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Abstract

For a connected graph G of order n ≥ 3, let f : E(G) → Zn be an
edge labeling of G. The vertex labeling f ′ : V (G) → Zn induced by f is
defined as f ′(u) =

∑

v∈N(u) f(uv), where the sum is computed in Zn. If f ′

is one-to-one, then f is called a modular edge-graceful labeling and G is a
modular edge-graceful graph. A modular edge-graceful labeling f of G is
nowhere-zero if f(e) 6= 0 for all e ∈ E(G) and in this case, G is a nowhere-
zero modular edge-graceful graph. It is shown that a connected graph G
of order n ≥ 3 is nowhere-zero modular edge-graceful if and only if n 6≡ 2
(mod 4), G 6= K3 and G is not a star of even order. For a connected graph
G of order n ≥ 3, the smallest integer k ≥ n for which there exists an edge
labeling f : E(G) → Zk − {0} such that the induced vertex labeling f ′ is
one-to-one is referred to as the nowhere-zero modular edge-gracefulness of G
and this number is determined for every connected graph of order at least 3.

Keywords: modular edge-graceful labelings and graphs, nowhere-zero la-
belings, modular edge-gracefulness.
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1. Introduction

Over the past few decades the subject of graph labelings has been growing in
popularity. Gallian [7] has compiled a periodically updated survey of many kinds
of labelings and numerous results, obtained from well over a thousand referenced
research articles. The origin of the study of graph labelings as a major area of
graph theory can be traced to a research paper by Rosa [15]. Among the labelings
he introduced was a vertex labeling he referred to as a β-valuation. Let G be a
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graph of order n and size m. A one-to-one function f : V (G) → {0, 1, 2, . . . ,m}
is called a β-valuation (or a β-labeling) of G if

{|f(u)− f(v)| : uv ∈ E(G)} = {1, 2, . . . ,m}.

In 1972 Golomb [9] referred to a β-labeling as a graceful labeling and a graph
possessing a graceful labeling as a graceful graph. Eventually, it was this termi-
nology that became standard. One of the best known conjectures in this area is
Graceful Tree Conjecture, due to Ringel and Kotzig.

Conjecture. Every tree is graceful.

In 1985 Lo [12] introduced a dual type of labeling — this one an edge labeling.
Let G be a connected graph of order n ≥ 2 and size m. For a vertex v of
G, let N(v) denote the neighborhood of v. An edge-graceful labeling of G is a
bijective function f : E(G) → {1, 2, . . . ,m} that gives rise to a bijective function
f ′ : V (G) → {0, 1, 2, . . . , n − 1} given by f ′(v) =

∑

u∈N(v) f(uv), where the sum
is computed in Zn. A graph that admits an edge-graceful labeling is called an
edge-graceful graph. In the definition of an edge-graceful labeling of a connected
graph G of order n ≥ 2 and size m, the edge labeling f is required to be one-
to-one. Since, however, the induced vertex labels f ′(v) are obtained by addition
in Zn, the function f is actually a function from E(G) to Zn and is in general
not one-to-one. Dividing m by n, we obtain m = nq + r, where q = ⌊m/n⌋ and
0 ≤ r ≤ n− 1. Hence in an edge-graceful labeling of G, q + 1 edges are labeled i
for each i with 1 ≤ i ≤ r and q edges are labeled i for each i with r + 1 ≤ i ≤ n
(in Zn). Thus this edge labeling f : E(G) → Zn is a one-to-one function only
when m = n− 1 or m = n.

In 2008 a vertex coloring of a graph was introduced in [13] in connection
with finding a solution to a checkerboard problem posted by Gary Chartrand.
For a graph G without isolated vertices, let c : V (G) → Zk (k ≥ 2) be a vertex
coloring of G where adjacent vertices may be colored the same. Then a vertex
coloring c′ of G is defined such that c′(v) is the sum in Zk of the colors of the
vertices in the neighborhood of v for each v ∈ V (G). The coloring c is called
a modular k-coloring of G if c′(u) 6= c′(v) in Zk for every pair u, v of adjacent
vertices of G. The modular chromatic number of G is the minimum k for which G
has a modular k-coloring. This coloring was studied further in [14], which led to a
complete solution of the checkerboard problem under investigation. Furthermore,
modular colorings are closely related to sigma colorings in graphs (see [4]). The
modular coloring described above led to an edge version introduced in [10], which
was inspired by the research of finding various methods to distinguish every pair
of adjacent vertices in a graph by means of edge colorings (see [1, 2, 6, 16] and [5,
p. 385], for example). For a graph G without isolated vertices, let c : E(G) → Zk

(k ≥ 2) be an edge coloring of G where adjacent edges may be colored the same.
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Then a vertex coloring c′ is defined such that c′(v) is the sum in Zk of the colors
of the edges incident with v for each v ∈ V (G). An edge coloring c is a modular k-
edge coloring of G if c′(u) 6= c′(v) in Zk for all pairs u, v of adjacent vertices of G.
The modular chromatic index of G is the minimum k for which G has a modular
k-edge coloring. Combining the concepts of graceful labeling and modular edge
coloring gives rise to a modular edge-graceful labeling, as we describe next.

Let G be a connected graph of order n ≥ 3 and let f : E(G) → Zn, where f
need not be one-to-one. Let f ′ : V (G) → Zn such that f ′(v) =

∑

u∈N(v) f(uv),

where the sum is computed in Zn. If f
′ is one-to-one, then f is called a modular

edge-graceful labeling and G is a modular edge-graceful graph. Consequently, every
edge-graceful graph is a modular edge-graceful graph. It turns out that this
concept was introduced in 1991 by Jothi [8] under the terminology of line-graceful
graphs (also see [7]). It was known that if G is a connected graph of order n ≥ 3
for which n ≡ 2 (mod 4), then G is not modular edge-graceful. Furthermore, it
was conjectured that if T is a tree of order n ≥ 3 for which n 6≡ 2 (mod 4), then
T is modular edge-graceful (see [7]). This conjecture was verified in [11]. In fact,
the conjecture is not only true for trees but for all connected graphs.

Theorem 1.1 [11]. A connected graph of order n ≥ 3 is modular edge-graceful

if and only if n 6≡ 2 (mod 4).

For every connected graph G of order n, there is a smallest integer k ≥ n for
which there exists an edge labeling f : E(G) → Zk such that the induced vertex
labeling f ′ : V (G) → Zk defined by f ′(v) =

∑

u∈N(v) f(uv), where the sum is
computed in Zk, is one-to-one. The number k is defined in [11] as the modular

edge-gracefulness meg(G) of G. Thus meg(G) ≥ n and meg(G) = n if and only
if G is a modular edge-graceful graph of order n and if G is not modular edge-
graceful, then meg(G) ≥ n + 1. In fact, meg(G) is known for every connected
graph G, as we state next.

