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Abstract

For n ≥ 4, the complete n-vertex multidigraph with arc multiplicity λ is
proved to have a decomposition into directed paths of arbitrarily prescribed
lengths ≤ n−1 and different from n−2, unless n = 5, λ = 1, and all lengths
are to be n−1 = 4. For λ = 1, a more general decomposition exists; namely,
up to five paths of length n− 2 can also be prescribed.
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1. Introduction

We use standard notation and terminology of graph theory [1, 3, 4] unless other-
wise stated. Multigraphs and multidigraphs may have multiple edges and mul-
tiple arcs, respectively, loops are forbidden. For a multigraph G, let DG denote
a multidigraph obtained from G by replacing each edge with two opposite arcs
connecting endvertices of the edge.

Given a positive integer λ, the symbol λDKn stands for the complete λ-
multidigraph on n vertices, obtained by replacing each arc of DKn by λ arcs
(with the same endvertices).

By a decomposition of a multidigraph G we mean a family of arc-disjoint
submultidigraphs of G which include all arcs of G.

In [6] we have stated the following general conjecture.

1The research was supported by the Ministry of Science and Information Society Technologies

of the Republic of Poland, Grant No. 1 P03A 037 27.
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Conjecture. The complete n-vertex multidigraph λDKn is decomposable into

paths of arbitrarily prescribed lengths (≤ n− 1) provided that the lengths sum up

to the size λn (n−1) of λDKn, unless all paths are hamiltonian and either n = 3
and λ is odd or n = 5 and λ = 1.

The known supporting results are summarized in three theorems.

Theorem A (Bosák [3, Corollary 11.9A]). The multidigraph λDKn is decompos-

able into hamiltonian paths if and only if neither n = 3 and λ is odd nor n = 5
and λ = 1.

In case λ = 1 the assertion in Theorem A was noted by Bermond and Faber [2]
for even n and completed by Tillson [9] for odd n ≥ 7. The assertion answers a
question which (according to Mendelsohn [5]) was posed by E.G. Strauss. Bosák
settled the cases n = 3, 5 by extending (to any λ) former contributions in the
case λ = 1, see [2] for contributions in general.

Theorem B (Meszka and Skupień [6]). For n ≥ 3, the complete n-vertex multi-

digraph λDKn is decomposable into nonhamiltonian paths of arbitrarily prescribed

lengths (≤ n−2) provided that the lengths sum up to the size λn (n−1) of λDKn.

The following observation can easily be checked.

Theorem C. Conjecture is true for n ≤ 4 and λ = 1.

In this paper we contribute to the results mentioned above by showing that the
conjecture holds true in case when only the length n − 2 is excluded. In the
following theorem, which is the first of our main results, up to five paths of
length n− 2 are allowed.

Theorem 1. For any integer n ≥ 4, the complete n-vertex digraph DKn has a

decomposition into paths of arbitrarily prescribed lengths provided that the number

of paths of length n− 2 is not greater than 5 and lengths of paths sum up to the

size n (n− 1) of DKn, unless n = 5 and all paths are to be hamiltonian.

Corollary 2. For any positive integer n ≥ 4, the complete n-vertex digraph DKn

has an anti-1-defective path decomposition if the arbitrarily prescribed lengths of

paths ( 6= n− 2) sum up to the size n (n− 1) of DKn, unless n = 5 and all paths

are to be hamiltonian.

Next we shall give a short proof, an adaptation of the related proof in [6], of
the following extension from digraphs to the case of multidigraphs. The proof
involves partitioning of the decomposition problem for a complete multidigraph
λDKn into λ problems each for the complete digraph DKn.
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Theorem 3. For n ≥ 4, the complete n-vertex multidigraph λDKn has a decom-

position into paths of arbitrarily prescribed lengths different from n− 2, provided
that the lengths of paths sum up to the size λn (n − 1) of λDKn, unless n = 5,
λ = 1, and all paths are to be hamiltonian.

The corresponding decompositions of a complete multigraph into arbitrary paths
was originated by Tarsi [8], see [6] for some subsequent results.

2. Preliminaries

The symbol v1→ v2 denotes the arc which goes from the tail v1 to the head v2,
whilst the symbol v1  v2 is used to denote a path with the initial vertex v1
and the terminal one v2. Given a multidigraph, the names walk, trail and path

stand for alternating sequences of vertices and (consistently oriented) arcs where
each arc a is preceded by the tail of a and is followed by the head of a. Recall
that arcs are not repeated in trails. Vertices (and arcs) are not repeated in open
paths. Closed trails and closed paths are named tours and cycles, respectively.

Note that names path and cycle can stand also for digraphs ~Pn, ~Cn, respec-
tively, where the subscript n denotes the number of vertices; n ≥ 1 and n ≥ 2,
respectively.

2.1. Useful tours

Let W0 be a sequence of (possibly repeated) vertices of the digraph DKn, say
W0 = 〈x1, x2, . . . , xk〉 where denotation involves angle brackets. In what follows
we use the convention that the phrase ‘walk W0’ refers to the walk whose subse-
quence of vertices is W0. If applicable, the word ‘walk’ in the phrase is replaced
by ‘trail’, ‘path’, ‘tour’, or ‘cycle’. Moreover, the symbol 〈W0〉 stands for the
digraph induced by the arc set of the walk W0.

