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Abstract

For a positive integer k, a total {k}-dominating function of a digraph
D is a function f from the vertex set V (D) to the set {0, 1, 2, . . . , k} such
that for any vertex v ∈ V (D), the condition

∑

u∈N−(v) f(u) ≥ k is fulfilled,

where N−(v) consists of all vertices of D from which arcs go into v. A set
{f1, f2, . . . , fd} of total {k}-dominating functions of D with the property

that
∑

d

i=1 fi(v) ≤ k for each v ∈ V (D), is called a total {k}-dominating

family (of functions) on D. The maximum number of functions in a total
{k}-dominating family on D is the total {k}-domatic number of D, denoted

by d
{k}
t

(D). Note that d
{1}
t

(D) is the classic total domatic number dt(D). In
this paper we initiate the study of the total {k}-domatic number in digraphs,

and we present some bounds for d
{k}
t

(D). Some of our results are extensions
of well-know properties of the total domatic number of digraphs and the
total {k}-domatic number of graphs.
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1. Introduction

In this paper, D is a finite and simple digraph with vertex set V = V (D) and
arc set A = A(D). The order |V | of D is denoted by n = n(D). We write
d+D(v) = d+(v) for the outdegree of a vertex v and d−D(v) = d−(v) for its indegree.
The minimum and maximum indegree are δ−(D) and ∆−(D). The sets N+(v) =
{x|(v, x) ∈ A(D)} and N−(v) = {x|(x, v) ∈ A(D)} are called the outset and inset

of the vertex v. If X ⊆ V (D), then D[X] is the subdigraph induced by X. For
an arc (x, y) ∈ A(D), the vertex y is an outer neighbor of x and x is an inner

neighbor of y. We write K∗
n for the complete digraph of order n. Consult [5] for

the notation and terminology which are not defined here.
For a positive integer k, a total {k}-dominating function (T{k}DF) of a

digraph D with δ−(D) ≥ 1 is a function f from the vertex set V (D) to the set
{0, 1, 2, . . . , k} such that for any vertex v ∈ V (D), the condition

∑

u∈N−(v) f(u) ≥
k is fulfilled. The weight of a T{k}DF f is the value ω(f) =

∑

v∈V (D) f(v). The

total {k}-domination number of a digraphD, denoted by γ
{k}
t (D), is the minimum

weight of a T{k}DF of D. A γ
{k}
t (D)-function is a total {k}-dominating function

of D with weight γ
{k}
t (D). Note that γ

{1}
t (D) is the classical total domination

number γt(D). If F is a minimum total dominating set of a digraph D with
δ−(D) ≥ 1, then the function f from V (D) to {0, 1, 2, . . . , k} with f(v) = k for
v ∈ F and f(x) = 0 for x ∈ V (D) − F is a total {k}-dominating function of D
and therefore

γ
{k}
t (D) ≤ k|F | = kγt(D).

In this paper we always assume that D is a digraph with δ−(D) ≥ 1.
A set {f1, f2, . . . , fd} of distinct total {k}-dominating functions of D with the

property that
∑d

i=1 fi(v) ≤ k for each v ∈ V (D), is called a total {k}-dominating

family (of functions) on D. The maximum number of functions in a total {k}-
dominating family (T{k}D family) on D is the total {k}-domatic number of D,

denoted by d
{k}
t (D). The total {k}-domatic number is well-defined and

(1) d
{k}
t (D) ≥ 1, for all digraphs D with δ−(D) ≥ 1,

since the set consisting of the function f : V (D) → {0, 1, 2, . . . , k} defined by
f(v) = k for each v ∈ V (D), forms a T{k}D family on D. The total domatic
number of a digraph was introduced by Jacob and Arumugam in [6].

Our purpose in this paper is to initiate the study of the total {k}-domatic
number in digraphs. We first study basic properties and bounds for the total
{k}-domatic number of a digraph. In addition, we determine the total {k}-
domatic number of some classes of digraphs. Some of our results are extensions
of well-know properties of the total domatic number of digraphs and the total
{k}-domatic number of graphs (see, for example, [2, 3, 4, 6, 8]).
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We start with the following observation.

Observation 1. Let k be an integer, and let D be a digraph with δ−(D) ≥ 1.

