Discussiones Mathematicae Graph Theory 32 (2012) 461–471 doi:10.7151/dmgt.1618

THE TOTAL $\{k\}$ -DOMATIC NUMBER OF DIGRAPHS

Seyed Mahmoud Sheikholeslami

Department of Mathematics Azarbaijan University of Tarbiat Moallem Tarbriz, I.R. Iran

e-mail: s.m.sheikholeslami@azaruniv.edu

AND

LUTZ VOLKMANN

Lehrstuhl II für Mathematik RWTH Aachen University 52056 Aachen, Germany

e-mail: volkm@math2.rwth-aachen.de

Abstract

For a positive integer k, a total $\{k\}$ -dominating function of a digraph D is a function f from the vertex set V(D) to the set $\{0, 1, 2, \ldots, k\}$ such that for any vertex $v \in V(D)$, the condition $\sum_{u \in N^-(v)} f(u) \ge k$ is fulfilled, where $N^-(v)$ consists of all vertices of D from which arcs go into v. A set $\{f_1, f_2, \ldots, f_d\}$ of total $\{k\}$ -dominating functions of D with the property that $\sum_{i=1}^d f_i(v) \le k$ for each $v \in V(D)$, is called a total $\{k\}$ -dominating family (of functions) on D. The maximum number of functions in a total $\{k\}$ -dominating family on D is the total $\{k\}$ -domatic number of D, denoted by $d_t^{\{k\}}(D)$. Note that $d_t^{\{1\}}(D)$ is the classic total domatic number $d_t(D)$. In this paper we initiate the study of the total $\{k\}$ -domatic number in digraphs, and we present some bounds for $d_t^{\{k\}}(D)$. Some of our results are extensions of well-know properties of the total domatic number of digraphs and the total $\{k\}$ -domatic number of graphs.

Keywords: digraph, total $\{k\}$ -dominating function, total $\{k\}$ -domination number, total $\{k\}$ -domatic number.

2010 Mathematics Subject Classification: 05C69.

1. INTRODUCTION

In this paper, D is a finite and simple digraph with vertex set V = V(D) and arc set A = A(D). The order |V| of D is denoted by n = n(D). We write $d_D^+(v) = d^+(v)$ for the outdegree of a vertex v and $d_D^-(v) = d^-(v)$ for its indegree. The minimum and maximum indegree are $\delta^-(D)$ and $\Delta^-(D)$. The sets $N^+(v) =$ $\{x|(v,x) \in A(D)\}$ and $N^-(v) = \{x|(x,v) \in A(D)\}$ are called the outset and inset of the vertex v. If $X \subseteq V(D)$, then D[X] is the subdigraph induced by X. For an arc $(x,y) \in A(D)$, the vertex y is an outer neighbor of x and x is an inner neighbor of y. We write K_n^* for the complete digraph of order n. Consult [5] for the notation and terminology which are not defined here.

For a positive integer k, a total $\{k\}$ -dominating function $(T\{k\}DF)$ of a digraph D with $\delta^{-}(D) \geq 1$ is a function f from the vertex set V(D) to the set $\{0, 1, 2, \ldots, k\}$ such that for any vertex $v \in V(D)$, the condition $\sum_{u \in N^{-}(v)} f(u) \geq k$ is fulfilled. The weight of a $T\{k\}DF$ f is the value $\omega(f) = \sum_{v \in V(D)} f(v)$. The total $\{k\}$ -domination number of a digraph D, denoted by $\gamma_t^{\{k\}}(D)$, is the minimum weight of a $T\{k\}DF$ of D. A $\gamma_t^{\{k\}}(D)$ -function is a total $\{k\}$ -dominating function of D with weight $\gamma_t^{\{k\}}(D)$. Note that $\gamma_t^{\{1\}}(D)$ is the classical total domination number $\gamma_t(D)$. If F is a minimum total dominating set of a digraph D with $\delta^{-}(D) \geq 1$, then the function f from V(D) to $\{0, 1, 2, \ldots, k\}$ with f(v) = k for $v \in F$ and f(x) = 0 for $x \in V(D) - F$ is a total $\{k\}$ -dominating function of D and therefore

$$\gamma_t^{\{k\}}(D) \le k|F| = k\gamma_t(D).$$

In this paper we always assume that D is a digraph with $\delta^{-}(D) \geq 1$.

