. Let us define a bijection fi : V(£$f)) —{1,2,...,2nt} as follows:
Alui;)=20—-1n+2j—1 if1<i<tand1<j<n,
fi(vij) =2(i —1)n+2j ifl<i<tand1<j<n.
By direct computation, we observe that the edge weights of all the edges of ,€7(f ),
constitute an arithmetic sequence {3,4,..., 4nt — 1}. Thus f; is an (3, 1)-edge
antimagic vertex labeling of £§f ), ]
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Theorem 5. The graph £$f), n,t > 2, has a super (a,d)-edge antimagic total
labeling if and only if d € {0,1,2}.

Proof. If the graph ££f), n,t > 2, is super (a,d)-edge antimagic total, then by
Lemma 1, we get d < 2.

Conversely, by Lemma 4 and Lemma 3, we see that the graph ££f ), n,t > 2
has a super (6nt,0)-edge antimagic total labeling and a super (2nt + 4,2)-edge
antimagic total labeling.

Also by Lemma 2, we conclude that the graph .,8%), n,t > 2, has a super
(4nt 4+ 2, 1)-edge antimagic total labeling, since ¢ = 4nt — 3, which is odd for all
n and t. ]

2 4 6 8 10 12 14 16 18 20 22 24

Figure 1. (a,1)-edge antimagic vertex labeling of .,€f).

3. A GRAPH DERIVED FROM COPIES OF FAN GRAPH

Let (i, w;, vi1,vi2,...,0im), 1 <i<t, be a collection of t disjoint copies of the
fan graph Fp, 2, m > 2, such that u; is adjacent to w; and v; ; is adjacent to both
u; and w; for 1 < j < m. We denote the graph [8] obtained by joining v; ., to

. (t)
Uit1, Vit1,1, Vit1,2, L S0 <t —1, a8 F

5. Clearly, the vertex set V' and the edge
set F of the graph .7-",(22 are given by
V(‘Fr()i?Z) = {u;,w;,v;;: 1 <i <t 1<j<m} and
E(}"g)Q) = {ujw;, uv; j,wiv; 1 1 <1 <t,1<j<m}
U {0i,mWit1, VimVit1,1,VimVit1,2 1 1 <@ <t —1}.
It is easy to see that for .7-"7(22, we have p = (m + 2)t and ¢ = (m + 2)2t — 3.

Lemma 6. The graph .7-'7(,3?2, m,t > 2, has an (a,1)-edge antimagic vertex label-
mng.

Proof. Let us define a bijection fs : V(fﬁ?z) —{1,2,...,(m+ 2)t} as follows:
fa(u)) =(@—1)(m+2)+1 if1<i<t,
fg(wi) = (m+2)i if 1 Sigt,
fQ(Ui’]’): fg(ul)—l-] ifl1<i<tand1<j<m.
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By direct computation, we observe that the edge weights of all the edges of ]—"7(7;:?2

constitute an arithmetic sequence {3,4, ..., 2t(m+2) —1}. Thus fs is an (3,1)-

edge antimagic vertex labeling of }"7%7)2. [

Theorem 7. The graph .7:7(,122, m,t > 2, has a super (a,d)-edge antimagic total
labeling if and only if d € {0,1,2}.

Proof. If the graph .Fr(nt)Q, m,t > 2, is super (a,d)-edge antimagic total, then by
Lemma 1, we get d < 2.

Conversely, by Lemmas 3 and 6, we see that the graph fg?w m,t > 2, has a
super ((m + 2) 3t,0)-edge antimagic total labeling and a super ((m + 2)t+ 4,2)-
edge antimagic total labeling.

Also by Lemma 2, we conclude that the graph F (t?Q, m,t > 2, has a super

m

((m + 2)2t + 2,1)-edge antimagic total labeling, since ¢ = (m + 2)2t — 3, which
is odd for all m and ¢. |

Figure 2. (a,1)-edge antimagic vertex labeling of .7-'?552)

4. A GRAPH DERIVED FROM COPIES OF GENERALIZED PRISM

Let (Ui(f;-), 1<i<m,1<j5<mn),1<k<t, bea collection of ¢ disjoint copies of
the generalized prism C,, x P,, m > 3, n > 2, such that o™ s adjacent to ,Ul(i)l,j

,J
forlgigm—l,lgjgn,vﬁi)j g?forlgjgnandvg?is

adjacent to U(k) for1<i<m,1<j<n-—1. We denote the graph obtained

ij+1
by joining vfﬁ)n to US?LI) if n is odd or vﬁ)l to vgﬁﬂ)
1<k<t—1as (Cp x P,)®. Clearly, the vertex set V and the edge set E of

the graph (C,, x P,)® are given by V((C,, x P,)") = {’UZ(};) 1<k<t,1<i<

is adjacent to v

if n is even for 1 < i < m,
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m,1 <j <n}and E((Cy, x P,)¥) = Ey U Ey U E3 where

Ey={oo) 1<k <t1<i<m-11<j<n}
U{vmjvgj) 1<k<t,1<j<n},
E—{v ”)H 1<k<t,1<i<m,1<j<n-—1}

E—{U k+):ifnisoddand1§k§t—1,1§i§m}

m,n 21

(k) (k+1)
N zl

U {v; cifnisevenand 1 <k <t—1,1<i<m}.

It is easy to see that for (Cp, x P,)®), we have p = mnt and ¢ = m(2nt — 1).