Then γ
{k}
t (D) ≥ k+1, with equality if and only if there exists a subset S ⊆ V (D)

of size k+1 such that D[S] is a complete digraph, and each vertex x ∈ V (D)−S
has at least k inner neighbors in S.

Proof. Let f be a γ
{k}
t (D)-function, and let v ∈ V (D) be an arbitrary vertex.

The definition implies that
∑

x∈N−(v) f(x) ≥ k. If
∑

x∈N−(v) f(x) ≥ k + 1, then

γ
{k}
t (D) ≥ k + 1. If

∑

x∈N−(v) f(x) = k, then let u ∈ N−(v) be a vertex such

that f(u) ≥ 1. Since
∑

x∈N−(u) f(x) ≥ k and u 6∈ N−(u), we deduce that ω(f) =
∑

x∈V (D) f(v) ≥
∑

x∈(N−(u)∪{u}) f(x) ≥ k + 1 and therefore γ
{k}
t (D) ≥ k + 1.

Assume that γ
{k}
t (D) = k+1. Let f be a γ

{k}
t (D)-function. If there exists a

vertex v such that f(v) ≥ 2, then we obtain the contradiction
∑

x∈N−(v) f(x) ≤
k + 1 − 2 = k − 1. Hence f(x) = 1 or f(x) = 0 for each vertex x ∈ V (D). Let
S ⊆ V (D) such that f(x) = 1 for each x ∈ S. Then |S| = k + 1, D[S] is a
complete digraph, and each vertex x ∈ V (D) − S has at least k inner neighbors
in S.

Conversely, assume that there exists a subset S ⊆ V (D) of size k + 1 such
that D[S] is a complete digraph, and each vertex x ∈ V (D) − S has at least k
inner neighbors in S. Define the function f by f(x) = 1 for x ∈ S and f(x) = 0
for x ∈ V (D) − S. Then f is a total {k}-dominating function of D such that

ω(f) = k + 1. Since γ
{k}
t (D) ≥ k + 1, we deduce that γ

{k}
t (D) = k + 1.

2. Properties of the {k}-domatic Number

In this section we mainly present basic properties of d
{k}
t (D) and bounds on the

total {k}-domatic number of a digraph.

Theorem 2. If D is a digraph of order n, then γ
{k}
t (D)·d{k}t (D) ≤ kn. Moreover,

if γ
{k}
t (D) · d{k}t (D) = kn, then for each T{k}D family {f1, f2, . . . , fd} on D with

d = d
{k}
t (D), each function fi is a γ

{k}
t (D)-function and

∑d
i=1 fi(v) = k for all

v ∈ V (D).

Proof. Let {f1, f2, . . . , fd} be a T{k}D family on D such that d = d
{k}
t (D).

Then
d · γ{k}t (D) =

∑d
i=1 γ

{k}
t (D) ≤ ∑d

i=1

∑

v∈V (D) fi(v) =
∑

v∈V (D)

∑d
i=1 fi(v)

≤ ∑

v∈V (D) k = kn.

If γ
{k}
t (D) ·d{k}t (D) = kn, then the two inequalities occurring in the proof become

equalities. Hence for the T{k}D family {f1, f2, . . . , fd} on D and for each i,
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∑

v∈V (D) fi(v) = γ
{k}
t (D). Thus each function fi is a γ

{k}
t (D)-function, and

∑d
i=1 fi(v) = k for all v ∈ V (D).

The special case k = 1 in Theorem 2 can be found in [6].

Corollary 3. Let k, n be two positive integers. If k + 1 is a divisor of n and
n

k+1 ≥ 2, then d
{k}
t (K∗

n) =
kn
k+1 .

Proof. Applying Observation 1 and Theorem 2, we see that d
{k}
t (K∗

n) ≤ kn
k+1 .

Now we consider a partition of V (K∗
n) into s = n

k+1 sets V1, V2, . . . , Vs such that

|Vi| = k + 1 for each i. Let Vi = {vi1, vi2, . . . , vik+1} for 1 ≤ i ≤ s. Define, for
1 ≤ i ≤ s and 1 ≤ j ≤ k,

f j
i (v

i
1) = · · · = f j

i (v
i
j) = 1, f j

i (v
i+1
j+1) = · · · = f j

i (v
i+1
k+1) = 1 and

f j
i (x) = 0 otherwise, where the indices i+ 1 are taken modulo s.