Definition 1. Assume that n ≥ 5. For odd and even n separately, the vertex
sequence denoted by W0(n) or W0 is defined as follows:

(i) For odd n ≥ 5, the vertices are denoted by ∞, 0, 1, . . . , n − 2 and W0 =
〈∞, 0, 1, . . . , n−3

2 , n+1
2 ,∞〉, which represents a cycle ~Cn−1 in DKn. It is as-

sumed that the walk W0 avoids the vertex n−1
2 but includes the initial path

∞→ 0→ 1→n− 2 together with the following arcs:

n− k → k, 2 ≤ k ≤ n−3
2 ,

k → n− k − 1, 2 ≤ k ≤ n−3
2 ,

and the terminal arc n+1
2 →∞, see Figure 1, wherein n = 9. Thus the walk W0

is indeed a cycle.
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Figure 1. n = 9

(ii) For even n ≥ 6, the vertices are denoted by ∞,∞, 0, 1, . . . , n− 3 and W0 =
〈∞, 0,∞, 1, n − 3, . . . ,n−4

2 , n2 ,∞〉, which represents a cycle ~Cn−1 in DKn. We
assume that the walk W0 avoids the vertex n−2

2 and comprises the initial path
∞→ 0→∞→ 1→n− 3 as well as the following arcs:

n− k − 1 → k, 2 ≤ k ≤ n−4
2 ,

k → n− k − 2, 2 ≤ k ≤ n−4
2 ,

and the terminal arc n
2 →∞, see Figure 2, for n = 10.

•4 •5

•1 •0

•3

•2

•6

•7

•∞
•∞

.....................................................................................................................................................................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..
..
..
..
..
..
..
..
..
..
..
..
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.........................................................................................................................................................................................................
......
......
......
..

..
..
..
..
..
..
..
..
..
..
..
..
..

.....................................................................................................................................................................................................................................................................
....
....
....
....
....
..

..........................

.....................................................................................................................................................................................................................................................................................
.......

.......
.....

..
..
..
..
..
..
..
..
..
..
..
..
..

.....................................................................................................................................................................................................................................................................
....
....
....
....
....
..

..........................

.........................................................................................................................................................................................................
......
......
......
..

..
..
..
..
..
..
..
..
..
..
..
..
..

Figure 2. n = 10

Note that vertex labels in DKn which are finite (not ∞ or ∞) range over all
integers modulo ñ where

ñ :=

{

n− 1 for odd n,
n− 2 for even n.

(1)

Definition 2. Given any positive integer x, letWx stand for the sequenceW0+x
obtained from the sequence W0 by adding x to each term of W0, the addition
being modulo ñ, with ∞ +x = ∞, ∞ + x = ∞. Therefore the symbolWx stands
for a walk obtained from the walk W0 by x-fold rotation γx around either the
fixed vertex ∞ if n is odd or the two fixed vertices ∞ and ∞ if n is even, that
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is, Wx = γx[W0] with convention that γ[·] is the extension of γ to sequences, γx

is the iterate of γ, and γ is the permutation

γ :=

{

(∞) (0, 1, 2, . . . , n− 2) for odd n,
(∞)(∞) (0, 1, 2, . . . , n− 3) for even n.

(2)

Definition 3. Using the abbreviation ñ, define W , W =W0W1 . . . Wñ−1, to be
the unification of the ñ sequences Wx such that the neighboring symbols ∞ are
glued together to the single ∞. Arcs of DKn which are not represented in W
constitute either the (n− 1)-cycle

C = 〈0, n− 2, n− 1, . . . ,0〉 if n is odd

or otherwise the union of three cycles of which one, C ′′ := 〈∞, ∞, ∞〉, is of
length 2 but C := 〈0, n− 3, n− 4, . . . ,0〉 and C ′ := 〈0, 1, . . . ,n− 3, 0〉 are both
of length n− 2.

Note that W represents a closed walk of DKn. In fact, the walk is a tour because
arcs do not repeat for the following reasons:

• The initial tourW0 does not include any arc joining vertices which are fixed
under γ.

• The indegree and outdegree of any fixed vertex (∞ or ∞) are (at most) one
in W0. Hence any arc incident to a fixed vertex does not repeat in W .

• Arc lengths along the ñ-cycle of γ for all remaining arcs in the initial tour
W0 are mutually distinct. Recall that the length of the arc u→ v, defined
to be v − u mod ñ, is an invariant under γ.

2.2. Useful conventions

We assume that the names of vertices as well as the related subscript x which
refers to x-fold rotation γx both read modulo ñ. Given a term v of the sequence
Wx =< t0, t1, . . . ,tn−1 >, an integer j is called a position of v in Wx whenever
v = tj , 0 ≤ j < n−1. Hence the position j of v in Wx is uniquely determined. In
particular, 0 is defined to be the position of ∞ in each Wx. However, if v = ∞,
we use the symbols ∞x and ∞′

x to denote the first and second appearance of the
vertex ∞ in Wx; in fact, ∞′

x = ∞x+1. Note that, for even n, j = 2 is the position
of ∞ in any Wx.

”u, v encoding”. Letters v and u stand for vertices only. Then given a vertex
w with w = u or v, any subscript at w is assumed to refer to a rotation so that wx
denotes the image of w under the x-fold rotation γx. Then wx = (w + x) mod ñ
and therefore w = w0 for each vertex w which is not a fixed point of γ, otherwise
∞x = ∞ and ∞x = ∞ for each subscript x. Hence, if w 6= ∞ then the ‘situation’
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of wx on Wx, that is, either the position of wx in Wx or the fact that Wx avoids
wx, is the same as that of w (= w0) on W0.