Lemma 8. For odd m, m > 3 and n,t > 2, the graph (Cp, x P,)® has an
(a,1)-edge antimagic vertez labeling.
Proof. Let us define a bijection f5 : V/((Cp, x Py)") — {1,2,...,mnt} as follows.
Ifjisoddandlgigm,1§j§n,1§k§t,then
fg(vy;.)) _ {(k—l)mn—i—(j:—l)m—&—”zl‘ 1fz %s odd,
’ (k—L)mn+ (j — 1)m + ZEEL i § is even.
Ifjisevenand 1 <i<m,2<j<n,1<k<t, then
f3(’l}(k<)) _ {(k —1)mn+(j—1)m+ m;” if 7 is odd,
" (k=1mn+(G—-1)m+3 if 7 is even.
By direct computation, we observe that the edge weights of all the edges of (C,, x
Pn)(t) constitute an arithmetic sequence {mT%’, %ﬁ,...,%}. Clearly
mT‘Hi is an integer only when m is odd. Thus f3 is an (m;' 3 1)—edge antimagic
vertex labeling of (Cy,, x P,,)®, for odd m. |

Theorem 9. For odd m, m > 3 and n,t > 2, the graph (Cy, x Pn)(t) has a super
(a,d)-edge antimagic total labeling if and only if d € {0,1,2}.

Proof. If the graph (C,, x P,)®, m > 3 and n,t > 2, is super (a,d)-edge
antimagic total, then by Lemma 1 we get

2p+q—5 _ 2mnt+m(2nt—1)—5 __ m—3
d< q—1 m(2nt—1)—1 _2+2mntm1

Since 2mnt —m — 1 > 0, for m > 3, n,t > 2, it follows that
hence d < 3.

Conversely, by Lemma 8 and Lemma 3, we obtain that for odd m, the graph
(Chp X Pn)(t), m > 3, n,t > 2, is both super (mTJ“Q’ +p+gq, 0)—edge antimagic total
and super (mT‘F?’ +p+1, 2)—edge antimagic total.

Also by Lemma 2, we conclude that the graph (C), x Pn)(t), m >3, n,t>2,
has a super <mT+3 +p+ q;r—l, 1>—edge antimagic total labeling, since ¢ = m(2nt —
1), which is odd for odd m. |

< 1 and

2mnt m—1
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6 4 12 10
Figure 3. (a,1)-edge antimagic vertex labeling of (C3 x Py)(?).

5. A GRAPH DERIVED FROM COPIES OF GENERALIZED WEB GRAPH

Let (v Z(j), 1<i<m,1<j<n+1),1<k<t, bea collection of ¢ disjoint copies
of the generalized web graph W (m,n), m > 3, n > 2, such that vg’kj) is adjacent
tovz(+)1] for1<i<m-—1,1<j<n, vf,]f)] isadjacenttovyz) for 1 < j <n and
v(];) is adjacent to v( )+1 for1 <i<m,1<j <n. We denote the graph obtained
by joining vg ) to v(kH) and v ( Yifor1<i< m, 1 <k<t—1as (W(m,n))®.
Clearly, the vertex set V and the edge set E of the graph (W (m,n))® are given
by V(W (m,n))®) = {vz(];) 1 <k<tl1<i<ml<j<n+1} and
E(W(m,n))®) = E1 U Ey U E3 where

E—{v o 1<k <t1<i<m-1,1<j<n}
U{vmjvlj) 1<k<t1<j<n},

Es —{v” v 1<k <t1<i<m 1<) <nl,

E3={1,n gﬁﬂ)w%kg Z(]Z“ 1<k<t-1,1<i<m}.

It is easy to see that for (W (m,n))®), we have p = mt(n+1) and ¢ = 2m(nt+t—1).

Lemma 10. For odd m, m > 3, n,t > 2, the graph (W (m,n))® has an (a,1)-
edge antimagic vertex labeling.

Proof. Let us define a bijection f4 : V(W (m,n))®) — {1,2,...,mt(n + 1)} as
follows:
Case (i): n is even.
Ifjisoddand 1 <i<m,1<j<n+1,1<k<t, then
(k) (k—1)(mn+m)+ (j — I)m+ L if 7 is odd,
falvij) = {(k —1)(mn+m)+ (j — 1)m + 2HEL if § is even.
Ifjisevenand 1 <i<m,2<j<n,1<k<t, then
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o« 9 7 o 21 197
12 23
Figure 4. (a,1)-edge antimagic vertex labeling of (W (3,3))(®.

f4(U§;;)):{(k:—l)(mn+m)+(j—1)m+@2+i if 7 is odd ,
’ (E=1)(mn+m)+ (G —-1)m+3 if i is even.
Case (ii): n is odd.
Ifjisoddand 1 <i<m,1<j<n,1<k<t, then
Wy (=1 (mn+m)+ (j — Dm+ 2 if i is odd,
falvig) = (k—1)(mn+m)+ (j —)m+ % if ¢ is even.
Ifjisevenand 1 <i<m,2<j<n+1,1<k<t, then
Wy (E=1)(mn+m)+(j—m+ S if 7 is odd,
falvig) = (k—1)(mn+m)+ (j — D)m + 2+ if § is even.
In both the cases, we observe that under the bijection fy, the edge weights of all

the edges of (W (m,n))® constitute an arithmetic sequence ok mid

=~
m+4mm+§‘m(t_l)+l}. Clearly ™2 is an integer only when m is odd. Hence the

m—+3
2

vertex labeling fy is an ( ,1)-edge antimagic vertex labeling of (W (m, n))®),
for odd m. ]

Theorem 11. For odd m, m > 3, n,t > 2 and d € {0,2}, the graph (W (m,n))®,
has a super (a,d)-edge antimagic total labeling.

Proof. By Lemmas 3 and 10, we see that for odd m, the graph (W (m,n))®,
m > 3, n,t > 2 has a super (mT‘*'S +p+aq, O)—edge antimagic total labeling and a
super (m;“g +p+1, 2) -edge antimagic total labeling. [
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