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Abstract

For a positive integer k, a total {k}-dominating function of a digraph
D is a function f from the vertex set V(D) to the set {0,1,2,...,k} such
that for any vertex v € V/(D), the condition }_ . n-(,) f(u) = k is fulfilled,
where N~ (v) consists of all vertices of D from which arcs go into v. A set
{f1, f2y- .., fa} of total {k}-dominating functions of D with the property
that Zle filv) < k for each v € V(D), is called a total {k}-dominating
family (of functions) on D. The maximum number of functions in a total
{k}-dominating family on D is the total {k}-domatic number of D, denoted
by d,}{k}(D). Note that dfl}(D) is the classic total domatic number d;(D). In
this paper we initiate the study of the total {k}-domatic number in digraphs,
and we present some bounds for dt{k}(D). Some of our results are extensions
of well-know properties of the total domatic number of digraphs and the
total {k}-domatic number of graphs.
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1. INTRODUCTION

In this paper, D is a finite and simple digraph with vertex set V = V(D) and
arc set A = A(D). The order |V| of D is denoted by n = n(D). We write
df(v) = d*(v) for the outdegree of a vertex v and d,(v) = d~(v) for its indegree.
The minimum and mazimum indegree are §— (D) and A~ (D). The sets N (v) =
{z|(v,z) € A(D)} and N~ (v) = {z|(z,v) € A(D)} are called the outset and inset
of the vertex v. If X C V(D), then D[X] is the subdigraph induced by X. For
an arc (z,y) € A(D), the vertex y is an outer neighbor of x and z is an inner
neighbor of y. We write K} for the complete digraph of order n. Consult [5] for
the notation and terminology which are not defined here.

For a positive integer k, a total {k}-dominating function (T{k}DF) of a
digraph D with 67(D) > 1 is a function f from the vertex set V(D) to the set
{0,1,2,..., k} such that for any vertex v € V(D), the condition >, ¢ -, f(u) =
k is fulfilled. The weight of a T{k}DF f is the value w(f) = > ey (p) f(v). The

total {k}-domination number of a digraph D, denoted by %{k} (D), is the minimum

weight of a T{k}DF of D. A 'yfk}(D)—function is a total {k}-dominating function
of D with weight 'yt{k}(D). Note that fyt{l}(D) is the classical total domination
number (D). If F is a minimum total dominating set of a digraph D with
(D) > 1, then the function f from V(D) to {0,1,2,...,k} with f(v) =k for
v € Fand f(x) =0 for x € V(D) — F is a total {k}-dominating function of D
and therefore

WD) < K|F| = k(D).

In this paper we always assume that D is a digraph with 6~ (D) > 1.

A set {f1, fa, ..., fa} of distinct total {k}-dominating functions of D with the
property that % fi(v) < k for each v € V(D), is called a total {k}-dominating
family (of functions) on D. The maximum number of functions in a total {k}-
dominating family (T{k}D family) on D is the total {k}-domatic number of D,

denoted by dt{k} (D). The total {k}-domatic number is well-defined and
(1) dt{k} (D) > 1, for all digraphs D with 6~ (D) > 1,

since the set consisting of the function f : V(D) — {0,1,2,...,k} defined by
f(w) = k for each v € V(D), forms a T{k}D family on D. The total domatic
number of a digraph was introduced by Jacob and Arumugam in [6].

Our purpose in this paper is to initiate the study of the total {k}-domatic
number in digraphs. We first study basic properties and bounds for the total
{k}-domatic number of a digraph. In addition, we determine the total {k}-
domatic number of some classes of digraphs. Some of our results are extensions
of well-know properties of the total domatic number of digraphs and the total
{k}-domatic number of graphs (see, for example, [2, 3, 4, 6, 8]).
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We start with the following observation.

Observation 1. Let k be an integer, and let D be a digraph with 6~ (D) > 1.
Then ’yl;{k}(D) > k+1, with equality if and only if there exists a subset S C V(D)
of size k41 such that D[S] is a complete digraph, and each vertex x € V(D) — S
has at least k inner neighbors in S.