It is easy see that {f j
i | 1 ≤ i ≤ n

k+1 , 1 ≤ j ≤ k, } is a T{k}D family on K∗
n, and

therefore d
{k}
t (K∗

n) ≥ kn
k+1 . Since k+1 is a divisor of n, the proof is complete.

A further consequence of Theorem 2 and Observation 1 now follows.

Corollary 4. If k ≥ 2 is an integer, and D is a digraph of order k + 1, then

d
{k}
t (D) ≤ k − 1.

Proof. Since γ
{k}
t (D) ≥ k + 1, it follows from Theorem 2 that d

{k}
t (D) ≤ k.

If γ
{k}
t (D) ≥ k + 2, then Theorem 2 implies d

{k}
t (D) ≤ k − 1 immediately. If

γ
{k}
t (D) = k + 1 and d

{k}
t (D) = k, then for the T{k}D family {f1, f2, . . . , fk}

on D, each function fi is a γ
{k}
t (D)-function, and Observation 1 leads to the

contradiction that f1 ≡ f2 ≡ · · · ≡ fk. This completes the proof.

Corollary 5. If k is a positive integer, and D is a digraph of order n, then

d
{k}
t (D) ≤ kn

k+1 , with equality only if k + 1 is a divisor of n and n
k+1 ≥ 2 when

k ≥ 2.

Proof. Since γ
{k}
t (D) ≥ k + 1, it follows from Theorem 2 that d

{k}
t (D) ≤

kn

γ
{k}
t (D)

≤ kn
k+1 , and this is the desired inequality.

Assume that d
{k}
t (D) = kn

k+1 . Since (k, k + 1) = 1, k + 1 must be a divisor of
n. If k ≥ 2, then it follows from Corollary 4 that n

k+1 ≥ 2.

Corollary 3 demonstrates that Corollary 5 is sharp.

Theorem 6. If D is a digraph of order n and k a positive integer, then

γ
{k}
t (D) + d

{k}
t (D) ≤ nk + 1.
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Proof. Applying Theorem 2, we obtain γ
{k}
t (D) + d

{k}
t (D) ≤ kn

d
{k}
t (D)

+ d
{k}
t (D).

Note that d
{k}
t (G) ≥ 1, by inequality (1), and that Corollary 5 implies that

d
{k}
t (D) ≤ n. Using these inequalities, and the fact that the function g(x) =

x + (kn)/x is decreasing for 1 ≤ x ≤
√
kn and increasing for

√
kn ≤ x ≤ n,

we obtain γ
{k}
t (D) + d

{k}
t (D) ≤max

{

kn+ 1, knn + n
}

= nk + 1, and this is the
desired bound.

If Cn denotes a directed cycle on n vertices, then the function f : V (Cn) →
{0, 1, . . . , k} defined by f(x) = k for each x ∈ V (Cn) is the unique total {k}-
dominating function of Cn and hence γ

{k}
t (Cn) = nk and d

{k}
t (Cn) = 1. This

demonstrates that Theorem 6 is sharp.

Theorem 7. Let D be a digraph of order n ≥ 3, and let k ≥ 1 be an integer. If

d
{k}
t (D) ≥ 2, then γ

{k}
t (D) + d

{k}
t (D) ≤ kn

2 + 2.

Proof. Theorem 2 implies that γ
{k}
t (D)+d

{k}
t (D) ≤ γ

{k}
t (D)+ kn

γ
{k}
t (D)

. It follows

from Observation 1 and Theorem 2 that k + 1 ≤ γ
{k}
t (D) ≤ kn/2. Using these

inequalities, and the fact that the function g(x) = x + (kn)/x is decreasing for
k + 1 ≤ x ≤

√
kn and increasing for

√
kn ≤ x ≤ kn/2, we obtain

γ
{k}
t (G) + d

{k}
t (G) ≤ max

{

k + 1 + kn
k+1 ,

kn
2 + 2

}

= kn
2 + 2,

and this is the desired bound.