A set $\{f_1, f_2, \ldots, f_d\}$ of distinct total $\{k\}$ -dominating functions of D with the property that $\sum_{i=1}^d f_i(v) \leq k$ for each $v \in V(D)$, is called a *total* $\{k\}$ -dominating family (of functions) on D. The maximum number of functions in a total $\{k\}$ -dominating family (T $\{k\}$ D family) on D is the *total* $\{k\}$ -domatic number of D, denoted by $d_t^{\{k\}}(D)$. The total $\{k\}$ -domatic number is well-defined and

(1) $d_t^{\{k\}}(D) \ge 1$, for all digraphs D with $\delta^-(D) \ge 1$,

since the set consisting of the function $f: V(D) \to \{0, 1, 2, ..., k\}$ defined by f(v) = k for each $v \in V(D)$, forms a T $\{k\}$ D family on D. The total domatic number of a digraph was introduced by Jacob and Arumugam in [6].

Our purpose in this paper is to initiate the study of the total $\{k\}$ -domatic number in digraphs. We first study basic properties and bounds for the total $\{k\}$ -domatic number of a digraph. In addition, we determine the total $\{k\}$ domatic number of some classes of digraphs. Some of our results are extensions of well-know properties of the total domatic number of digraphs and the total $\{k\}$ -domatic number of graphs (see, for example, [2, 3, 4, 6, 8]). We start with the following observation.

Observation 1. Let k be an integer, and let D be a digraph with $\delta^{-}(D) \geq 1$. Then $\gamma_t^{\{k\}}(D) \geq k+1$, with equality if and only if there exists a subset $S \subseteq V(D)$ of size k+1 such that D[S] is a complete digraph, and each vertex $x \in V(D) - S$ has at least k inner neighbors in S.

Proof. Let f be a $\gamma_t^{\{k\}}(D)$ -function, and let $v \in V(D)$ be an arbitrary vertex. The definition implies that $\sum_{x \in N^-(v)} f(x) \ge k$. If $\sum_{x \in N^-(v)} f(x) \ge k+1$, then $\gamma_t^{\{k\}}(D) \ge k+1$. If $\sum_{x \in N^-(v)} f(x) = k$, then let $u \in N^-(v)$ be a vertex such that $f(u) \ge 1$. Since $\sum_{x \in N^-(u)} f(x) \ge k$ and $u \notin N^-(u)$, we deduce that $\omega(f) = \sum_{x \in V(D)} f(v) \ge \sum_{x \in (N^-(u) \cup \{u\})} f(x) \ge k+1$ and therefore $\gamma_t^{\{k\}}(D) \ge k+1$.

Assume that $\gamma_t^{\{k\}}(D) = k + 1$. Let f be a $\gamma_t^{\{k\}}(D)$ -function. If there exists a vertex v such that $f(v) \ge 2$, then we obtain the contradiction $\sum_{x \in N^-(v)} f(x) \le k + 1 - 2 = k - 1$. Hence f(x) = 1 or f(x) = 0 for each vertex $x \in V(D)$. Let $S \subseteq V(D)$ such that f(x) = 1 for each $x \in S$. Then |S| = k + 1, D[S] is a complete digraph, and each vertex $x \in V(D) - S$ has at least k inner neighbors in S.

Conversely, assume that there exists a subset $S \subseteq V(D)$ of size k + 1 such that D[S] is a complete digraph, and each vertex $x \in V(D) - S$ has at least k inner neighbors in S. Define the function f by f(x) = 1 for $x \in S$ and f(x) = 0 for $x \in V(D) - S$. Then f is a total $\{k\}$ -dominating function of D such that $\omega(f) = k + 1$. Since $\gamma_t^{\{k\}}(D) \ge k + 1$, we deduce that $\gamma_t^{\{k\}}(D) = k + 1$.

2. Properties of the $\{k\}$ -domatic Number

In this section we mainly present basic properties of $d_t^{\{k\}}(D)$ and bounds on the total $\{k\}$ -domatic number of a digraph.

Theorem 2. If D is a digraph of order n, then $\gamma_t^{\{k\}}(D) \cdot d_t^{\{k\}}(D) \leq kn$. Moreover, if $\gamma_t^{\{k\}}(D) \cdot d_t^{\{k\}}(D) = kn$, then for each $T\{k\}D$ family $\{f_1, f_2, \ldots, f_d\}$ on D with $d = d_t^{\{k\}}(D)$, each function f_i is a $\gamma_t^{\{k\}}(D)$ -function and $\sum_{i=1}^d f_i(v) = k$ for all $v \in V(D)$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a T $\{k\}$ D family on D such that $d = d_t^{\{k\}}(D)$. Then

$$d \cdot \gamma_t^{\{k\}}(D) = \sum_{i=1}^d \gamma_t^{\{k\}}(D) \le \sum_{i=1}^d \sum_{v \in V(D)} f_i(v) = \sum_{v \in V(D)} \sum_{i=1}^d f_i(v) \le \sum_{v \in V(D)} k = kn.$$