Theorem 1.2 [11]. If G is a nontrivial connected graph of order n ≥ 6 that is

not modular edge-graceful, then meg(G) = n+ 1.

If G is a modular edge-graceful spanning subgraph of a graph H, where G and
H are connected, then a modular edge-graceful labeling of G can be extended to
a modular edge-graceful labeling of H by assigning 0 to each edge of H that does
not belong to G. Thus modular edge-graceful labelings of a graph that assign 0 to
some edges of the graph play an important role in establishing Theorems 1.1 and
1.2. For this reason, we now investigate those modular edge-graceful labelings in
which 0 is not permitted. This gives rise to a new concept along with additional
challenging problems. More formally, for a connected graph G of order n ≥ 3 let
f : E(G) → Zn − {0}, where f need not be one-to-one and let f ′ : V (G) → Zn

be defined by f ′(u) =
∑

v∈N(u) f(uv), where the sum is computed in Zn. If f ′
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is one-to-one, then f is called a nowhere-zero modular edge-graceful labeling and
G is a nowhere-zero modular edge-graceful graph. In this work, we first show (in
Section 2) that ifG is a connected graph of order n ≥ 3 where n 6≡ 2 (mod 4), then
there is a modular edge-graceful labeling f : E(G) → Zn such that f(e) 6= 0 for all
e ∈ E(G) with at most one exception. In Section 3 we determine all nowhere-zero
modular edge-graceful trees. Finally, we present a characterization of all nowhere-
zero modular edge-graceful graphs in Section 4 and determine the nowhere-zero
modular edge-gracefulness of every connected graph in Section 5. We refer to the
book [3] for graph theory notation and terminology not described in this paper.
Henceforth, we assume all graphs under consideration are connected graphs of
order at least 3.

2. One Zero is Sufficient

In this section, we show that if G is a modular edge-graceful graph of order
n ≥ 3 that is not nowhere-zero, then there is a modular edge-graceful labeling
f : E(G) → Zn such that f(e) 6= 0 for all e ∈ E(G) with one exception, that
is, one zero is sufficient. Furthermore, for each prescribed edge e∗ of G, there
is a modular edge-graceful labeling f∗ : E(G) → Zn such that f∗(e) 6= 0 for all
e ∈ E(G)− {e∗}. First, we present a lemma.

Lemma 2.1. Let G be a connected modular edge-graceful graph of order n ≥ 3,
where n 6≡ 2 (mod 4) and let f : E(G) → Zn be a given modular edge-graceful

labeling of G. If Pk = (v1, v2, . . . , vk) is a path of order k ≥ 3 in G, then there is

a modular edge-graceful labeling g : E(G) → Zn of G that satisfies the following

four conditions:

(1) g(e) = f(e) for all e /∈ E(Pk),

(2) g′(v) = f ′(v) for all v /∈ V (Pk),

(3) {g′(vi) : 1 ≤ i ≤ k} = {f ′(vi) : 1 ≤ i ≤ k} and

(4) g(vivi+1) 6= 0 for all i with 1 ≤ i ≤ k − 2.

Proof. We proceed by induction on k. For k = 3, let P3 = (v1, v2, v3). If
f(v1v2) 6= 0, then let g = f . Thus, we may assume that f(v1v2) = 0. Suppose
that f ′(v1) = a, f ′(v2) = b and f ′(v3) = c. Define a labeling g : E(G) → Zn by

g(e) =







f(e) if e /∈ E(P3),
f(e) + (c− a) if e = v1v2,
f(e)− (c− a) if e = v2v3.

By the definition of g, conditions (1) and (2) hold. Since g(v1v2) = f(v1v2)+(c−a)
= c − a and a 6= c, it follows that g(v1v2) 6= 0 and so (3) holds. Furthermore,
g′(v1) = c, g′(v2) = b and g′(v1) = a and so (4) holds.
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Assume for some integer k ≥ 4 that the result holds for all paths of order k′ in
G where 3 ≤ k′ < k. Let Pk = (v1, v2, . . . , vk) be a path of order k ≥ 4 in G.
First, consider the subpath Pk−1 = (v1, v2, . . . , vk−1) of Pk. By the induction
hypothesis, there is a modular edge-graceful labeling h : E(G) → Zn of G that
satisfies the following four conditions:

(1′) h(e) = f(e) for all e /∈ E(Pk−1),

(2′) h′(v) = f ′(v) for all v /∈ V (Pk−1),

(3′) {h′(vi) : 1 ≤ i ≤ k} = {f ′(vi) : 1 ≤ i ≤ k − 1} and

(4′) h(vivi+1) 6= 0 for all i with 1 ≤ i ≤ k − 3.

If h(vk−2vk−1) 6= 0, then let g = h. Thus we may assume that h(vk−2vk−1) = 0.
Now consider the subpath P3 = (vk−2, vk−1, vk) of Pk. Applying the induction
hypothesis to P3 and the modular edge-graceful labeling h of G, we conclude that
there is a modular edge-graceful labeling g : E(G) → Zn such that

(1∗) g(e) = h(e) for all e /∈ E(P3),

(2∗) g′(v) = h′(v) for all v /∈ V (P3),

(3∗) {g′(vk−2), g
′(vk−1), g

′(vk)} = {h′(vk−2), h
′(vk−1), h

′(vk)} and

(4∗) g(vk−2vk−1) 6= 0.

Observe that for each integer j with 1 ≤ j ≤ 4, conditions (j′) and (j∗) give rise
to condition (j). Therefore, g and f satisfy conditions (1)–(4).

We now present the main result of this section.

Theorem 2.2. Let G be a connected modular edge-graceful graph of order n ≥ 3,
where n 6≡ 2 (mod 4). Then there is a modular edge-graceful labeling f : E(G) →
Zn such that f(e) 6= 0 for all e ∈ E(G) with at most one exception. Furthermore,

for a fixed edge e∗ of G, there is a modular edge-graceful labeling f : E(G) → Zn

such that f(e) 6= 0 for all e ∈ E(G)− {e∗}.

Proof. It suffices to show that for a fixed edge e∗ of G, there is a modular edge-
graceful labeling f : E(G) → Zn such that f(e) 6= 0 for all e ∈ E(G) − {e∗}.
Among all modular edge-graceful labelings of G, let f : E(G) → Zn be one
for which the set S = {e ∈ E(G) − {e∗} : f(e) = 0} has the smallest possible
cardinality. We claim that S = ∅; for otherwise, let e′ ∈ S. Since G is connected,
there exists a path Pk = (v1, v2, . . . , vk) of order k ≥ 3 such that e1 = v1v2
and e2 = vk−1vk. By Lemma 2.1, there is a modular edge-graceful labeling
g : E(G) → Zn of G that satisfies
(i) g(e) = f(e) for all e /∈ E(Pk) and

(ii) g(vivi+1) 6= 0 for all i with 1 ≤ i ≤ k − 2.