Given a vertex v taken as either a term of Wk or a vertex omitted by the
tour Wk, we define the preimage of v to be ∞0, the first vertex of W0, if v = ∞x

for any x. Otherwise, if v 6= ∞x, the preimage of v is to be the vertex u, u = u0
(possibly a term of W0), such that γk u0 = v, i.e., u = (v − k) mod ñ, see (1) for
ñ.

2.3. Repetition distance, girth, and path structure

A trail is called nonsimple if a vertex is repeated. A girth of a trail (simple
or nonsimple trail) is defined to be the least length among closed walks being
sections of the trail. Thus the girth of a trail can be larger than the girth of the
multidigraph induced by the arcs of the trail.

We intend to present a method of how to cut off all prescribed paths. To
this end, we shall investigate the path structure of the tour W . Because of the
rotational structure of W , it suffices to determine longest sections of W which
are paths starting at any vertex v (which is not the last vertex) in the initial tour
W0, v 6= ⌊n−1

2 ⌋ (the vertex omitted by W0).
For each vertex v which appears both in W0 and in W1, let the repetition

distance of v0, denoted by r(v0), be the smallest nonzero length among v0  v
closed subwalks of the tour W0W1, where v0 stands for the first appearance of
v in W0. Therefore r(v) is not defined for v = ⌊n−1

2 ⌋ ( 6∈ W0) and for v = ⌊n+1
2 ⌋

( 6∈ W1). Due to the rotational structure of W , the girth of W is the minimum
value of the function r(·).

Lemma 4. The girth of the tour W equals n− 3.

Proof. It is enough to show that min r(·) = n − 3. For this purpose, note that
r(∞) = r(∞) = n − 1. For the remaining values of v0, r(v0) is the length of
the v0  u1 tour where u1 is a term of W1 such that u1 = v and therefore the
preimage u (= u0) of u1 is equal to u0 = (v0 − 1) mod ñ. Note that the position
of v, v = u1, in W1 is the same as that of u0 in W0. Therefore r(v0) = n− 1 + ρ
where ρ is the value of the difference: position of the term u0 in the sequence
W0 minus that of v0. In other words if ℓ is the length of the subpath of 〈W0〉\∞
connecting u0 and v0 then ρ = −ℓ if u0 precedes v0 and ρ = ℓ if u0 follows v0 on
the path. Applying Definition 1 we get the following.

For even n ≥ 6:
r(v) = n− 3 for v = 1, 2, . . . ,n−4

2
because paths u0 = 0→∞→ 1 = v and
u0 = k − 1→n− k − 1→ k = v (for 2 ≤ k ≤ n−4

2 ) are in W0;
r(v) = n+ 1 for v = n+2

2 , n+4
2 , . . . ,n− 3

because paths v = n− k − 1→ k→n− k − 2 = u0 (for 2 ≤ k ≤ n−4
2 ) are in
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W0; moreover,
r(0) = n+ 2 since the path v = 0→∞→ 1→n− 3 = u0 is in W0.

For odd n ≥ 5:
r(v) = n− 3 for v = 2, 3, . . . ,n−3

2
because paths u0 = k − 1→n− k→ k = v (for 2 ≤ k ≤ n−3

2 ) are in W0;
r(v) = n+ 1 for v = n+3

2 , n+5
2 , . . . ,n− 2, 0

because paths v = n− k→ k→n− k − 1 = u0 (for 2 ≤ k ≤ n−3
2 )

and v = 0→ 1→n− 2 are in W0; moreover,
r(1) = n− 2 since u0 = 0 and the arc 0→ 1 is in W0.

Hence min r(·) = n− 3.

Corollary 5. The tour W can be cut freely into paths of lengths not greater than

n− 4.

Lemma 6. Penultimate vertices of tours Wx separate W into ñ hamiltonian

paths.

Proof. The penultimate vertex of Wx, say vx, is omitted by the next tour Wx+1

because this is clearly true if x = 0, with v0 = ⌊n+1
2 ⌋. Furthermore, the two

vertices which immediately follow vx onW have preimages∞0 and 0, respectively;
with respective repetition distances n−1 and at least n+1, which are sufficiently
large.

Let Z denote the following set of vertices.
Z={z1=0, z2 =

n
2 , z3 =

n+2
2 , . . . ,zn−2

2

=n− 3, zn

2
=∞, zn+2

2

= ∞} for even n,

Z={z1=0, z2 =
n+1
2 , z3 =

n+3
2 , . . . ,zn−1

2

= n− 2} for odd n.

Lemma 7. For even n, starting at any term of W , if the preimage of the term

is an zi ∈ Z, then n
2 + 2− i paths of length n − 3 can be cut off from W one by

one going forwards along W and i − 1 such paths going backwards. If n is odd,

however, cutting off such paths from W can be continued in either direction until

a path of length 4 remains of W , 4 = (n− 1)2 mod (n− 3).