Proof. Let f be a *yt{k}(D)—function, and let v € V(D) be an arbitrary vertex.
The definition implies that }_ o n—(,) f() 2 k. If >0 cn—(,) f(z) = k + 1, then
fyfk}(D) >k+1 I3 cn—( f(z) =k, then let u € N7(v) be a vertex such
that f(u) > 1. Since > cn—(y) f(2) = k and u & N~ (u), we deduce that w(f) =

S eev(py F0) 2 Cae(n-uguy) £@) = b+ 1 and therefore 7, (D) > k+ 1.

Assume that ’y:lk} (D) =k+1. Let f bea ’yt{k}(D)—function. If there exists a
vertex v such that f(v) > 2, then we obtain the contradiction > ¢y, f(#) <
kE+1—2=Fk—1. Hence f(x) =1 or f(x) = 0 for each vertex x € V(D). Let
S C V(D) such that f(x) = 1 for each € S. Then |S| = k+ 1, D[S] is a
complete digraph, and each vertex x € V(D) — S has at least k inner neighbors
in S.

Conversely, assume that there exists a subset S C V(D) of size k 4+ 1 such
that D[S] is a complete digraph, and each vertex z € V(D) — S has at least k
inner neighbors in S. Define the function f by f(x) =1 for z € S and f(x) =0
for x € V(D) — S. Then f is a total {k}-dominating function of D such that
w(f) =k + 1. Since vt{k}(D) >k + 1, we deduce that ’yt{k}(D) =k+1 |

2. PROPERTIES OF THE {k}-DOMATIC NUMBER

In this section we mainly present basic properties of d;{k}(D) and bounds on the
total {k}-domatic number of a digraph.

Theorem 2. If D is a digraph of order n, then %{k} (D)-d;{k}(D) < kn. Moreover,
if %{k}(D) . dik}(D) = kn, then for each T{k}D family {f1, fa,..., fa} on D with
d= d;{k}(D), each function f; is a %{k}(D)-functz'on and Zle filv) =k for all
ve V(D).

Proof. Let {f1, fo,..., fs} be a T{k}D family on D such that d = d\"}(D).
Then
a2 (D) = S 17 (D) < T S evip) il0) = Srevin) Tim fi0)
S S
If 'y;{k}(D) . d;{k}(D) = kn, then the two inequalities occurring in the proof become
equalities. Hence for the T{k}D family {f1, f2,...,fa} on D and for each 1,
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ZveV(D) filv) = ’yf }(D). Thus each function f; is a fy,;{ }(D)—function, and
S fi(v) = k for all v € V(D). n

The special case k =1 in Theorem 2 can be found in [6].

Corollary 3. Let k,n be two positive integers. If k+ 1 is a divisor of n and

P > 2, then ™ (K2) = L,

Proof. Applying Observation 1 and Theorem 2, we see that d;{k} () < kkfl

Now we consider a partition of V(K3) into s = 7 sets V1, Va, ...,V such that
|Vi| = k+1 for each i. Let V; = {vj,v3,...,v;,} for 1 <i < s. Define, for
1<i<sand1<j <k,
)= =) =1 fil) == fut) =1and
fj (z) = 0 otherwise, where the indices i + 1 are taken modulo s.
It is easy see that {f] 1< < 5,1 <j <k, }isaT{k}D family on K, and

therefore d{ }(K ) > k]ffl Since k + 1 is a divisor of n, the proof is complete. =

A further consequence of Theorem 2 and Observation 1 now follows.