Therefore, g(e) 6= 0 for all e ∈ E(G)−{e∗}, which contradicts the defined property
of f .
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3. Trees

In this section we establish a characterization of nowhere-zero modular edge-
graceful trees. More precisely, we show that a tree T of order n ≥ 3 with n 6≡ 2
(mod 4) is nowhere-zero modular edge-graceful if and only if T is not a star of
even order. We begin with a lemma that determines all nowhere-zero modular
edge-graceful paths, stars and double stars.

Lemma 3.1. Let n ≥ 3 be an integer with n 6≡ 2 (mod 4). Then

(a) Every path Pn is nowhere-zero modular edge-graceful.

(b) A star of order n is nowhere-zero modular edge-graceful if and only if n is

odd.

(c) Every double star of order n ≥ 4 is nowhere-zero modular edge-graceful.

Proof. Since the proofs of (a) and (b) are relatively straightforward, we only
prove (c). Let T be the double star of order n = a + b + 2 ≥ 4 whose central
vertices are u and v where deg u = a+ 1 and deg v = b+ 1. Let u1, u2, . . . , ua be
end-vertices of T that are adjacent to u and let v1, v2, . . . , vb be end-vertices of T
that are adjacent to v.

First, suppose that n ≥ 5 is odd. We may assume, without loss of generality,
that a is odd and b is even. Define a labeling f : E(T ) → Zn − {0} by

f(e) =



























i+1
2 if e = uui, 1 ≤ i ≤ a and i is odd,

− i
2 if e = uui, 1 ≤ i ≤ a and i is even,

−a+1
2 if e = uv,

a+1
2 + j+1

2 if e = vvj , 1 ≤ j ≤ b and j is odd,

−
(

a+1
2 + j

2

)

if e = vvj , 1 ≤ j ≤ b and j is even.

Observe in Zn that f ′(u) = 0, f ′(v) = −a+1
2 and

{

f ′(ui) : 1 ≤ i ≤ a
}

=

{

±1,±2, . . . ,±
a− 1

2
,
a+ 1

2

}

,

{

f ′(vj) : 1 ≤ j ≤ b
}

=

{

±

(

a+ 1

2
+ 1

)

,±

(

a+ 1

2
+ 2

)

, . . . ,±
n− 1

2

}

.

Therefore, f ′ is one-to-one and so f is a nowhere-zero modular edge-graceful
labeling.

Next, suppose that n ≥ 4 is even. Since n = a+ b+ 2, it follows that a and
b are of the same parity. We consider two cases.

Case 1. a and b are both odd. We may assume, without loss of generality,
that a ≤ b. First, suppose that a = 1. By (a), we may assume that b 6= 1.
Since n = b + 3 ≡ 0 (mod 4), it follows that b ≥ 5. Now define a labeling
f : E(T ) → Zn − {0} such that
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(i) {f(vvi) : 2 ≤ i ≤ b} =
{

±1,±2, . . . ,± b+1
2

}

−
{

±n
4

}

(where then f(vvi) 6= ±n
2 for 2 ≤ i ≤ b) and

(ii) f(uu1) =
n
4 and f(uv) = f(vv1) =

n
2 .

By the definition of f , {f ′(vi) : 2 ≤ i ≤ b} =
{

±1,±2, . . . ,± b+1
2

}

−
{

±n
4

}

in Zn

and f ′(v) = 0, f ′(u1) = n
4 , f

′(u) = n
4 + n

2 = 3n
4 = −n

4 and f ′(v1) = n
2 in Zn.

Thus f is a nowhere-zero modular edge-graceful labeling of T .

Next, suppose that a ≥ 3. Let a = 2p + 1 and b = 2q + 1 for some positive
integers p and q where p ≤ q. Now define a labeling f : E(T ) → Zn − {0} such
that

(i) {f(uui) : 2 ≤ i ≤ a} = {±1,±2, . . . ,±p} ,
{f(vvj) : 2 ≤ j ≤ b} = {±(p+ 1),±(p+ 3), . . . ,±(p+ q + 1)} −

{

±n
4

}

.
(where then f(uui) 6= ±n

2 and f(vvj) 6= ±n
2 for 2 ≤ i ≤ a and 2 ≤ j ≤ b)

and

(ii) f(uu1) =
n
4 and f(uv) = f(vv1) =

n
2 .

By the definition of f ,

{f ′(ui) : 2 ≤ i ≤ a} ∪ {f ′(vj) : 2 ≤ j ≤ b} = Zn −
{

0, n4 ,
n
2 ,

3n
4 = −n

4

}

in Zn.

Furthermore, f ′(u1) =
n
4 , f

′(v1) =
n
2 , f

′(u) = −n
4 and f ′(v) = 0 in Zn. Thus f

is a nowhere-zero modular edge-graceful labeling of T .

Case 2. a and b are both even. Because n ≡ 0 (mod 4) and n = a+ b+2, we
may assume, without loss of generality, that a ≡ 0 (mod 4) and b ≡ 2 (mod 4).
Since a > 0 and b > 0, it follows that a ≥ 4 and b ≥ 2. Define the sets U and W
of edges of T by

U = {e = uui : 3 ≤ i ≤ a} and W = {e = vvi : 1 ≤ i ≤ b}.

Then |U | = a− 2 and |W | = b are both even and so |U ∪W | = a+ b− 2 = n− 4.
Furthermore, let S = Zn −

{

0, n4 ,
n
2 ,

3n
4

}

and so |S| = n − 4 = |U ∪ W |. Let
g : U ∪W → S be any bijective function with the property that g(uui) = r ∈ S
where 3 ≤ i ≤ a if and only if g(uuj) = −r ∈ S for some j with i 6= j and
3 ≤ j ≤ a. This implies that g(vvi) = r′ ∈ S where 1 ≤ i ≤ b if and only if
g(vvj) = −r′ ∈ S for some j with i 6= j and 1 ≤ j ≤ b. Now define a labeling
f : E(T ) → Zn in terms of g by f(uu1) = n

2 , f(uu2) = n
4 , f(uv) = 0 and

f(e) = g(e) for e ∈ U ∪W . By the definitions of f and g, it follows that

{f ′(ui) : 3 ≤ i ≤ a} ∪ {f ′(vj) : 1 ≤ j ≤ b} = S = Zn −
{

0, n4 ,
n
2 ,

3n
4

}

.