If $\gamma_t^{\{k\}}(D) \cdot d_t^{\{k\}}(D) = kn$, then the two inequalities occurring in the proof become equalities. Hence for the T{k}D family $\{f_1, f_2, \ldots, f_d\}$ on D and for each i,

 $\sum_{v \in V(D)} f_i(v) = \gamma_t^{\{k\}}(D).$ Thus each function f_i is a $\gamma_t^{\{k\}}(D)$ -function, and $\sum_{i=1}^d f_i(v) = k$ for all $v \in V(D)$.

The special case k = 1 in Theorem 2 can be found in [6].

Corollary 3. Let k, n be two positive integers. If k + 1 is a divisor of n and $\frac{n}{k+1} \ge 2$, then $d_t^{\{k\}}(K_n^*) = \frac{kn}{k+1}$.

Proof. Applying Observation 1 and Theorem 2, we see that $d_t^{\{k\}}(K_n^*) \leq \frac{kn}{k+1}$.

Now we consider a partition of $V(K_n^*)$ into $s = \frac{n}{k+1}$ sets V_1, V_2, \ldots, V_s such that $|V_i| = k+1$ for each *i*. Let $V_i = \{v_1^i, v_2^i, \ldots, v_{k+1}^i\}$ for $1 \le i \le s$. Define, for $1 \le i \le s$ and $1 \le j \le k$,

$$f_i^j(v_1^i) = \dots = f_i^j(v_j^i) = 1, \ f_i^j(v_{j+1}^{i+1}) = \dots = f_i^j(v_{k+1}^{i+1}) = 1$$
 and $f_j^j(x) = 0$ otherwise, where the indices $i+1$ are taken modulo.

 $f_i^j(x) = 0$ otherwise, where the indices i + 1 are taken modulo s. It is easy see that $\{f_i^j \mid 1 \le i \le \frac{n}{k+1}, 1 \le j \le k,\}$ is a T $\{k\}$ D family on K_n^* , and therefore $d_t^{\{k\}}(K_n^*) \ge \frac{kn}{k+1}$. Since k + 1 is a divisor of n, the proof is complete.

A further consequence of Theorem 2 and Observation 1 now follows.

Corollary 4. If $k \ge 2$ is an integer, and D is a digraph of order k + 1, then $d_t^{\{k\}}(D) \le k - 1$.

Proof. Since $\gamma_t^{\{k\}}(D) \ge k+1$, it follows from Theorem 2 that $d_t^{\{k\}}(D) \le k$. If $\gamma_t^{\{k\}}(D) \ge k+2$, then Theorem 2 implies $d_t^{\{k\}}(D) \le k-1$ immediately. If $\gamma_t^{\{k\}}(D) = k+1$ and $d_t^{\{k\}}(D) = k$, then for the T{k}D family $\{f_1, f_2, \ldots, f_k\}$ on D, each function f_i is a $\gamma_t^{\{k\}}(D)$ -function, and Observation 1 leads to the contradiction that $f_1 \equiv f_2 \equiv \cdots \equiv f_k$. This completes the proof.

Corollary 5. If k is a positive integer, and D is a digraph of order n, then $d_t^{\{k\}}(D) \leq \frac{kn}{k+1}$, with equality only if k + 1 is a divisor of n and $\frac{n}{k+1} \geq 2$ when $k \geq 2$.

Proof. Since $\gamma_t^{\{k\}}(D) \geq k+1$, it follows from Theorem 2 that $d_t^{\{k\}}(D) \leq \frac{kn}{\gamma_t^{\{k\}}(D)} \leq \frac{kn}{k+1}$, and this is the desired inequality.

Assume that $d_t^{\{k\}}(D) = \frac{kn}{k+1}$. Since (k, k+1) = 1, k+1 must be a divisor of n. If $k \ge 2$, then it follows from Corollary 4 that $\frac{n}{k+1} \ge 2$.

Corollary 3 demonstrates that Corollary 5 is sharp.