Corollary 4. If k > 2 is an integer, and D is a digraph of order k 4+ 1, then
d™(D) <k -1

Proof. Since ’y,;{k}(D) > k + 1, it follows from Theorem 2 that dik}(D) < k.
If ’yi{k}(D) > k + 2, then Theorem 2 implies d;{k}(D) < k — 1 immediately. If
(D) = k+1 and di* (D) = k, then for the T{k}D family {f1, fa, ..., fx}

on D, each function f; is a fy,;{ }(D)—function, and Observation 1 leads to the
contradiction that fi = fo =--- = fi. This completes the proof. [

Corollary 5. If k is a positive integer, and D is a digraph of order n, then

d;{k}(D) < B with equality only if k + 1 is a divisor of n and > 2 when

k417 oy
k> 2.

Proof. Since fy,;{k}(D) > k + 1, it follows from Theorem 2 that d;{k}(D) <

= and this is the desired inequality.
’Yt{k} (D) — k+1> q Yy

Assume that d{k}(D) = k+1 Since (k,k+1) =1, k+ 1 must be a divisor of
n. If k > 2, then it follows from Corollary 4 that > 2. |

k+1

Corollary 3 demonstrates that Corollary 5 is sharp.

Theorem 6. If D is a digraph of order n and k a positive integer, then
(D) + d* (D) < nk + 1.
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Proof. Applying Theorem 2, we obtain ’yi{k}(D) + d;{k}(D) < d{’“k}?D) + dfk}(D).
t

Note that dt{k}(G) > 1, by inequality (1), and that Corollary 5 implies that
dt{k} (D) < n. Using these inequalities, and the fact that the function g(z) =
x + (kn)/x is decreasing for 1 < z < Vkn and increasing for vVkn < z < n,
we obtain ’yt{k}(D) + dik}(D) <max {kn + 1, kn—” +n} = nk+1, and this is the
desired bound. m

If C),, denotes a directed cycle on n vertices, then the function f : V(C,) —
{0,1,...,k} defined by f(x) = k for each x € V(C,) is the unique total {k}-

dominating function of C),, and hence ’yt{k}(Cn) = nk and dik}(Cn) = 1. This
demonstrates that Theorem 6 is sharp.

Theorem 7. Let D be a digraph of order n > 3, and let k > 1 be an integer. If
d* (D) > 2, then v} (D) + d*H (D) < B 4 2.

Proof. Theorem 2 implies that 'y,;{k}(D)—i-d;{k}(D) < %{’“} (D)+ {’“k}TED)' It follows
Yt

from Observation 1 and Theorem 2 that k 4+ 1 < ”yt{k}(D) < kn/2. Using these
inequalities, and the fact that the function g(x) = = + (kn)/z is decreasing for
kE+1 <z <+Vkn and increasing for vVkn < z < kn/2, we obtain

%{k}(G) +d§k}(G) < max{k+ 1+ fn %” +2} = %” + 2,

k41
and this is the desired bound. [}

Theorem 8. If D is a digraph and k > 1 an integer, then d;t{k}(D) < 67 (D).
Moreover, if dt{k}(D) = 07 (D), then for each function of any T{k}D family
{f1, fo, ..., fa} and for all vertices v of indegree 6~ (D), 3 e N fi(u) =k and
S| filu) =k for every u € N~ (v).

Proof. Let {fi1, fo,..., fa} be a T{k}D family on D such that d = al;{k}(D)7 and
let v be a vertex of minimum indegree 6~ (D). Since },cn-(,) fi(u) = k for all

i€{1,2,...,d}, we obtain kd < 301 3" e n- () fil) = X pen— () Sty fiu) <
EueN_(v) k = k6~ (D), and this leads to the desired bound.

If dik}(D) = 7 (D), then the two inequalities occurring in the proof become
equalities, which leads to the two properties given in the statement. [

The special case k =1 in Theorem 8 can be found in [6].

Observation 9. Let D be a digraph with the property that the underlying graph
is connected and bipartite. If k > 1 is an integer, then %{k} (D) > 2k.
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Proof. Let f be a ’y;{k}(D)—function, and let V; and V3 be the partite sets of the
underlying graph. If w; € V;, then the definition implies that erN*(wi) flx) >

k for i = 1,2. It follows that w(f) = > cv(p) f(®) = X,evip)-n f(2) +

2 aev(D)—ve F () 2 D peN—(uws) F (@) + Xsen—(uy) f () = 2K, thus 7 (D) > 2k.
.