Furthermore, f ′(u1) =
n
2 , f

′(u2) =
n
4 , f

′(u) = −n
4 and f ′(v) = 0 in Zn. Thus f

is a modular edge-graceful labeling of T but f is not nowhere-zero.

We now construct a nowhere-zero modular edge-graceful labeling h of T from
f as follows. Suppose that f(vv1) = s for some s ∈ S. It follows by the definition
of the set S that s 6= 3n

4 in Zn. Define h : E(T ) → Zn − {0} by
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h(e) =







f(e) if e 6= uv and e 6= vv1,
s− 3n

4 if e = uv,
3n
4 if e = vv1.

Observe that h′(u) = s, h′(v) = 0, h′(v1) =
3n
4 and h′(w) = f ′(w) if w 6= u, v1.

Therefore, h is a nowhere-zero modular edge-graceful labeling of T .

We now consider trees in general whose diameter is at least 4.

Theorem 3.2. If T is a tree of order n ≥ 5 with n 6≡ 2 (mod 4) and diameter at

least 4, then T is nowhere-zero modular edge-graceful.

Proof. Assume, to the contrary, that there is a tree T of order n ≥ 5 with n 6≡ 2
(mod 4) and diameter at least 4 but T is not nowhere-zero modular edge-graceful.
Let v0 be an end-vertex of T for which the eccentricity e(v0) of v0 is at least 4
and let P = (v0, v1, v2, v3, v4) be a v0 − v4 path in T . By Theorems 1.1 and 2.2,
there is a modular edge-graceful labeling f : E(T ) → Zn such that f(e) 6= 0
for all e ∈ E(T ) − {v0v1}. Since T is not nowhere-zero modular edge-graceful,
f(v0v1) = 0 and so f ′(v0) = 0. Suppose that f ′(vi) = xi for 1 ≤ i ≤ 4. Then
xi 6= 0 for 1 ≤ i ≤ 4. We now construct a sequence of four edge labelings g, h, i, j
of T recursively as follows.

First, define g : E(T ) → Zn from the labeling f by

g(e) =







x2 if e = v0v1,
f(e)− x2 if e = v1v2,
f(e) otherwise.

Because g′(v0) = x2 = f ′(v2), g′(v2) = 0 = f ′(v0) and g′(v) = f ′(v) for all
v ∈ V (G) − {v0, v2}, it follows that g is a modular edge-graceful labeling of T .
Since f(e) = g(e) for all e ∈ E(T )− {v0v1, v1v2} and g(v0v1) = x2 6= 0, it follows
that g(e) 6= 0 for all e ∈ E(T ) − {v1v2}. Again, since T is not nowhere-zero
modular edge-graceful, g(v1v2) = f(v1v2)− x2 = 0, implying that f(v1v2) = x2.

Secondly, define h : E(T ) → Zn from the labeling g by

h(e) =







x3 − x1 if e = v1v2,
g(e)− (x3 − x1) if e = v2v3,
g(e) otherwise.

Then h′(v) = g′(v) = f ′(v) for all v ∈ V (G)− {v1, v2, v3} and

h′(v1) = g′(v1) + (x3 − x1) = x1 + (x3 − x1) = x3 = g′(v3),

h′(v2) = g′(v2) + (x3 − x1)− (x3 − x1) = g′(v2) = 0,

h′(v3) = g′(v3)− (x3 − x1) = x3 − (x3 − x1) = x1 = g′(v1).
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Hence h is a modular edge-graceful labeling of T . Since h(e) 6= 0 for all
e ∈ E(T )−{v2v3} and T is not nowhere-zero modular edge-graceful, h(v2v3) = 0
and so f(v2v3) = x3 − x1.
Next, define i : E(T ) → Zn from the labeling h by

i(e) =







x4 if e = v2v3,
h(e)− x4 if e = v3v4,
h(e) otherwise.

Then i′(v) = h′(v) for all v ∈ V (G)− {v2, v4} and

i′(v2) = h′(v2) + x4 = 0 + x4 = x4 = h′(v4),

i′(v4) = h′(v4)− x4 = x4 − x4 = 0 = h′(v2).

Hence i is a modular edge-graceful labeling of T . Since i(e) 6= 0 for all
e ∈ E(T )− {v3v4} and T is not nowhere-zero modular edge-graceful, i(v3v4)=0
and so f(v3v4)=x4. Therefore, f(v1v2)=x2, f(v2v3)=x3 − x1 and f(v3v4)=x4.
Since f is a modular edge-graceful labeling of T , x1 6= x4 and hence x4 − x1 6=0.
Thus x3+x4−x1 6= x3, which implies that deg v3 6= 2. Let v5 ∈ V (T )−V (P ) that
is adjacent to v3 and let f ′(v5) = x5. Applying the same argument to the path
(v0, v1, v2, v3, v5) and the modular edge-graceful labeling f in which f(e) 6= 0 for
all e ∈ E(T ) − {v0v1}, we obtain that f(v3v5) = x5. Now observe that at most
one of x3−x1−x2+x4 and x3−x1−x2+x5 is 0. We may assume, without loss
of generality, that x3 − x1 − x2 + x4 6= 0.

We now define a labeling j : E(T ) → Zn from the labeling f by

j(e) =























x4 if e = v0v1,
x2 − x4 if e = v1v2,
x4 + x3 − x2 − x1 if e = v2v3,
x2 if e = v3v4,
f(e) otherwise.

Since x3−x1−x2+x4 6= 0 by assumption and f(e) 6= 0 for all e ∈ E(T )−E(P ),
it follows that j(e) 6= 0 for all e ∈ E(T ). Furthermore, j′(v) = f ′(v) for all
v ∈ V (T )− V (P ) and

j′(v0) = x4,

j′(v1) = f ′(v1)− x4 + x4 = f ′(v1) = x1,

j′(v2) = f ′(v2)− x4 + (x4 − x2) = x2 − x4 + (x4 − x2) = 0,

j′(v3) = f ′(v3) + (x2 − x4) + (x4 − x2) = f ′(v3) = x3,

j′(v4) = f ′(v4) + (x2 − x4) = x4 + (x2 − x4) = x2.

Thus {j′(v) : v ∈ V (P )} = {f ′(v) : v ∈ V (P )} = {0, x1, x2, x3, x4} and so
{j′(v) : v ∈ V (T )} = {f ′(v) : v ∈ V (T )}. Therefore, j is a nowhere-zero modular
edge-graceful labeling of T , which is a contradiction.
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Combining Lemma 3.1 and Theorem 3.2 establishes the main result of this section.

Theorem 3.3. A tree T of order n ≥ 3 with n 6≡ 2 (mod 4) is nowhere-zero

modular edge-graceful if and only if T is not a star of even order.