Proof. Notice that, for every v ∈ Z, either r(v) ≥ n − 2 or v 6∈ W1 and r(v) is
not defined. Therefore, by Lemma 4, v = v0 = zi ∈ Z is the initial vertex of a
certain v0  u subpath of W of length n − 3. Moreover, notation is chosen so
that if the initial vertex zi is not the last vertex in Z then the terminal vertex u of
the path has preimage zi+1 which immediately follows zi in Z. In fact, u = zi+1

if v0 = 0 = zi or if v0 = ∞. Otherwise u = 1 + zi+1, a vertex of W1. This
is so because, by Definition 1, the tour W0 has length n − 1 and includes the
following zi+1  zi paths of length two for each i < |Z|. For even n the paths
are: n

2 →∞→ 0, n − k − 1→ k→n − k − 2 (2 ≤ k ≤ n−4
2 ), ∞→ 1→n − 3 and

∞→ 0→∞. Similarly, for odd n, the paths: n+1
2 →∞→ 0, n−k→ k→n−k−1
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(2 ≤ k ≤ n−3
2 ) and 0→ 1→n − 2 are in W0. Additionally, if n is odd and

v = n − 2 = zn−1

2

, which is the last vertex in Z, then u = 0 = z1 because

the path 0→ 1→n − 2 is in W0. Therefore, each term v1 of W1 with preimage
v1−1 = zi ∈ Z such that i 6= 1 for even n is also the terminal vertex of a subpath
of W0W1 of length n− 3. Due to the rotational structure of W and the fact that
|Z| = n

2 + 1 for even n, the result follows.

3. Proofs

Proof of Theorem 1. Assume that n ≥ 5 due to Theorem C. Let ψ, (and
mnemonic letters) τ and θ denote the number of prescribed paths of length n− 1
(hamiltonian paths), n− 2, and n− 3, respectively, in a decomposition of DKn.
Assume that 1 ≤ ψ < n (otherwise we apply Theorems A and B). Notice that
the total length of all prescribed nonhamiltonian paths is divisible by n− 1.

Consider three cases depending on the parity of n and the values of param-
eters τ and θ.

Case I : n is odd. The case ψ = n − 1 is fixed by Lemma 6 and formula (1).
Assume therefore that 1 ≤ ψ ≤ n− 2.

Assume that τ = 0. We transform the cycle C into a hamiltonian n−1
2  

n+1
2 →∞ path, say C∗, and the tour W into an open ∞  n−1

2 trail, say W ∗.
To this end, we remove two arcs: the arc a := (n+1

2 → n−1
2 ) from the cycle C

and the last arc n−1
2 →∞ from W (it is the last arc of Wn−2). Next the last arc

n+1
2 →∞ of W0 is removed and is attached to the path C−a so that the path C∗

is constructed, cf. Definition 3. The gap inW0 is filled in by the arc a followed by
n−1
2 →∞. Thus the cycle W0 (which avoids the vertex n−1

2 , cf. Definition 1(i)) is
transformed into a Hamilton cycle, say W ∗

0 . Consequently, the tour W becomes
just the trail W ∗.

Then C∗ is one of ψ prescribed hamiltonian paths, the remaining ψ− 1 ones
are cut off one by one going backwards along W ∗ from the last vertex n−1

2 of
W ∗, the penultimate vertex of Wn−2, cf. Lemma 6. What remains of W ∗ is a
trail which includes W ∗

0 . The still required paths (of length n− 3 or less) are cut
off going forward along W ∗. Note that the repetition distance of the vertex n−1

2
along W ∗

0W1 is seen to be n − 2. Hence the girth of W ∗ is n − 3, the same as
that of W (Lemma 4). Therefore paths shorter than n− 3 can freely be cut off.
However, starting at the first vertex v = ∞ of W ∗ we cut off all θ paths of length
n − 3 one by one first. This can be clearly done if θ = 1 or n = 5 and θ = 2.
Otherwise, for n = 5, after we cut off three paths of length n− 3 we finish up at
the vertex u = 1 on W1. If n ≥ 7 and θ ≥ 2, after we cut off two paths of length
n − 3 we finish up at the vertex u = n+7

2 which is the fifth vertex from the last
one in W1. In both cases u = z+1 for some z ∈ Z. Thus we can continue cutting
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off all remaining paths of length n− 3 and all shorter paths later on.
Assume that τ ≥ 1. For increasing values of τ , we construct trails, denoted

by W (τ), which will be cut into required paths of length less than n− 2 only, i.e.,
we first show how to get all τ paths of length n− 2, τ ≤ 5, and all ψ hamiltonian
paths.

We get the first path of length n− 2 from the (n− 1)-cycle C by removal of
one arc, the removed arc being n+3

2 → n+1
2 if τ ≤ 2, otherwise 0→n− 2. Due to

Lemma 6, starting at the penultimate vertex v′ = n+3
2 inW1 we cut off fromW all

required, ψ, hamiltonian paths one after another, ending up at the penultimate
vertex, v′′, in Wψ+1, v

′′ = n+3
2 + ψ. (Going further from v′′ we get a path of

length n− 2, which we utilize below in case τ = 5 only.)
Let W ′ stand for the v′′  v′ trail which remains of W . If τ ≤ 2 then we

append the arc n+3
2 → n+1

2 to the last vertex v′ of W ′. Then the resulting trail

is just W (1). Since the appended vertex n+1
2 is missing in W1, in the case τ = 2,

going backwards along W (1), we cut off the second path of length n− 2. What is
left is clearly W (2).