Corollary 10. If »p U8 the complete bipartite digraph and k > 1 an integer,
then d{k} (K, =

Proof. Theorem 2 and Observation 9 show that d{k}( ») <D

Now let {ui,ug,...,up} and {vi,v2,...,vp} be the partlte sets of the com-
plete bipartite digraph. Define f;(u;) = fi(v;) = k and f;(x) = 0 for each vertex
x € V(D) — {uz,vz} and each ¢ € {1,2,...,p}. Then we observe that f; is a
T{k}DF of K , for each i € {1,2,...,p}. Therefore {f1, f2,..., fp} is a T{k}D

family on K;p. Consequently, di{ }(K;,p) > p and so d;f{k} (K,,) =D |

Corollary 10 demonstrates that Theorem 8 is sharp.

Theorem 11. Let k > 1 be an integer and D a digraph of order n with §—(D)>1.
If 6=(D) | k, then d™ (D) > 6—(D) — 1.

Proof. 1f 6= (D) = 1, then the result is immediate.
Let 07 (D) > 2 and let V(D) = {v1,v2,...,v,}. Define f; : V(D) —
{0,1,...,k} by

k . .
—= +1 if =1,
fl-(vj):{ o7(D) . / ; forevery 1 <i<¢§ (D)—1land 1<j<n.
5 (

Then for each v € V(D) and each 1 <¢ <67 (D) — 1,
ZUGN*(U) fl(u) > ZuEN*(v) 6— (D) Z (D)d_(D) =k.

Hence f; is a T{k}DF of D for each 1 <i <6~ (D) — 1. Now, since 6 (D) | k,

we have
SID 1) < 5 (67 (D) —2) 4 (5 +1) =kt (1= 5y ) <

for each v € V(D). Thus {f1, fo,..., fs5-(p)—1} is a T{k}D family on D, and the
proof is complete. [

Theorem 12. Let k > 1 be an integer and D a digraph of order n. If 6= (D) 1 k,

k
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Proof. Let V(D) = {v1,v2,...,v,}. Define f; : V(D) — {0,1,...,k} by
I\(S*I(CD)J lf .7 = /i7

fi(vy) = for every 1 <i < Lﬁj and 1 <j<n.
(5—](€D)—| if j 7& iv

Then for each v € V(D) and each 1 < i < L%J,

[k/6=(D)]

Suen-w filw) = | =55 + [ 5=ty | (67(D) = 1) = |y | 67 (D) — 12 k.
Hence f; is a T{k}DF of D for each i. Since §~ (D) 1 k, we have

s 0 < [ | i | < [sohn] - iy =

5= (D) 5— (D)

for each v € V(D). Thus {f1, fa,.. .,f{ k J} is a T{k}D family on D, and
[k/67(D)]
the proof is complete. [

Using Theorems 2, 8, 11 and 12, we will improve Theorem 6 considerably for
some cases.

Corollary 13. Let k > 1 be an integer, and let D be a digraph of order n. If
5=(D) > k, then 7" (D) + d™ (D) < n + k.

Proof. Since 6~ (D) > k, it follows from Theorem 12 that
k
"' (D) > h : WJ = k.

In addition, Theorem 8 implies that d;{k}(D) < 67 (D) < n. Using these two
inequalities, and the fact that the function g(x) = = + (kn)/z is decreasing for
k <z < +vVkn and increasing for vVkn < x < n, Theorem 2 leads to

%;{k}(D) +d1}{k}(D) < dt{’kf?(D) +d;{k}(D) < max{%" —|—]<;,’%" —i—n} =n+k.

This is the desired bound, and the proof is complete. [

Corollary 14. Let k > 1 be an integer, and let D be a digraph of order n with
6=(D) > 2. If 6= (D) | k, then +{} (D) + d{* (D) < =t + 6= (D) - 1.