Theorem 8. If D is a digraph and k ≥ 1 an integer, then d
{k}
t (D) ≤ δ−(D).

Moreover, if d
{k}
t (D) = δ−(D), then for each function of any T{k}D family

{f1, f2, . . . , fd} and for all vertices v of indegree δ−(D),
∑

u∈N−(v) fi(u) = k and
∑d

i=1 fi(u) = k for every u ∈ N−(v).

Proof. Let {f1, f2, . . . , fd} be a T{k}D family on D such that d = d
{k}
t (D), and

let v be a vertex of minimum indegree δ−(D). Since
∑

u∈N−(v) fi(u) ≥ k for all

i ∈ {1, 2, . . . , d}, we obtain kd ≤ ∑d
i=1

∑

u∈N−(v) fi(u) =
∑

u∈N−(v)

∑d
i=1 fi(u) ≤

∑

u∈N−(v) k = kδ−(D), and this leads to the desired bound.

If d
{k}
t (D) = δ−(D), then the two inequalities occurring in the proof become

equalities, which leads to the two properties given in the statement.

The special case k = 1 in Theorem 8 can be found in [6].

Observation 9. Let D be a digraph with the property that the underlying graph

is connected and bipartite. If k ≥ 1 is an integer, then γ
{k}
t (D) ≥ 2k.
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Proof. Let f be a γ
{k}
t (D)-function, and let V1 and V2 be the partite sets of the

underlying graph. If wi ∈ Vi, then the definition implies that
∑

x∈N−(wi)
f(x) ≥

k for i = 1, 2. It follows that w(f) =
∑

x∈V (D) f(x) =
∑

x∈V (D)−V1
f(x) +

∑

x∈V (D)−V2
f(x) ≥ ∑

x∈N−(w2)
f(x)+

∑

x∈N−(w1)
f(x) ≥ 2k, thus γ

{k}
t (D) ≥ 2k.

Corollary 10. If K∗
p,p is the complete bipartite digraph and k ≥ 1 an integer,

then d
{k}
t (K∗

p,p) = p.

Proof. Theorem 2 and Observation 9 show that d
{k}
t (K∗

p,p) ≤ p.

Now let {u1, u2, . . . , up} and {v1, v2, . . . , vp} be the partite sets of the com-
plete bipartite digraph. Define fi(ui) = fi(vi) = k and fi(x) = 0 for each vertex
x ∈ V (D) − {ui, vi} and each i ∈ {1, 2, . . . , p}. Then we observe that fi is a
T{k}DF of K∗

p,p for each i ∈ {1, 2, . . . , p}. Therefore {f1, f2, . . . , fp} is a T{k}D
family on K∗

p,p. Consequently, d
{k}
t (K∗

p,p) ≥ p and so d
{k}
t (K∗

p,p) = p.

Corollary 10 demonstrates that Theorem 8 is sharp.

Theorem 11. Let k ≥ 1 be an integer and D a digraph of order n with δ−(D)≥1.

If δ−(D) | k, then d
{k}
t (D) ≥ δ−(D)− 1.

Proof. If δ−(D) = 1, then the result is immediate.

Let δ−(D) ≥ 2 and let V (D) = {v1, v2, . . . , vn}. Define fi : V (D) →
{0, 1, . . . , k} by

fi(vj) =

{

k
δ−(D)

+ 1 if j = i,
k

δ−(D)
if j 6= i,

for every 1 ≤ i ≤ δ−(D)− 1 and 1 ≤ j ≤ n.

Then for each v ∈ V (D) and each 1 ≤ i ≤ δ−(D)− 1,
∑

u∈N−(v) fi(u) ≥
∑

u∈N−(v)
k

δ−(D)
≥ k

δ−(D)
δ−(D) = k.

Hence fi is a T{k}DF of D for each 1 ≤ i ≤ δ−(D) − 1. Now, since δ−(D) | k,
we have

∑δ(D)−1
i=1 fi(v) ≤ k

δ−(D)
(δ−(D)− 2) +

(

k
δ−(D)

+ 1
)

= k +
(

1− k
δ−(D)

)

≤ k

for each v ∈ V (D). Thus {f1, f2, . . . , fδ−(D)−1} is a T{k}D family on D, and the
proof is complete.