Consider the case τ ≥ 3. Starting at v′, the last vertex of W ′, and going
backwards we cut off two paths of length n − 2 where either path is a section
of an (n − 1)-cycle, W1 or W0, since the paths have the vertex ∞′

0 in common.
Therefore we arrive at the second vertex (in position 1, see Sect. 2.2) in W0, the
vertex being 0 = z1 ∈ Z. Then we append the arc 0→n − 2 from C to what
is left of W ′. Thus we get W (3). Notice that the appended vertex n − 2 has
position 1 in the preceding tour Wn−2. Hence, if τ ≥ 4, starting at the appended
vertex n − 2 and going backwards we cut off the fourth path of length n − 2,
ending at the vertex n − 3 in position 3 in Wn−2, the preimage of the vertex
being n − 2 ∈ Z. Therefore, owing to Lemma 7, we continue going backwards
and we cut off one after another all prescribed paths of length n − 3 and next
all shorter paths. What remains if τ = 5 is the fifth path of length n − 2 (as is
stated above).

It remains to complete the cases τ ≤ 3. Then the vertex v′′ with preimage
n+1
2 ∈ Z is the initial vertex of each trailW (τ). Therefore, due to Lemma 7, going

forwards from v′′ we cut off prescribed paths of length n− 3 and next remaining
ones, which ends the proof for odd n.

Case II : n is even and θ + ⌊τ/2⌋ ≥ n+4
2 . Hence, since τ ≤ 5, θ ≥ n/2. On the

other hand, since ψ ≥ 1, τ + θ ≤ n + 1 for n ≥ 8 and τ + θ ≤ n + 2 for n = 6.
We first construct three long paths. To this end we use all arcs of C ′, one arc of
C ′′, and most arcs of W0 and C. We construct a path, say P ∗, of length n − 3
which comprises the section n−4

2 → n−6
2  

n
2 of C followed by the arc n

2 →∞ (cut
off from W0; notice that P ∗ avoids the vertices n−2

2 and ∞). If τ ≥ 2 then P ∗

is transformed into a path of length n − 2 by attaching the arc n−2
2 → n−4

2 (cut
off from C). The hamiltonian path, say P∧, is formed by the arcs ∞→∞ from
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C ′′, ∞→ 0 taken from W0, 0→ 1 from C ′, the path 1  n−4
2 (of length n − 6)

cut off from W0 (notice that this path omits the vertices: ∞, ∞, 0, n−2
2 and

n
2 ) and then the length-2 path n−4

2 → n−2
2 → n

2 cut off from C ′. What remains
of C ′ glued together by the subpath 0→∞→ 1 of W0 gives the path, say P∨,
n
2  

n−4
2 of length n − 3, which avoids the vertices n−2

2 and ∞. If 4 ≤ τ ≤ 5
then we transform P∧ and P∨ into two paths of length n− 2 by moving the arc
n−2
2 → n

2 from P∧ to P∨. Notice that 2− ⌊τ/2⌋ paths of length n− 3 have been
constructed.

Let P be the length-3 path with arcs n−4
2 → n

2 (from W0),
n
2 →

n−2
2 (from

C) and n−2
2 →∞ (cut off from Wn−3). Let W ∗ be the trail n−4

2  
n−2
2 which

is P followed by what remained of W . Only the arcs of W ∗, the arc ∞→∞
(from C ′′), and—only if τ < 2—the arc n−2

2 → n−4
2 (from C) are still left. The

repetition distance, say r, of the vertex u = n−2
2 (which was avoided by W0 and

is the third vertex of P ) in PW1 is seen to be r = n − 2. Therefore the first
vertex, say v, of P (v = n−4

2 ) has repetition distance n− 2 in PW1 which is one
greater than r(v) in W0W1, see proof of Lemma 4 for r(v) = n− 3. On the other
hand, the second vertex of P , n

2 , is avoided by W1. Therefore the girth of the
trail W ∗ remains n − 3. Moreover, if necessary, all (if n ≥ 8) or all but one (if
n = 6, τ = 0 and θ = 8) of θ + ⌊τ/2⌋ − n+4

2 (up to n−2
2 ) paths of length n − 3

can be cut off from the initial section of W ∗. To this end, notice that if a path
of length n− 3 is removed from the initial section of W ∗ then its terminal vertex
w on W1 is w = ∞ if n = 6, w = ∞ if n = 8, and w = n+6

2 if n ≥ 10. Therefore
the preimage of w is z4 whence, by Lemma 7, altogether up to 1 + n−4

2 paths of
length n− 3 can really be cut off one after another.

In what follows in case II we cut off paths from the trailW ∗ going backwards
along W ∗. It can be seen that the number of still required paths of length n− 3
equals n/2 unless n = 6, τ = 0, and θ = 8, in which case the number is 4.

Let τ ≤ 1. Then starting at the last term of W ∗, which is n−2
2 , the penul-

timate vertex on Wn−3, we cut off the path, say P̃ , of length n − 4 with initial
vertex being ∞ on Wn−3. Since the vertex n−4

2 is omitted by Wn−3, we get a

path of length n − 3 by appending the available arc n−2
2 → n−4

2 (from C) to P̃ .
Since the preimage of the vertex ∞ is ∞ = zn

2
, therefore going further backwards

from ∞ (which is on Wn−3), due to Lemma 7, we cut off n−4
2 paths of length

n− 3 one after another. Thus we end up at the penultimate vertex of Wn−2

2

, the

vertex being v = 1. We continue going backwards and, due to Lemma 6, we cut
off all of required ψ − 1 hamiltonian paths, ending at the vertex u = 2 − ψ on
Wn

2
−ψ.

