Note

ERDÖS-KO-RADO FROM INTERSECTING SHADOWS

Gyula O.H. Katona and Ákos Kisvölcsey
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences 1053 Budapest, Reáltanoda u. 13-15, Hungary
e-mail: \{ohkatona,ksvlcs\}@renyi.hu

Abstract

A set system is called t-intersecting if every two members meet each other in at least t elements. Katona determined the minimum ratio of the shadow and the size of such families and showed that the Erdős-Ko-Rado theorem immediately follows from this result. The aim of this note is to reproduce the proof to obtain a slight improvement in the Kneser graph. We also give a brief overview of corresponding results.

Keywords: Kneser graph, coclique, intersecting family, shadow.
2010 Mathematics Subject Classification: 05C35, 05D05.

1. Introduction

Throughout the paper we will investigate subsets of an n-element underlying set $[n]=\{1,2, \ldots, n\} .\binom{[n]}{k}$ will denote the collection of all k-element subsets of $[n]$. A family \mathcal{F} is said to be k-uniform if $\mathcal{F} \subseteq\binom{[n]}{k}$.
$\mathcal{F} \subseteq\binom{[n]}{k}$ is called intersecting if it does not contain disjoint sets. In general, \mathcal{F} is t-intersecting if $\left|F_{1} \cap F_{2}\right| \geq t$ for all $F_{1}, F_{2} \in \mathcal{F}$.

The Kneser graph, $\operatorname{Kn}(n, k)$, is the graph whose vertices are the k-element subsets of $[n]$, i.e. $V(\operatorname{Kn}(n, k))=\binom{[n]}{k}$ and two vertices are connected iff the two corresponding sets are disjoint. A coclique in a graph is a set of vertices, such that no two vertices in the set are adjacent. An intersecting family is a coclique in the corresponding Kneser graph. The maximum size of a coclique in a graph G is denoted by $\alpha(G)$.

The following theorem is one of the famous results in extremal combinatorics:

Theorem 1 (Erdős, Ko, Rado [3]). If $k \leq n / 2$, then

$$
\alpha(\operatorname{Kn}(n, k))=\binom{n-1}{k-1}
$$

Obviously, the family consisting of the k-subsets that contain 1 has size $\binom{n-1}{k-1}$, so only the \leq part is interesting.

Let $\mathcal{F} \subseteq\binom{X}{k}$ be a family of k-element sets; for $l \leq k$, the l-shadow of \mathcal{F} is defined as $\Delta_{l} \mathcal{F}=\{G:|G|=l$, and there exists $F \in \mathcal{F}$ such that $G \subset F\}$. It is clear that $\mathcal{F}=\binom{[2 k-t]}{k}$ is t-intersecting and $\Delta_{l} \mathcal{F}=\binom{[2 k-t]}{l}$. The next theorem shows that this is the extremal case in some sense.

Theorem 2 (Katona [5]). Assume that \mathcal{F} is a k-uniform, t-intersecting family. Then for $l \geq k-t$,

$$
\frac{\left|\Delta_{l} \mathcal{F}\right|}{|\mathcal{F}|} \geq \frac{\binom{2 k-t}{l}}{\binom{2 k-t}{k}}
$$

2. A Generalization of the EKR Theorem

In this section we deduce a slight generalization of the EKR theorem from Theorem 2.

For a set $A \subseteq V(\operatorname{Kn}(n, k))$, the neighborhood of A is denoted by $N(A)$. Similarly, for a given k-uniform family \mathcal{F}, let us introduce the notation $\mathcal{N}(\mathcal{F})=$ $\left\{H \in\binom{[n]}{k}\right.$: there exists $F \in \mathcal{F}$ such that $\left.H \cap F=\emptyset\right\}$ as the "neighborhood" of \mathcal{F}.

Theorem 3. If $k \leq n / 2$ and C is a coclique in the Kneser $\operatorname{graph}, \operatorname{Kn}(n, k)$, then

$$
\frac{|C|}{|C|+|N(C)|} \leq \frac{k}{n}
$$

Since C is a coclique, C and $N(C)$ are disjoint, so $|C|+|N(C)| \leq|V(\operatorname{Kn}(n, k))|=$ $\binom{n}{k}$ and the EKR theorem follows.

Proof of Theorem 3. To apply Theorem 2 , let \mathcal{F} be the intersecting k-uniform family that corresponds to C. Let \mathcal{F}^{c} be the family of complements, i.e. $\mathcal{F}^{c}=$ $\{[n] \backslash F: F \in \mathcal{F}\} \subseteq\binom{[n]}{n-k}$. For each pair $F_{1}, F_{2} \in \mathcal{F}$, we have $\left|F_{1} \cup F_{2}\right| \leq 2 k-1$, thus \mathcal{F}^{c} is t-intersecting for $t=n-2 k+1$. By Theorem 2,

$$
\frac{\left|\Delta_{k} \mathcal{F}^{c}\right|}{\left|\mathcal{F}^{c}\right|} \geq \frac{\binom{2(n-k)-(n-2 k+1)}{k}}{\binom{2(n-k)-(n-2 k+1)}{n-k}}=\frac{n-k}{k} .
$$

$\left|\mathcal{F}^{c}\right|=|\mathcal{F}|$ and $\Delta_{k} \mathcal{F}^{c} \subseteq \mathcal{N}(\mathcal{F})$, because for every $H \in \Delta_{k} \mathcal{F}^{c}, H \subseteq[n] \backslash F$ for some $F \in \mathcal{F}$ and $H \cap F=\emptyset$. Thus,

$$
\frac{|N(C)|}{|C|}=\frac{|\mathcal{N}(\mathcal{F})|}{|\mathcal{F}|} \geq \frac{n-k}{k}
$$

and we are done.