4. Connected Graphs with Cycles

We now consider connected graphs of order n ≥ 3 that are not trees, that is,
connected graphs with cycles. We first determine those connected graphs with
even cycles that are modular edge-graceful. We begin with a lemma.

Lemma 4.1. Let G be a connected modular edge-graceful graph of order n ≥ 4
containing an even cycle C and let f be a modular edge-graceful labeling. Suppose

that there is a ∈ Zn that satisfies one of the following two conditions:

(1) f(e) 6= ±a for each e ∈ E(C),

(2) if a 6= −a, then f(e) = a for exactly one e ∈ E(C) and f(e) 6= −a for each

e ∈ E(C).

Then G has a modular edge-graceful labeling g for which

(i) g(e) = f(e) for each e /∈ E(C),

(ii) g(e) 6= 0 for all e ∈ E(C) and

(iii) g′(v) = f ′(v) for all v ∈ V (G).

Proof. If a = 0, then g = f satisfies conditions (i)–(iii). Thus, we may assume
that a 6= 0. Let C = (v1, v2, . . . , vk, vk+1 = v1) where k ≥ 4 is even.

First, suppose that condition (1) holds, that is, f(e) 6= ±a for each e ∈ E(C).
Define a labeling g : E(G) → Zn by

(1) g(e) =







f(e) if e /∈ E(C),
f(e) + a if e = vivi+1 and i is odd,
f(e)− a if e = vivi+1 and i is even.

Thus g(e) = f(e) ± a 6= 0 for each e ∈ E(C) and g′(v) = f ′(v) for all v ∈ V (G).
Thus g satisfies conditions (i)–(iii).

Next suppose that (2) holds, that is, f(e) = a for exactly one e ∈ E(C).
We may assume, without loss of generality, that e = v1v2. Then the labeling g
defined in (1) satisfies conditions (i)-(iii).

Theorem 4.2. Let G be a connected modular edge-graceful graph of order at

least 4 that contains an even cycle C. For each modular edge-graceful labeling g
of G, there is a modular edge-graceful labeling f : E(G) → Zn of G such that

f(e) = g(e) for each e ∈ E(G)− E(C) and f(e) 6= 0 for each e ∈ E(C).
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Proof. Suppose that the order of G is n ≥ 4. Let C = (v1, v2, . . . , vk, vk+1 = v1)
be an even cycle in G, where then k ≥ 4 is even and let g : E(G) → Zn be a
modular edge-graceful labeling of G. Since G is modular edge-graceful, n 6≡ 2
(mod 4).

First, assume that n is odd. Since k is even, k < n. For each integer i with
0 ≤ i ≤ n−1

2 , let Si be the set of edges e in C for which g(e) = i or g(e) = −i.
If S0 = ∅, then let f = g. Thus we may assume that S0 6= ∅. We claim that
there is an integer i with 1 ≤ i ≤ n−1

2 such that |Si| ≤ 1. Assume, to the
contrary, that |Si| ≥ 2 for all i with 1 ≤ i ≤ n−1

2 . Since |S0| ≥ 1, it follows that

k =
∑

n−1

2

i=0 |Si| ≥ 2 ·
(

n−1
2

)

+ 1 = n. Since k < n in this case, a contradiction is
produced. Thus, as claimed, there is an integer i with 1 ≤ i ≤ n−1

2 such that
|Si| ≤ 1. It then follows by Lemma 4.1 that there is a modular edge-graceful
labeling f of G such that f(e) 6= 0 for each e ∈ E(C) and f(e) = g(e) for each
e /∈ E(C).

Next, assume that n is even. For each integer i with 0 ≤ i ≤ n
2 − 1, let Si be

the set of edges e in C for which g(e) = i or g(e) = −i and let Sn

2

be the set of
edges e in C for which g(e) = n

2 . If S0 = ∅, then let f = g. Thus we may assume
that S0 6= ∅ and so |S0| ≥ 1. We consider two cases, according to whether k < n
or k = n.

Case 1. k < n. We claim that there is an integer i with 1 ≤ i < n
2 such that

|Si| ≤ 1 or |Sn

2

| = 0. If this is not the case, then |Si| ≥ 2 for all i with 1 ≤ i < n
2 ,

|Sn

2

| ≥ 1, and |S0| ≥ 1. However then, k =
∑

n

2

i=0 |Si| ≥ 1 +
∑

n

2
−1

i=1 |Si| + 1 ≥

2 + 2
(

n
2 − 1

)

= n which is impossible. Thus, as claimed, if k < n, then |Si| ≤ 1
for some integer i with 1 ≤ i < n

2 or |Sn

2

| = 0. Hence by Lemma 4.1, there is a
modular edge-graceful labeling f of G such that f(e) 6= 0 for each e ∈ E(C) and
f(e) = g(e) for each e /∈ E(C).

Case 2. k = n. Then C = (v1, v2, . . . , vn, vn+1 = v1) is a Hamiltonian cycle
of G. By the discussion above, if |S0| 6= 0, |Sn

2

| 6= 0 and |Sn

2

| ≥ 2 for all i
with 1 ≤ i ≤ n

2 − 1, then |S0| = |Sn

2

| = 1 and |Si| = 2 for all i with 1 ≤ i ≤
n
2 − 1. Assume, without loss of generality, that g(v1v2) = 0. Consider the set
A = {g(vivi+1) : i is odd and 1 ≤ i ≤ n− 1}.

Notice that |A| ≤ n
2 . Since 0 ∈ A, there exists a ∈ Zn − A such that

1 ≤ a ≤ n
2 . Define a labeling f : E(G) → Zn by

f(e) =

{

g(e) if e /∈ E(C) or e = vivi+1, i is even and 1 ≤ i ≤ n,
g(e)− a if e = vivi+1, i is odd and 1 ≤ i ≤ n− 1.

Clearly, f(e) = g(e) for each e /∈ E(C). Since C is a Hamiltonian cycle of G,
f ′(v) = g′(v)− a for each v ∈ V (G) and so f is a modular edge-graceful labeling
of G. Furthermore, since g(vivi+1) 6= a for all odd integers i with 1 ≤ i ≤ n−1, it
follows that f(vivi+1) = g(vivi+1)−a 6= 0 for all odd integers i with 1 ≤ i ≤ n−1.
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Finally, since |S0| = 1, we have g(vivi+1) = 0 if and only if i = 1. Hence f(e) 6= 0
for each e ∈ E(C).

The following corollary is an immediate consequence of Theorem 4.2.

Corollary 4.3. If G is a connected modular edge-graceful graph of order at least 3
and g : E(G) → Zn is a modular edge-graceful labeling of G, then there is a

modular edge-graceful labeling f of G such that f(e) 6= 0 for each edge e that lies

on an even cycle of G and f(e) = g(e) for each edge e that does not lie on an

even cycle of G.