Assume that τ ≥ 2. Then starting at the last term n−2
2 of W ∗, which is the

penultimate vertex on Wn−3, we cut off the path of length n − 2 whose initial
vertex is ∞ on Wn−3. Since the preimage of ∞ is ∞ = zn+2

2

, therefore going
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backwards from ∞ on Wn−3, due to Lemma 7, we cut off n−2
2 paths of length

n− 3 one after another. Thus we end up at the penultimate vertex of Wn−4

2

, the

vertex being v = 0. We continue going backwards and, due to Lemma 6, we cut
off all of required hamiltonian paths, ending at the vertex u = 1− ψ on Wn−2

2
−ψ

(if τ < 4) or u = n− 2− ψ on Wn−4

2
−ψ (if τ ≥ 4).

In order to complete the construction of long paths we consider two subcases.

Let τ be even (τ = 0, 2, 4). Then all required paths of length n−2 have been
constructed. Starting at the vertex u we cut off a path, say P , of length n − 4,
with initial vertex ∞. Since ∞ is not a vertex of P , appending P to the available
arc ∞→∞ results in a next path of length n− 3. One possibly still lacking path
of length n − 3 (only if n = 6, τ = 0 and θ = 8) can be cut off starting at the
vertex ∞ (on Wn

2
−ψ).

Let τ be odd. Then we need one each path of lengths n − 2 and n − 3.
Therefore starting at the vertex u we first cut off the path of length n− 2, whose
initial vertex is ∞. Next we remove a path, say P̃ , of length n− 4, whose initial
vertex is in position 3. Hence ∞ is not a vertex of P̃ . That is why appending the
available arc ∞→∞ to P̃ we get a path of length n− 3.

What remains ofW ∗ is cut into required short paths (of length at most n−4).

Case III : n is even and θ+⌊τ/2⌋ ≤ n+2
2 . Recall that 1 ≤ ψ ≤ n−1 and τ ≤ 5. As

in the Case II, the last arc n
2 →∞ of W0 is replaced by length-2 path comprising

the arc a := (n2 →
n−2
2 ) (removed from the cycle C) and the arc n−2

2 →∞, the
last arc of Wn−3 (as well as of W ). In place of W0 we thus get a hamiltonian
cycle, say W ∗

0 , because the added vertex n−2
2 is avoided by W0, cf. Definitions 1

and 2.

LetW ∗ stand for the resulting image ofW , W ∗ being an open trail ∞→ 0 
n−2
2 , with W ∗

0 being the initial section of W ∗. One can easily see (cp. the pre-
ceding case II) that the girth of the tour W ∗

0W1 is n− 2 whence the girth of the
trail W ∗ is n− 3. Let C∗ be the first decomposition part, a hamiltonian path in
fact, obtained from the path C − a by appending the arc n

2 →∞ (from W0) and
next the arc ∞→∞ (taken from C ′′).

Let ψ′ = n− 4 if ψ ≥ n− 2, otherwise ψ′ = ψ− 1. Now ψ′ hamiltonian paths
are cut off one by one going backwards along W ∗ from the last vertex n−2

2 of
W ∗, the penultimate vertex of Wn−3, cf. Lemma 6. Then we stop at the vertex
which (in u, v encoding, Sect. 2.2) is vn−3−ψ′ = n−2

2 − ψ′ on Wn−3−ψ′ , and this
is v1 = n+2

2 on W1 if ψ ≥ n− 3. Thus ψ′ + 1 hamiltonian paths are already cut
off, that is, all required ones if ψ ≤ n− 3. Let W ∗∗ denote what remains of W ∗.

Assume that ψ ≤ n− 3 and n ≥ 8. The idea is to construct two or four long
enough paths comprising all or most of arcs remaining from C ′′ and C ′ as well
as all arcs of a certain initial section of W ∗∗ so that only a single tour with girth
n− 3 and containing the rest of W ∗∗ as a (terminal) section could remain to be
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dealt with.
Let τ ′ = τ − 1 if τ is odd and τ ′ = τ otherwise. If τ is odd then a path of

length n − 2 is cut off starting at the last vertex (vn−3−ψ′ on Wn−3−ψ′) of W ∗∗

and going backwards. Then the initial vertex of the path is un−3−ψ′ = ∞, the
first vertex on Wn−3−ψ′ . Thus the number of paths of length n− 2 still to be cut
off is τ ′. Moreover, if θ + ⌊ τ2⌋ =

n+2
2 then a path of length n− 3 is cut off going

backwards again and starting either at vn−3−ψ′ (if τ is even) or at un−3−ψ′ (if τ

is odd). Let Ŵ denote what remains of W ∗∗.
Let τ ′ = 4, 4 being the largest possible value of τ ′. Then ψ ≤ n − 4 can be

seen. A path of length n−2 (which we now construct) comprises the arcs: ∞→∞
(from C ′′), ∞→ 0 (from W ∗

0 ), 0→ 1 (from C ′), the path 1 n−4
2 of length n− 6

from W ∗

0 and the arc n−4
2 → n−2

2 (from C ′). The second path is built of the arcs:
n−2
2 → n+2

2 (fromW1), the path
n+2
2  0 of length n−6

2 from C ′, 0→∞→ 1 (from
W ∗

0 ), the path 1 n−4
2 of length n−6

2 from C ′ and the arc n−4
2 → n

2 (from W ∗

0 ).
The next path of length n− 2 consists of the arcs n

2 →
n−2
2 →∞ (from W ∗

0 ) and
the path ∞  n+4

2 of length n − 4 from W1. The last of those paths is built of
the arcs: n+4

2 → n−2
2 (from W1),

n−2
2 → n

2 →
n+2
2 (from C ′), n+2

2 →∞ (from W1)
and the path ∞  n+8

2 of length n − 6 from W2. Notice that the preimage of
n+8
2 on W2 is n+4

2 = z4 whence, by Lemma 7, up to n−4
2 paths of length n − 3

can easily be cut off one after another going forwards along Ŵ .
Assume that τ ′ < 4. Hence there are either two or none paths of length n−2

which remain to be cut off. Let M = (mi)
i=t
i=1 be the nonincreasing sequence

of all, say t, designed lengths, mi, of remaining paths (all nonhamiltonian) in
the decomposition of DKn. Hence m1,m2 ≤ n − 2 and mi ≤ n − 3 for all
i = 3, 4, . . . ,t. If m2, the second largest of those lengths, is small, m2 < n/2,
then we find a positive integer r such that r < t and a sum Sr =