Proof. Since d~(D) | k, Theorem 11 shows that dik}(D) > 6 (D) -1, and
Theorem 8 implies that d;{k}(D) < §7(D). Using these two inequalities and

Theorem 2, we obtain the desired bound as follows %{k} (D) +d;{k}(D) < p ,f{ED) +
t

ai* (D) < max { 5= +67(D) ~ 1, 55 +67(D) } = 5= +07(D) — 1.
|




468 S.M. SHEIKHOLESLAMI AND L. VOLKMANN

Let D be a digraph. By D~! we denote the digraph obtained by reversing all arcs
of D. A digraph without directed cycles of length 2 is called an oriented graph.
An oriented graph D is a tournament when either (z,y) € A(D) or (y,z) € A(D)
for each pair of distinct vertices z,y € V(D).

Theorem 15. For every oriented graph D with 6= (D) > 1 and §—(D~1) > 1,
d;{k}(D) —I—d;{k}(D_l) <n-—1. Ifd;{k}(D) +dt{k}(D_1) =n—1, then D is a regular
tournament.

Proof. Since §~ (D) + 6~ (D7!) <n — 1, Theorem 8 leads to

d™ (D) +d* (DY) <6~ (D) +5- (DY) <n-— 1
If D is not a tournament or D is a non-regular tournament, then 6~ (D) +
5~ (D71 < n — 2, and hence we deduce from Theorem 8 that

d™ (D) 4+ d™ (DY) <6~ (D) + 5 (D) <n—2.

Now we present further lower bounds on the total {k}-domatic number.

Theorem 16. Let k > 1 be an integer, and D a digraph with = (D) =§~ > 1.
(i) If k < 6=, then d™ (D) > k.

(ii) If k = pd~ with an integer p > 1, then d;{k}(D) >0 —1.

(iii) If k = pd~ + r with integers p,r > 1 and r < 0~ — 1, then

k 0 —
4 (D) > [P

Proof. (i) If k < 6~, then Theorem 12 implies immediately d;{k}(D) > k.
(ii) If £ = pd—, then Theorem 11 implies immediately dik}(D) >0 —1.
Kk

(iii) If £ = pd~ + r with integers p,r > 1 and 7 <~ — 1, then [~ =p+1
and therefore we deduce from Theorem 12 that

D)2 [ ] = | = [ 2 o - 2 P

This leads to the desired bound, and the proof is complete. [

Corollary 17. If k > 1 is an integer and D a digraph with 6~ (D) > 1, then
d;{k}(D) > min {k:, 57§D)} .

The complement D of a digraph D is that digraph with vertex set V(D) such
that for two arbitrary different vertices u and v the arc (u,v) belongs to D if and
only if (u,v) does not belong to D.
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Theorem 18. Let k > 1 be an integer, and let D be an r-diregular digraph of
order n > 3 with 1 <r <n—2. Then d;{k}(D) + d;{k}(ﬁ) > min {k+1, [252]}.

Proof. Assume first that £ < d7(D). Then it follows from Theorem 16 (i) that
d™ (D) > k and thus 4"} (D) + d™ (D) > k + 1.

Assume next that £ > (D) and k < 6~ (D). Then Theorem 16 (i) implies
d™ (D) > k and so d™ (D) + d¥ (D) > k + 1.

Finally assume that £ > (D) and k > §~ (D). Applying Theorem 16 (ii)
and (iii), we observe that d;{k}(D) > 6 (D)/2 and d;{k} (D) > 6= (D)/2, and hence
we deduce that

dik}(D) +d§’“}(ﬁ) > @ + Léﬁ) aysy

Combining these inequalities, we obtain the desired bound. [
Theorem 19. For every digraph D of order n, d;{k}(D) > [#*(D)J‘

Proof. Let S be any subset of V(D) with |S| > n—d7(D). If v € V(D) —
S, then there exists at least one vertex u € S such that (u,v) € A(D). Let
S1,52,..., S{ " J be disjoint subsets of V(D) each of cardinality n — ¢~ (D).