With the aid of Theorem 2.2 and Corollary 4.3, we can now establish the following
result on connected graphs with even cycles.

Theorem 4.4. If G is a connected modular edge-graceful graph of order n ≥ 4
that contains an even cycle, then G is nowhere-zero modular edge-graceful.

Proof. Let G be a connected modular edge-graceful graph of order n ≥ 4, where
then n 6≡ 2 (mod 4), such that G contains an even cycle C and let e∗ ∈ E(C).
By Theorem 2.2, there is a modular edge-graceful labeling g : E(G) → Zn such
that g(e) 6= 0 for all e ∈ E(G) − {e∗}. By Corollary 4.3, there is a modular
edge-graceful labeling f of G such that f(e) 6= 0 for each edge e that lies on
C and f(e) = g(e) for each edge e that does not lie on C. Since g(e) 6= 0 for
all e ∈ E(G) − {e∗}, it follows that f(e) 6= 0 for all e ∈ E(G). Hence G is
nowhere-zero modular edge-graceful.

We now consider connected graphs with cycles in general. First, we present two
lemmas. The proof of the first lemma is relatively standard and is therefore
omitted.

Lemma 4.5. For each integer n ≥ 3, the cycle Cn is nowhere-zero modular

edge-graceful if and only if n ≥ 4 and n 6≡ 2 (mod 4).

Lemma 4.6. Let G be a modular edge-graceful graph of order n ≥ 3 that is not

nowhere-zero modular edge-graceful. Let v1v2 be an edge of G and let f : E(G) →
Zn be a modular edge-graceful labeling of G such that f(v1v2) = 0 and f(e) 6= 0
for all e ∈ E(G) − {v1v2}. If Pk = (v1, v2, . . . , vk) is a path of order k ≥ 3 in G
such that f ′(vi) = xi for 1 ≤ i ≤ k and f(vivi+1) = yi for 1 ≤ i ≤ k − 1 where

y1 = 0, then

(2) yi =

{

xi+1 − x1 if 2 ≤ i ≤ k − 1 and i is even,
xi+1 − x2 if 3 ≤ i ≤ k − 1 and i is odd.

Furthermore, there is a modular edge-graceful labeling g : E(G) → Zn of G that

satisfies the following conditions:
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• g(e) 6= 0 for all e ∈ E(G)− {vk−1vk} and g(vk−1vk) = 0,

• g(e) = f(e) for all e ∈ E(G)− E(Pk), and

• if k is odd, then g′(vk) = x1 and g′(vk−1) = x2; while if k is even, then

g′(vk) = x2 and g′(vk−1) = x1.

Proof. We proceed by induction on k. We first consider the two base cases when
k = 3 and k = 4.

First, suppose that k = 3. Let f : E(G) → Zn be a modular edge-graceful
labeling of G such that f(v1v2) = 0 and f(e) 6= 0 for all e ∈ E(G) − {v1v2} and
let P3 = (v1, v2, v3). Suppose that f ′(vi) = xi for 1 ≤ i ≤ 3. We shall show that
f(v2v3) = y2 = x3 − x1. Define a labeling g : E(G) → Zn of G by

g(e) =







f(e) if e 6= v1v2, v2v3,
x3 − x1 if e = v1v2,
y2 − (x3 − x1) if e = v2v3.

Observe that g′(v) = f ′(v) if v ∈ V (G)− {v1, v2, v3} and

g′(v1) = f ′(v1) + (x3 − x1) = x1 + (x3 − x1) = x3,
g′(v2) = f ′(v2) + (x3 − x1)− (x3 − x1) = f ′(v2) = x2,
g′(v3) = f ′(v3)− (x3 − x1) = x3 − (x3 − x1) = x1.

Thus {g′(vi) : 1 ≤ i ≤ 3} = {f ′(vi) : 1 ≤ i ≤ 3} = {x1, x2, x3} and so g is a
modular edge-graceful labeling ofG. Since g(e) = f(e) for all e ∈ E(G)−E(P3), it
follows that g(e) 6= 0 if e 6= v1v2, v2v3. Also, x3 6= x1 and so g(v1v2) = x3−x1 6= 0.
Since G is not nowhere-zero modular edge-graceful, g(v2v3) = y2 − (x3 − x1) = 0
and so y2 = x3 − x1. Thus (2) holds. Furthermore, the modular edge-graceful
labeling g : E(G) → Zn of G satisfies the following conditions:
• g(e) 6= 0 for all e ∈ E(G)− {v2v3} and g(v2v3) = 0,

• g(e) = f(e) for all e ∈ E(G)− E(P3), and

• g′(v3) = x1 and g′(v2) = x2.
Hence the result holds for k = 3.

Next suppose that k = 4. Let f : E(G) → Zn be a modular edge-graceful
labeling of G such that f(v1v2) = 0 and f(e) 6= 0 for all e ∈ E(G) − {v1v2}
and let P4 = (v1, v2, v3, v4). Again, suppose that f ′(vi) = xi for 1 ≤ i ≤ 4 and
f(vivi+1) = yi for 1 ≤ i ≤ 3, where then y1 = 0. By the case when k = 3, there
is a modular edge-graceful labeling g : E(G) → Zn of G such that g(e) 6= 0 for
all e ∈ E(G) − {v2v3}, g(v3v4) = y3 = f(v3v4), g

′(v1) = x3, g
′(v3) = x1, and

g′(v) = f ′(v) for all v ∈ V (G) − {v1, v3}. Define a labeling h : E(G) → Zn of G
from the modular edge-graceful labeling g of G by

h(e) =







g(e) if e 6= v2v3, v3v4,
x4 − x2 if e = v2v3,
y3 − (x4 − x2) if e = v3v4.
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Observe that

h′(v) = g′(v) if v ∈ V (G)− {v2, v3, v4} and

h′(v2) = g′(v2) + (x4 − x2) = x2 + (x4 − x2) = x4,

h′(v3) = g′(v3) + (x4 − x2)− (x4 − x2) = g′(v3) = x1,

h′(v4) = g′(v4)− (x4 − x2) = x4 − (x4 − x2) = x2.