∑t
i=r+1mi

satisfies n
2 ≤ m2 + Sr ≤ n − 2. Otherwise (if m2 ≥ n/2) we put r = t and

Sr = 0. We proceed analogously if m1 < n/2 to find an integer p and a sum
Sp =

∑r
i=p+1mi such that p < r and n

2 ≤ m1 + Sp ≤ n− 2; if m1 ≥ n/2 we take

p = r and Sp = 0. Let M = (m)i=pi=1 be the nonincreasing sequence obtained from
the initial p-subsequence ofM by replacingm2 and m1 with the the sums m2+Sr
and m1 + Sp, respectively. It is clear that m3 ≤ n− 3 and moreover m3 < n/2 if
M 6= M ; thus M = M if m2 ≥ n/2. The idea behind this modification is clear.
It is enough to find a decomposition prescribed by M because two too long paths
can be split freely later on. Hence in what follows we assume that

k = m1 +m2

is the sum of lengths of two longest nonhamiltonian paths whence n ≤ k ≤ 2n−4.
Let k = n. Notice that, in particular, this is the case when θ ≥ 2 and n = 6.

We easily build up two paths of length n
2 . The first of them includes the arcs

∞→∞ from C ′′, ∞→ 0 from W ∗

0 , and the path 0  n−4
2 from C ′. The second
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path of length n
2 is the remaining section n−4

2  0 of C ′. Then we freely cut what

remains of Ŵ into remaining (nonhamiltonian) paths, each of length at most n
2

(≥ m3).

Assume that k > n. Let s = 1 if k is odd and s = 0 otherwise. Let
l = k − n+ 1 + s. Then l is odd and 3 ≤ l ≤ n− 3. Moreover, by the definition
of k, m1 − l = n−m2 − 1− s and m1 − l > 0 because m2 ≤ n− 2.

We first build a path of length m1 by gluing together three arcs, namely,
∞→∞ from C ′′, ∞→ 0 from W ∗

0 , and 0→ 1 from C ′, next the subpath πl :=
(1 l−1

2 ) ofW ∗

0 , and the subpath γl := ( l−1
2  m1−

l+1
2 ) of C ′. This construction

is correct because numbers m1− l and l− 3 are lengths of γl and πl, respectively,
and, for l > 3, vertices of πl are 1, 2, . . . , l−1

2 and from n − 3 down to n − l+1
2

(> m1 − l+1
2 ) whence all vertices of γl are just in the in-between gap. Now

the path 0→∞→ 1 which has been left (separated from Ŵ ) together with two
sections of the rest of C ′, namely the sections (mp −

l+1
2 ) 0 and 1 l−1

2 − s,
form a required path of length just m2. The length is so because all of n − 2
arcs of C ′ have been used unless s = 1, and then the only arc which is still left is
v − 1→ v where v = l−1

2 . Let W̃ be the subtrail of Ŵ which still remains. Note

that v is the initial vertex of W̃ .

Let s = 1. Assume that the available arc v−1→ v is attached to the beginning
of W̃ and that W̃ ′ denotes the resulting trail. Then the repetition distance of the
vertex v− 1 in W̃ ′ is equal to r(v− 1) (where r(v− 1) = n− 3, the equality being
determined in the proof of Lemma 4) because the new distance, 1, between v− 1
and v is exactly one smaller than that on W0. Suppose that m3 = n − 3. Then
M = M and either m1 = m2 = n − 2 or m1 = m2 = n − 3. Hence k = 2n − 4
or k = 2n− 6 is even and s = 0, a contradiction. Thus W̃ ′ can be freely cut into
paths of length at most n− 4.

Let s = 0. Suppose that M =M and m3 = n− 3. Since either l = n− 3 (if
m1 = m2 = n − 2) or l = n − 5 (if m1 = m2 = n − 3), the initial vertex of W̃
is v = l−1

2 = n−4
2 or v = n−6

2 , respectively. As the girth of W ∗

0W1 is n − 2, we

cut off from W̃ the path, v  u, of length n− 3 starting at v. Then its terminal
vertex u is in W1. For l = n − 3: u = ∞ if n = 6, u = ∞ if n = 8, u = n+6

2 if
n ≥ 10. Moreover, for l = n − 5: u = ∞ if n = 8, u = ∞ if n = 10, u = n+8

2
if n ≥ 12. Notice that the preimage of u is z4 if l = n − 3 and z5 if l = n − 5.
Hence, by Lemma 7, starting at u and going forwards along W̃ , we can cut off
up to n−4

2 if l = n− 3 or n−6
2 if l = n− 5 lacking paths of length n− 3. Finally,

shorter paths may be cut off.