3. Similar Results

Let $A \subseteq V(\operatorname{Kn}(n, k))$. For another slight generalization, we denote by $I(A)$ the family of isolated points in A, that is,

$$
I(A)=\{a \in A:(a, b) \notin E(\operatorname{Kn}(n, k)) \text { for all } b \in A\}
$$

In his paper, Borg [1] extended Daykin's proof [2] of the EKR theorem to obtain the following improvement:

Theorem 4 (Borg). If $A \subseteq V(\operatorname{Kn}(n, k))$ and $k \leq n / 2$, then

$$
|I(A)|+\frac{k}{n}|A \backslash I(A)| \leq\binom{ n-1}{k-1}
$$

It is easy to see that Theorems 3 and 4 are equivalent.
First, let A be an arbitrary subgraph of $\operatorname{Kn}(n, k) . C:=I(A)$ is a coclique, so by Theorem $3, \frac{|I(A)|}{|I(A)|+|N(I(A))|} \leq \frac{k}{n}$.
By definition, $I(A), A \backslash I(A)$ and $N(I(A))$ are disjoint, hence $|I(A)|+|A \backslash I(A)|+$ $|N(I(A))| \leq\binom{ n}{k}$.
These two inequalities now imply Theorem 4.
On the other hand, if C is a coclique, let $A:=V(\operatorname{Kn}(n, k)) \backslash N(C)$. By definition, C and $N(C)$ are disjoint, and $C \subseteq I(A)$. Thus, by Theorem 4,

$$
|C|+\frac{k}{n}|V(\operatorname{Kn}(n, k)) \backslash N(C) \backslash C| \leq\binom{ n-1}{k-1}
$$

and Theorem 3 follows.
Remember that though the two theorems are equivalent, their proofs are quite different: while Theorem 3 is proved as a consequence of the theorem on shadows of intersecting families, Borg uses the Kruskal-Katona theorem $[6,7]$ to verify Theorem 4.

Remark 5. In [1], Borg also showed that Theorem 4 (and so Theorem 3) yields Hilton's theorem [4] for cross-intersecting sub-families of $\binom{[n]}{k}$.

Recently, J. Wang and H. Zhang [8, 9] investigated similar problems in general circumstances. A graph $G=(V, E)$ is called vertex-transitive if its automorphism group, $\operatorname{Aut}(G)$, acts transitively on V, i.e. for every $u, v \in V$ there exists a $\gamma \in \operatorname{Aut}(G)$ such that $\gamma(u)=v$.

The following theorem is the analogue of Theorem 3 for arbitrary vertextransitive graph.

Theorem 6 (Zhang). Let $G=(V, E)$ be a vertex-transitive simple graph. If $C \subseteq V$ is a coclique, then

$$
\frac{|C|}{|C|+|N(C)|} \leq \frac{\alpha(G)}{|V|}
$$

Note that the EKR theorem and Theorem 6 together imply Theorem 3.

References

[1] P. Borg, A short proof of a cross-interscting theorem of Hilton, Discrete Math. 309 (2009) 4750-4753.
doi:10.1016/j.disc.2008.05.051
[2] D.E. Daykin, Erdös-Ko-Rado from Kruskal-Katona, J. Combin. Theory (A) 17 (1974) 254-255. doi:10.1016/0097-3165(74)90013-2
[3] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math., Oxford 12 (1961) 313-320.
[4] A.J.W. Hilton, An intersection theorem for a collection of families of subsets of a finite set, J. London Math. Soc. (2) 15 (1977) 369-376.
doi:10.1112/jlms/s2-15.3.369
[5] G.O.H. Katona, Intersection theorems for systems of finite sets, Acta Math. Hungar. 15 (1964) 329-337. doi:10.1007/BF01897141
[6] G.O.H. Katona, A theorem of finite sets in: Theory of Graphs, Proc. Colloq. Tihany, 1966, P. Erdős and G.O.H. Katona (Eds.) (Akadémiai Kiadó, 1968) 187-207.
[7] J.B. Kruskal, The number of simplicies in a complex in: Math. Optimization Techniques, R. Bellman (Ed.) (Univ. of Calif. Press, Berkeley, 1963) 251-278.
[8] J. Wang and H.J. Zhang, Cross-intersecting families and primitivity of symmetric systems, J. Combin. Theory (A) 118 (2011) 455-462. doi:10.1016/j.jcta.2010.09.005
[9] H.J. Zhang, Primitivity and independent sets in direct products of vertex-transitive graphs, J. Graph Theory 67 (2011) 218-225.
doi:10.1002/jgt. 20526