Thus {h′(vi) : 2 ≤ i ≤ 4} = {g′(vi) : 2 ≤ i ≤ 4} = {x1, x2, x4} and so h is
a modular edge-graceful labeling of G. Since h(e) = g(e) for all e ∈ E(G) −
{v2v3, v3v4}, it follows that h(e) 6= 0 if e /∈ {v2v3, v3v4}. Also, x4 6= x2 and
so h(v2v3) = x4 − x2 6= 0. Since G is not nowhere-zero modular edge-graceful,
h(v3v4) = y3 − (x4 − x2) = 0 and so y3 = x4 − x2. Thus (2) holds. Furthermore,
the modular edge-graceful labeling h : E(G) → Zn of G satisfies the following
conditions:

• h(e) 6= 0 for all e ∈ E(G)− {v3v4} and h(v3v4) = 0,

• h(e) = g(e) = f(e) for all e ∈ E(G)− E(P4), and

• h′(v4) = x2 and h′(v3) = x1.

Hence the result holds for k = 4.

Now suppose that the result holds for some integer k ≥ 4. Let f : E(G) → Zn

be a modular edge-graceful labeling of G such that f(v1v2) = 0 and f(e) 6= 0 for
all e ∈ E(G)− {v1v2} and Pk+1 = (v1, v2, . . . , vk+1) be a path of order k + 1 ≥ 5
in G. Suppose that f ′(vi) = xi for 1 ≤ i ≤ k+1 and f(vivi+1) = yi for 1 ≤ i ≤ k
where y1 = 0. Let Pk = (v1, v2, . . . , vk) be the subpath of order k in Pk+1. We
consider two cases, according to whether k is even or k is odd.

Case 1. k is even or k + 1 is odd. By the induction hypothesis of f on the
path Pk, we have

(3) yi =

{

xi+1 − x1 if 2 ≤ i ≤ k − 2 and i is even,
xi+1 − x2 if 3 ≤ i ≤ k − 1 and i is odd.

Furthermore, there is a modular edge-graceful labeling g : E(G) → Zn of G such
that

• g(e) 6= 0 for all e ∈ E(G)− {vk−1vk} and g(vk−1vk) = 0,

• g(e) = f(e) for all e ∈ E(G)− E(Pk), and

• g′(vk) = x2 and g′(vk−1) = x1.

Hence g(vkvk+1) = yk = f(vkvk+1). Define a labeling h : E(G) → Zn of G from
the modular edge-graceful labeling g of G by

h(e) =







g(e) if e 6= vk−1vk, vkvk+1,
xk+1 − x1 if e = vk−1vk,
yk − (xk+1 − x1) if e = vkvk+1.

Observe that
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(i) h′(v) = g′(v) if v ∈ V (G)− {vk−1, vk, vk+1} and

(ii) by (3),

h′(vk−1) = g′(vk−1) + (xk+1 − x1) = x1 + (xk+1 − x1) = xk+1,

h′(vk) = g′(vk) + (xk+1 − x1)− (xk+1 − x1) = g′(vk) = x2,

h′(vk+1) = g′(vk+1)− (xk+1 − x1) = xk+1 − (xk+1 − x1) = x1.

Thus {h′(vi) : k − 1 ≤ i ≤ k + 1} = {g′(vi) : k − 1 ≤ i ≤ k + 1} and so h is
a modular edge-graceful labeling of G. Since h(e) = g(e) for all e ∈ E(G) −
{vk−1vk, vkvk+1}, it follows that h(e) 6= 0 if e 6= vk−1vk, vkvk+1. Also, xk+1 6= x1
and so h(vk−1vk) = xk+1 − x1 6= 0. Since G is not nowhere-zero modular edge-
graceful, h(vkvk+1) = yk − (xk+1 − x1) = 0 and so yk = xk+1 − x1. Hence (2)
holds. Furthermore, the modular edge-graceful labeling h : E(G) → Zn of G
satisfies the following conditions:

• h(e) 6= 0 for all e ∈ E(G)− {vkvk+1} and h(vkvk+1) = 0,

• h(e) = g(e) = f(e) for all e /∈ E(Pk+1), and

• h′(vk+1) = x1 and h′(vk) = x2.

Hence the result holds for k is even (or k + 1 is odd).

Case 2. k is odd or k + 1 is even. By the induction hypothesis of f on the
path Pk, we have

(4) yi =

{

xi+1 − x1 if 2 ≤ i ≤ k − 1 and i is even,
xi+1 − x2 if 3 ≤ i ≤ k − 2 and i is odd.

Furthermore, there is a modular edge-graceful labeling g : E(G) → Zn of G such
that

• g(e) 6= 0 for all e ∈ E(G)− {vk−1vk} and g(vk−1vk) = 0,

• g(e) = f(e) for all e ∈ E(G)− E(Pk), and

• g′(vk) = x1 and g′(vk−1) = x2.

Hence g(vkvk+1) = yk = f(vkvk+1). Define a labeling h : E(G) → Zn of G from
the modular edge-graceful labeling g of G by

h(e) =







g(e) if e 6= vk−1vk, vkvk+1,
xk+1 − x2 if e = vk−1vk,
yk − (xk+1 − x2) if e = vkvk+1.

Observe that

(i) h′(v) = g′(v) if v ∈ V (G)− {vk−1, vk, vk+1} and

(ii) by (4),

h′(vk−1) = g′(vk−1) + (xk+1 − x2) = x2 + (xk+1 − x2) = xk+1,

h′(vk) = g′(vk) + (xk+1 − x2)− (xk+1 − x2) = g′(vk) = x1,

h′(vk+1) = g′(vk+1)− (xk+1 − x2) = xk+1 − (xk+1 − x2) = x2.
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Thus {h′(vi) : k − 1 ≤ i ≤ k + 1} = {g′(vi) : k − 1 ≤ i ≤ k + 1} and so h is
a modular edge-graceful labeling of G. Since h(e) = g(e) for all e ∈ E(G) −
{vk−1vk, vkvk+1}, it follows that h(e) 6= 0 if e 6= vk−1vk, vkvk+1. Also, xk+1 6= x2
and so h(vk−1vk) = xk+1 − x2 6= 0. Since G is not nowhere-zero modular edge-
graceful, h(vkvk+1) = yk − (xk+1 − x2) = 0 and so yk = xk+1 − x2. Hence (2)
holds. Furthermore, the modular edge-graceful labeling h : E(G) → Zn of G
satisfies the following conditions:
• h(e) 6= 0 for all e ∈ E(G)− {vkvk+1} and h(vk1vk+1) = 0,

• h(e) = g(e) = f(e) for all e /∈ E(Pk+1), and

• h′(vk+1) = x2 and h′(vk) = x1.
Hence the result holds for k is odd (or k + 1 is even).

Theorem 4.7. If G is a connected modular edge-graceful graph of order n ≥ 4
that is not a star, then G is nowhere-zero modular edge-graceful.