Assume that n− 2 ≤ ψ ≤ n− 1. Then τ ≤ 2. The next hamiltonian path is
obtained from what remains of W1 (which avoids the vertex n

2 ) by replacing its
last arc n−2

2 → n+2
2 by the path n−2

2 → n
2 →

n+2
2 of length two and removed from

C ′. Only one more hamiltonian path is required if ψ = n− 1.

Let ψ = n− 2. We proceed similarly to the above. Let k = m1 +m2, where
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n ≤ k ≤ 2n − 4. Moreover, let s′ = 1 if k is even and s′ = 0 otherwise. Let
l′ = k − n + 2 + s′. Thus l′ is odd and l′ ≥ 3. To cut off two paths of length
m1 and m2 we proceed analogously as above putting l′ and s′ in place of l and s,
respectively. Another difference is only that the available arc from W1 is used to
replace the path removed from C ′. Namely, both of still remaining sections ofW ∗

0

and C ′ are cut into four pieces so that together with available single arcs from
C ′′ and W1 they give a single trail, say Ŵ , consisting of the arcs ∞→∞, ∞→ 0,
0→ 1, together with the subpath 1 l′−1

2 of W ∗

0 , the subpath l′−1
2  

n−2
2 of C ′,

the arc n−2
2 → n+2

2 removed from W1, the path
n+2
2  0 cut off from C ′, the path

0→∞→ 1 from W ∗

0 , the path 1  l′−1
2 cut off from C ′ and the path l′−1

2  ∞

from W ∗

0 . One can check (just as above) that starting at the first vertex of W̃ we
are able to cut off a path of length m1, next of length m2, and then all required
short paths.

If ψ = n− 1 then we take l′ = n− 1 and we construct the trail Ŵ as above.
The last of required hamiltonian paths is the initial section of Ŵ . What remains
of Ŵ is the trail n−2

2  
n−2
2 →∞ which, in fact, is a cycle of length n − 2 with

one pendant arc. Therefore all still required (only nonhamiltonian) paths can be
easily cut off.

Proof of Theorem 3. Let M∗ = (m∗

i )
i=t
i=1 be a non-increasing sequence of pre-

scribed lengths m∗

i ≤ n − 1, m∗

i 6= n − 2, in a would-be path decomposition
of a given λDKn where t is a number of paths. Construct a new sequence M ,
M = (mj), recursively from M∗ by possibly splitting each of some, less than λ,
original terms into two new ones so that (mj) could be the concatenation of λ
sections (mki−1+1,mki−1+2, . . . ,mki), where mki is the last length in section i,
i = 1, . . . , λ, k0 := 0 < k1 < · · · < kλ with kλ ≥ t, and such that

(i) the termsmj in each section sum up to the size n(n−1) of a complete n-vertex
subdigraph,

(ii) the first and last terms of the two sequences mutually coincide (m1 = m∗

1 and
mkλ = m∗

t ),

(iii) removing two terms, the first and the last, from any of the λ sections gives
a section of the original sequence M∗, and

(iv) any two neighboring extreme terms mki , mki+1 of neighboring sections either
are neighboring terms in M∗ or their sum mki +mki+1 is a term there.

Consider an ordered decomposition of the complete multidigraph into λ copies of
DKn. Match consecutive sections of the sequence M with consecutive copies of
DKn. Decompose one by one the consecutive copies into paths as prescribed by
the path lengths in the corresponding sections. Such decompositions exist due
to Corollary 2. For consecutive pairs of neighboring sections i and i + 1, if the
two neighboring extreme terms of the sections are obtained by splitting a term
of M∗ then we only permute vertices of the (i + 1)st complete subdigraph so
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that the first path in its decomposition glued together to the last path in the
decomposition of the preceding complete subdigraph could make up a path of
originally prescribed length.

Though the proofs in this paper seem to be similar to those in [6, 7] there
are substantial differences. The essential difference is that in the former papers
the initial tour W0 has n arcs (and is even a hamiltonian cycle of DKn if n is
odd) so that the final tour, W , is an Euler tour and of girth n− 2. Consequently,
constructions in the present paper are more involved but perhaps more instructive
about how to deal with what still remains to be done.

4. Concluding remarks

The constructions used in [6] for odd n are extended in [7] to prove our Conjecture
if the numbers of long paths are large enough. Proofs in [7] make use of the above
Corollary 2.

As above the symbols ψ and τ denote the number of prescribed hamiltonian
paths and those of length n− 2, respectively, in a decomposition of DKn.

Proposition D (Meszka and Skupień [7, Corollaries 2 and 4]). For odd n, the
conjecture is true if either n ≤ 15 or else ψ ≤ 2, ψ ≥ n−5, τ ≤ 5, or τ ≥ (n−3)/2.

Theorem E (Meszka and Skupień [7, Theorem 3]). For odd n, the complete

n-vertex digraph DKn is decomposable into paths of arbitrarily prescribed lengths

provided that τ ≥ n+3−ψ
2 and the lengths sum up to the size n (n− 1) of DKn.

Conjecture stated in Introduction still remains open. Nevertheless, for odd n,
Conjecture remains unsettled only when n ≥ 17, 3 ≤ ψ ≤ n − 6 and 6 ≤ τ <
min{(n− 3)/2, (n+ 3− ψ)/2}, cf. Proposition D and Theorem E. Moreover, for
any n ≤ 19, Conjecture has been verified by a computer. Therefore, a counterex-
ample, if exists, must have more than 19 vertices.
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