Theorem 12. Let k ≥ 1 be an integer and D a digraph of order n. If δ−(D) ∤ k,

then d
{k}
t (D) ≥

⌊

k
⌈k/δ−(D)⌉

⌋

.
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Proof. Let V (D) = {v1, v2, . . . , vn}. Define fi : V (D) → {0, 1, . . . , k} by

fi(vj) =











⌊ k
δ−(D)

⌋ if j = i,

⌈ k
δ−(D)

⌉ if j 6= i,

for every 1 ≤ i ≤
⌊

k
⌈k/δ−(D)⌉

⌋

and 1 ≤ j ≤ n.

Then for each v ∈ V (D) and each 1 ≤ i ≤
⌊

k
⌈k/δ−(D)⌉

⌋

,

∑

u∈N−(v) fi(u) ≥
⌊

k
δ−(D)

⌋

+
⌈

k
δ−(D)

⌉

(δ−(D)− 1) ≥
⌈

k
δ−(D)

⌉

δ−(D)− 1 ≥ k.

Hence fi is a T{k}DF of D for each i. Since δ−(D) ∤ k, we have

∑

⌊

k
⌈k/δ−(D)⌉

⌋

i=1 fi(v) ≤
⌈

k
δ−(D)

⌉

·
⌊

k
⌈ k
δ−(D)

⌉

⌋

≤
⌈

k
δ−(D)

⌉

· k
⌈ k
δ−(D)

⌉
= k

for each v ∈ V (D). Thus {f1, f2, . . . , f⌊ k
⌈k/δ−(D)⌉

⌋} is a T{k}D family on D, and

the proof is complete.

Using Theorems 2, 8, 11 and 12, we will improve Theorem 6 considerably for
some cases.

Corollary 13. Let k ≥ 1 be an integer, and let D be a digraph of order n. If

δ−(D) > k, then γ
{k}
t (D) + d

{k}
t (D) ≤ n+ k.

Proof. Since δ−(D) > k, it follows from Theorem 12 that

d
{k}
t (D) ≥

⌊

k
⌈

k
δ−(D)

⌉

⌋

= k.

In addition, Theorem 8 implies that d
{k}
t (D) ≤ δ−(D) ≤ n. Using these two

inequalities, and the fact that the function g(x) = x + (kn)/x is decreasing for
k ≤ x ≤

√
kn and increasing for

√
kn ≤ x ≤ n, Theorem 2 leads to

γ
{k}
t (D) + d

{k}
t (D) ≤ kn

dt{k}(D) + d
{k}
t (D) ≤ max

{

kn
k + k, knn + n

}

= n+ k.

This is the desired bound, and the proof is complete.

Corollary 14. Let k ≥ 1 be an integer, and let D be a digraph of order n with

δ−(D) ≥ 2. If δ−(D) | k, then γ
{k}
t (D) + d

{k}
t (D) ≤ kn

δ−(D)−1
+ δ−(D)− 1.

Proof. Since δ−(D) | k, Theorem 11 shows that d
{k}
t (D) ≥ δ−(D) − 1, and

Theorem 8 implies that d
{k}
t (D) ≤ δ−(D). Using these two inequalities and

Theorem 2, we obtain the desired bound as follows γ
{k}
t (D)+d

{k}
t (D) ≤ kn

d
{k}
t (D)

+

d
{k}
t (D) ≤ max

{

kn
δ−(D)−1

+ δ−(D)− 1, kn
δ−(D)

+ δ−(D)
}

= kn
δ−(D)−1

+ δ−(D)− 1.
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Let D be a digraph. By D−1 we denote the digraph obtained by reversing all arcs
of D. A digraph without directed cycles of length 2 is called an oriented graph.
An oriented graph D is a tournament when either (x, y) ∈ A(D) or (y, x) ∈ A(D)
for each pair of distinct vertices x, y ∈ V (D).

Theorem 15. For every oriented graph D with δ−(D) ≥ 1 and δ−(D−1) ≥ 1,

d
{k}
t (D)+d

{k}
t (D−1) ≤ n−1. If d

{k}
t (D)+d

{k}
t (D−1) = n−1, then D is a regular

tournament.