Proof. Assume, to the contrary, that there is a connected modular edge-graceful
graph G of order n ≥ 4 that is not a star such that G is not nowhere-zero
modular edge-graceful. By Theorem 3.3, G is not a tree. By Theorem 4.4, G
does not contain an even cycle. By Lemma 4.5, G is not an odd cycle. Since G
is connected, it follows that G contains a unicyclic subgraph H that is obtained
from an odd cycle by adding a pendant edge. We may assume that V (H) =
{v1, v2, v3, . . . , v2k+2}, where C2k+1 = (v2, v3, . . . , v2k+2, v2) is the odd cycle of H
and v1v2 is the pendant edge of H.

Since G is not nowhere-zero modular edge-graceful, by Lemma 4.6, there is
a modular edge-graceful labeling f : E(G) → Zn of G such that f(v1v2) = 0 and
f(e) 6= 0 for all e ∈ E(G)−{v1v2}. Furthermore, if P2k+2 = (v1, v2, v3, . . . , v2k+2)
such that f ′(vi) = xi for 1 ≤ i ≤ 2k + 2 and f(vivi+1) = yi for 1 ≤ i ≤ 2k + 1
where y1 = 0, then

(5) yi =

{

xi+1 − x1 if 2 ≤ i ≤ 2k and i is even,
xi+1 − x2 if 3 ≤ i ≤ 2k + 1 and i is odd.

Now consider the two paths Q1 and Q2 with initial edge v1v2 in H, namely,

Q1 = (v1, v2, v3, v4, . . . , vk+2, vk+3),

Q2 = (v1, v2, v2k+2, v2k+1, v2k, . . . , vk+3, vk+2).

Thus, |V (Q1)| = |V (Q2)| = k + 3 and E(Q1) ∩ E(Q2) = {v1v2, vk+2vk+3}.
First, assume that k+2 is odd. By traversing along the path Q1 and applying

(5), we obtain yk+2 = xk+3 − x1. On the other hand, by traversing along the
path Q2 and applying Lemma 4.6, we obtain yk+2 = xk+2−x1. This implies that
xk+3 = xk+2, which is a contradiction.

Next, assume that k+2 is even. Then a similar argument shows that xk+3 =
xk+2, which is a contradiction.
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Theorems 3.3, 4.4 and 4.7 then provide a characterization of connected nowhere-
zero modular edge-graceful graphs.

Theorem 4.8. A connected graph G of order n ≥ 3 is nowhere-zero modular

edge-graceful if and only if

(i) n 6≡ 2 (mod 4),

(ii) G 6= K3 and

(iii) G is not a star of even order.

5. Nowhere-zero Modular Edge-gracefulness

For every connected graph G of order n, there is a smallest integer k ≥ n for which
there exists an edge labeling f : E(G) → Zk − {0} such that the induced vertex
labeling f ′ : V (G) → Zk defined by f ′(v) =

∑

u∈N(v) f(uv), where the sum is
computed in Zk, is one-to-one. This number k is referred to as the nowhere-zero

modular edge-gracefulness of G and is denoted by nzg(G). Thus nzg(G) = n if
and only if G is nowhere-zero modular edge-graceful. Next, we determine nzg(G)
for those graphs G that are not nowhere-zero modular edge-graceful. We first
consider connected graphs of order n ≥ 3 where n 6≡ 2 (mod 4). By Theorem 4.8,
it suffices to determine the nowhere-zero gracefulness of K3 or a star of even
order. Since nzg(K3) = 4, it remains to consider a star of even order.

Corollary 5.1. For each odd integer s ≥ 3, nzg(K1,s) = s+ 3.

Proof. By Theorem 4.8, nzg(K1,s) ≥ s + 2. First, we show that nzg(K1,s) 6=
s + 2 for all odd integers s ≥ 3. Assume, to the contrary, that there is an
edge labeling f : E(K1,s) → Zs+2 − {0} such that the induced vertex labeling
f ′ : V (K1,s) → Zs+2 is an injective function. Since every edge of K1,s is incident
with an end-vertex, it follows that f is injective as well. Because |Zs+2 − {0}| =
s + 1 = |E(K1,s)| + 1, there is a unique a ∈ Zs+2 − {0} such that f(e) 6= a for
all e ∈ E(K1,s). Since s + 2 is odd, a 6= −a for all a ∈ Zs+2. This implies that
there is e = uv ∈ E(K1,s) such that f(e) = −a. Suppose that u is an end-vertex
of K1,s and v is the central vertex of K1,s. Then f ′(u) = f ′(v) = −a, which is a
contradiction. Therefore, nzg(K1,s) 6= s+ 2 and so nzg(K1,s) ≥ s+ 3.

To show that nzg(K1,s) ≤ s + 3, we define an edge labeling g : E(K1,s) →
Zs+3 − {0} such that the induced vertex labeling g′ : V (K1,s) → Zs+3 is an
injective function. Let V (K1,s) = {v, v1, v2, . . . , vs} where v is the central vertex
of K1,s. For s = 3, 5, let g(vvi) = i for 1 ≤ i ≤ s; while for s ≥ 7, let

g(vvi) =

{

i+ 1 if 1 ≤ i ≤ s−1
2 − 2,

i+ 2 if s−1
2 − 1 ≤ i ≤ s.

In each case, g′ is injective and so nzg(K1,s) = s+ 3.
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By Theorem 4.8, nzg(K3) = 4 and Proposition 5.1, we have the following.

Theorem 5.2. If G is a connected graph of order n ≥ 3 with n 6≡ 2 (mod 4)
that is not nowhere-zero modular edge-graceful, then nzg(G) ∈ {n + 1, n + 2}.
Furthermore, nzg(G) = n + 1 if and only if G = K3 and nzg(G) = n + 2 if and

only if G is a star of even order.

By Theorem 1.1, if G is a connected graph of order n ≥ 6 where n ≡ 2 (mod 4),
then G is not modular edge-graceful. Consequently, G is not nowhere-zero modu-
lar edge-graceful and so nzg(G) ≥ n+1. Proceeding as above under the hypothesis
that n ≡ 2 (mod 4) rather than n 6≡ 2 (mod 4), then with a similar argument,
both in length and method, the following can be established.

Theorem 5.3. If G is a connected graph of order n ≥ 6 where n ≡ 2 (mod 4),
then nzg(G) ∈ {n+ 1, n+ 2}. Furthermore, nzg(G) = n+ 2 if and only if G is a

star.

In summary then, we have the following.

Theorem 5.4. If G is a connected graph of order n ≥ 3, then nzg(G) ∈ {n, n+
1, n+ 2}. Furthermore,

• nzg(G) = n if and only if G is nowhere-zero modular edge-graceful,

• nzg(G) = n+ 1 if and only if G = K3 or n ≡ 2 (mod 4) and G is not a star

of even order.

• nzg(G) = n+ 2 if and only if G is a star of even order.
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