n—5§— (D)

Define f; : V(G) — {0,1,...,k} by

fi(U):{ k ifves;,

0 otherwise,

foreach 1 <i < {#,(D)J.
Since |S;| = n — 07 (D), it is clear that f; is a total {k}-dominating function of
D for each i. Since also S; are disjoint subsets of V (D), then for every v € V(D)

n—6—(D)
and the proof is complete. [

ZL";‘S’(D)J fi(v) < k. Thus {fl,fg,...,f{ . J} is a T{k}D family on D,
The special case k =1 in Theorems 15 and 19 can be found in [6].

3. THE TotAL {k}-DOMATIC NUMBER OF GRAPHS

The total {k}-dominating function of a graph G is defined in [7] as a function
f:V(G) —{0,1,2,... k} such that }° cn_ () f(z) = k for all v € V(G). The
sum . ey () /(@) is the weight w(f) of f. The minimum of weights w(f), taken
over all total {k}-dominating functions f on G is called the total {k}-domination
number of G, denoted by vt{k}(G). In the special case k = 1, 'yi{k}(G) is the
classical total domination number v, (G).
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A set {f1, fa,..., fa} of distinct total {k}-dominating functions on G such that
Z?:l fi(v) < k for each v € V(G), is called a total {k}-dominating family on
G. The maximum number of functions in a total {k}-dominating family on G

is the total {k}-domatic number of G, denoted by dfk}(G). This parameter was
introduced by Sheikholeslami and Volkmann in [8] and has been studied in [1].

In the case k = 1, we write d(G) instead of dil} (G) which was introduced by
Cockayne, Dawes and Hedetniemi [3], and has been studied in many articles.

The associated digraph D(G) of a graph G is the digraph obtained from G
when each edge e of G is replaced by two oppositely oriented arcs with the same
ends as e. Since NB(G)(’U) = Ng(v) for each vertex v € V(G) = V(D(G)), the
following useful observation is valid.

Observation 20. If D(G) is the associated digraph of a graph G, then
k k k k
WHD(@) = 4" (D) and & (D(@)) = di*} (D).

There are a lot of interesting applications of Observation 20. Using Theorems 2
and 6, we obtain the next results immediately.

Corollary 21 [8]. Ifk > 1 is an integer and G a graph of order n without isolated
vertices, then ’yt{k}(G) -dik}(G) < kn.

The case k = 1 in Corollary 21 leads to the well-known inequality 7:(G) - d¢(G) <
n, given by Cockayne, Dawes and Hedetniemi [3] in 1980.

Corollary 22 [8]. Ifk > 1 is an integer and G a graph of order n without isolated
vertices, then yfk}(G) + d;{k}(G) <nk+1.

Corollary 23 [3]. If G is graph of order n without isolated vertices, then v(G)+
di(G) <n+1.

Theorem 7 and Observation 20 lead to the following bound.

Corollary 24 [8]. Let k > 1 be an integer and G a graph of order n without
isolated vertices. If d;{k}(G) > 2, then 'yt{k}(G) + dfk}(G) <k

Corollary 25 [4]. If G is a graph of order n without isolated vertices and if

Since 6~ (D(G)) = 6(G), the next result follows from Observation 20 and Theorem
8.

Corollary 26 [8]. If k > 1 is an integer and G a graph without isolated vertices,
then di*(G) < §(G).

The case k = 1 in Corollary 26 can be found in [3]. Theorem 11 and Observation
20 imply the next result.
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Corollary 27 [2]. Let k > 1 be an integer and G a graph of order n without
isolated vertices. If 6(G) | k, then dfk}(G) >0(G) — 1.

Finally, the next theorem follows from Theorem 18 and Observation 20.

Corollary 28 [1]. For every d-reqular graph of order n > 5 in which neither G
nor G have isolated vertices, dik}(G) + dik} (G) >min{k+1,[22]}.

[
2]

3]
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