Proof. Since δ−(D) + δ−(D−1) ≤ n− 1, Theorem 8 leads to

d
{k}
t (D) + d

{k}
t (D−1) ≤ δ−(D) + δ−(D−1) ≤ n− 1.

If D is not a tournament or D is a non-regular tournament, then δ−(D) +
δ−(D−1) ≤ n− 2, and hence we deduce from Theorem 8 that

d
{k}
t (D) + d

{k}
t (D−1) ≤ δ−(D) + δ−(D−1) ≤ n− 2.

Now we present further lower bounds on the total {k}-domatic number.

Theorem 16. Let k ≥ 1 be an integer, and D a digraph with δ−(D) = δ− ≥ 1.

(i) If k < δ−, then d
{k}
t (D) ≥ k.

(ii) If k = pδ− with an integer p ≥ 1, then d
{k}
t (D) ≥ δ− − 1.

(iii) If k = pδ− + r with integers p, r ≥ 1 and r ≤ δ− − 1, then

d
{k}
t (D) ≥

⌈

p(δ−−1)+1
p+1

⌉

.

Proof. (i) If k < δ−, then Theorem 12 implies immediately d
{k}
t (D) ≥ k.

(ii) If k = pδ−, then Theorem 11 implies immediately d
{k}
t (D) ≥ δ− − 1.

(iii) If k = pδ− + r with integers p, r ≥ 1 and r ≤ δ− − 1, then ⌈ k
δ−

⌉ = p+ 1
and therefore we deduce from Theorem 12 that

d
{k}
t (D) ≥

⌊

k
⌈k/δ−⌉

⌋

=
⌊

k
p+1

⌋

=
⌊

pδ−+r
p+1

⌋

≥ pδ−+r
p+1 − p

p+1 ≥ p(δ−−1)+1
p+1 .

This leads to the desired bound, and the proof is complete.

Corollary 17. If k ≥ 1 is an integer and D a digraph with δ−(D) ≥ 1, then

d
{k}
t (D) ≥ min

{

k, δ
−(D)
2

}

.

The complement D of a digraph D is that digraph with vertex set V (D) such
that for two arbitrary different vertices u and v the arc (u, v) belongs to D if and
only if (u, v) does not belong to D.
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Theorem 18. Let k ≥ 1 be an integer, and let D be an r-diregular digraph of

order n ≥ 3 with 1 ≤ r ≤ n− 2. Then d
{k}
t (D) + d

{k}
t (D) ≥ min

{

k + 1,
⌈

n−1
2

⌉}

.

Proof. Assume first that k < δ−(D). Then it follows from Theorem 16 (i) that

d
{k}
t (D) ≥ k and thus d

{k}
t (D) + d

{k}
t (D) ≥ k + 1.

Assume next that k ≥ δ−(D) and k < δ−(D). Then Theorem 16 (i) implies

d
{k}
t (D) ≥ k and so d

{k}
t (D) + d

{k}
t (D) ≥ k + 1.

Finally assume that k ≥ δ−(D) and k ≥ δ−(D). Applying Theorem 16 (ii)

and (iii), we observe that d
{k}
t (D) ≥ δ−(D)/2 and d

{k}
t (D) ≥ δ−(D)/2, and hence

we deduce that
d
{k}
t (D) + d

{k}
t (D) ≥ δ−(D)

2 + δ−(D)
2 = n−1

2 .

Combining these inequalities, we obtain the desired bound.

Theorem 19. For every digraph D of order n, d
{k}
t (D) ≥

⌊

n
n−δ−(D)

⌋

.

Proof. Let S be any subset of V (D) with |S| ≥ n − δ−(D). If v ∈ V (D) −
S, then there exists at least one vertex u ∈ S such that (u, v) ∈ A(D). Let
S1, S2, . . . , S⌊

n
n−δ−(D)

⌋ be disjoint subsets of V (D) each of cardinality n− δ−(D).

Define fi : V (G) → {0, 1, . . . , k} by

fi(v) =

{

k if v ∈ Si,
0 otherwise,

for each 1 ≤ i ≤
⌊

n
n−δ−(D)

⌋

.

Since |Si| = n − δ−(D), it is clear that fi is a total {k}-dominating function of
D for each i. Since also Si are disjoint subsets of V (D), then for every v ∈ V (D)

∑

⌊

n
n−δ−(D)

⌋

i=1 fi(v) ≤ k . Thus {f1, f2, . . . , f⌊ n
n−δ−(D)

⌋} is a T{k}D family on D,

and the proof is complete.

The special case k = 1 in Theorems 15 and 19 can be found in [6].

3. The Total {k}-domatic Number of Graphs

The total {k}-dominating function of a graph G is defined in [7] as a function
f : V (G) −→ {0, 1, 2, . . . , k} such that

∑

x∈NG(v) f(x) ≥ k for all v ∈ V (G). The
sum

∑

x∈V (G) f(x) is the weight w(f) of f . The minimum of weights w(f), taken
over all total {k}-dominating functions f on G is called the total {k}-domination

number of G, denoted by γ
{k}
t (G). In the special case k = 1, γ

{k}
t (G) is the

classical total domination number γt(G).
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A set {f1, f2, . . . , fd} of distinct total {k}-dominating functions on G such that
∑d

i=1 fi(v) ≤ k for each v ∈ V (G), is called a total {k}-dominating family on
G. The maximum number of functions in a total {k}-dominating family on G

is the total {k}-domatic number of G, denoted by d
{k}
t (G). This parameter was

introduced by Sheikholeslami and Volkmann in [8] and has been studied in [1].

In the case k = 1, we write dt(G) instead of d
{1}
t (G) which was introduced by

Cockayne, Dawes and Hedetniemi [3], and has been studied in many articles.
The associated digraph D(G) of a graph G is the digraph obtained from G

when each edge e of G is replaced by two oppositely oriented arcs with the same
ends as e. Since N−

D(G)(v) = NG(v) for each vertex v ∈ V (G) = V (D(G)), the
following useful observation is valid.

Observation 20. If D(G) is the associated digraph of a graph G, then

γ
{k}
t (D(G)) = γ

{k}
t (D) and d

{k}
t (D(G)) = d

{k}
t (D).

There are a lot of interesting applications of Observation 20. Using Theorems 2
and 6, we obtain the next results immediately.

Corollary 21 [8]. If k ≥ 1 is an integer and G a graph of order n without isolated

vertices, then γ
{k}
t (G) · d{k}t (G) ≤ kn.

The case k = 1 in Corollary 21 leads to the well-known inequality γt(G) ·dt(G) ≤
n, given by Cockayne, Dawes and Hedetniemi [3] in 1980.

Corollary 22 [8]. If k ≥ 1 is an integer and G a graph of order n without isolated

vertices, then γ
{k}
t (G) + d

{k}
t (G) ≤ nk + 1.

Corollary 23 [3]. If G is graph of order n without isolated vertices, then γt(G)+
dt(G) ≤ n+ 1.

Theorem 7 and Observation 20 lead to the following bound.

Corollary 24 [8]. Let k ≥ 1 be an integer and G a graph of order n without

isolated vertices. If d
{k}
t (G) ≥ 2, then γ

{k}
t (G) + d

{k}
t (G) ≤ kn

2 + 2.

Corollary 25 [4]. If G is a graph of order n without isolated vertices and if

dt(G) ≥ 2, then γt(G) + dt(G) ≤ n
2 + 2.

Since δ−(D(G)) = δ(G), the next result follows from Observation 20 and Theorem
8.

Corollary 26 [8]. If k ≥ 1 is an integer and G a graph without isolated vertices,

then d
{k}
t (G) ≤ δ(G).

The case k = 1 in Corollary 26 can be found in [3]. Theorem 11 and Observation
20 imply the next result.
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Corollary 27 [2]. Let k ≥ 1 be an integer and G a graph of order n without

isolated vertices. If δ(G) | k, then d
{k}
t (G) ≥ δ(G)− 1.

Finally, the next theorem follows from Theorem 18 and Observation 20.

Corollary 28 [1]. For every δ-regular graph of order n ≥ 5 in which neither G

nor G have isolated vertices, d
{k}
t (G) + d

{k}
t (G) ≥ min

{

k + 1,
⌈

n−2
2

⌉}

.
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