Theorem 6. If D is a digraph of order n and k a positive integer, then $\gamma_t^{\{k\}}(D) + d_t^{\{k\}}(D) \le nk + 1.$

Proof. Applying Theorem 2, we obtain $\gamma_t^{\{k\}}(D) + d_t^{\{k\}}(D) \le \frac{kn}{d_t^{\{k\}}(D)} + d_t^{\{k\}}(D)$. Note that $d_t^{\{k\}}(G) \geq 1$, by inequality (1), and that Corollary 5 implies that $d_t^{\{k\}}(D) \leq n$. Using these inequalities, and the fact that the function g(x) = $x_t^{\{k\}}(D) \leq n!$ compared inequalities, and the fact that the function g(x) = x + (kn)/x is decreasing for $1 \leq x \leq \sqrt{kn}$ and increasing for $\sqrt{kn} \leq x \leq n$, we obtain $\gamma_t^{\{k\}}(D) + d_t^{\{k\}}(D) \leq \max\{kn+1, \frac{kn}{n} + n\} = nk + 1$, and this is the desired bound.

If C_n denotes a directed cycle on n vertices, then the function $f: V(C_n) \to$ $\{0, 1, \ldots, k\}$ defined by f(x) = k for each $x \in V(C_n)$ is the unique total $\{k\}$ -dominating function of C_n and hence $\gamma_t^{\{k\}}(C_n) = nk$ and $d_t^{\{k\}}(C_n) = 1$. This demonstrates that Theorem 6 is sharp.

Theorem 7. Let D be a digraph of order $n \ge 3$, and let $k \ge 1$ be an integer. If $d_t^{\{k\}}(D) \ge 2$, then $\gamma_t^{\{k\}}(D) + d_t^{\{k\}}(D) \le \frac{kn}{2} + 2$.

Proof. Theorem 2 implies that $\gamma_t^{\{k\}}(D) + d_t^{\{k\}}(D) \leq \gamma_t^{\{k\}}(D) + \frac{kn}{\gamma_t^{\{k\}}(D)}$. It follows from Observation 1 and Theorem 2 that $k + 1 \leq \gamma_t^{\{k\}}(D) \leq kn/2$. Using these inequalities, and the fact that the function g(x) = x + (kn)/x is decreasing for $k+1 \leq x \leq \sqrt{kn}$ and increasing for $\sqrt{kn} \leq x \leq kn/2$, we obtain

 $\gamma_t^{\{k\}}(G) + d_t^{\{k\}}(G) \le \max\left\{k + 1 + \frac{kn}{k+1}, \frac{kn}{2} + 2\right\} = \frac{kn}{2} + 2,$

and this is the desired bound.

Theorem 8. If D is a digraph and $k \ge 1$ an integer, then $d_t^{\{k\}}(D) \le \delta^-(D)$. Moreover, if $d_t^{\{k\}}(D) = \delta^-(D)$, then for each function of any $T\{k\}D$ family $\{f_1, f_2, \ldots, f_d\}$ and for all vertices v of indegree $\delta^-(D)$, $\sum_{u \in N^-(v)} f_i(u) = k$ and $\sum_{i=1}^{d} f_i(u) = k \text{ for every } u \in N^-(v).$

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a T $\{k\}$ D family on D such that $d = d_t^{\{k\}}(D)$, and let v be a vertex of minimum indegree $\delta^-(D)$. Since $\sum_{u \in N^-(v)} f_i(u) \ge k$ for all $i \in \{1, 2, \dots, d\}$, we obtain $kd \leq \sum_{i=1}^{d} \sum_{u \in N^{-}(v)} f_i(u) = \sum_{u \in N^{-}(v)} \sum_{i=1}^{d} f_i(u) \leq \sum_{u \in N^{-}(v)} k = k\delta^{-}(D)$, and this leads to the desired bound.

If $d_t^{\{k\}}(D) = \delta^-(D)$, then the two inequalities occurring in the proof become equalities, which leads to the two properties given in the statement.

The special case k = 1 in Theorem 8 can be found in [6].

Observation 9. Let D be a digraph with the property that the underlying graph is connected and bipartite. If $k \geq 1$ is an integer, then $\gamma_t^{\{k\}}(D) \geq 2k$.

Proof. Let f be a $\gamma_t^{\{k\}}(D)$ -function, and let V_1 and V_2 be the partite sets of the underlying graph. If $w_i \in V_i$, then the definition implies that $\sum_{x \in N^-(w_i)} f(x) \ge k$ for i = 1, 2. It follows that $w(f) = \sum_{x \in V(D)} f(x) = \sum_{x \in V(D) - V_1} f(x) + \sum_{x \in V(D) - V_2} f(x) \ge \sum_{x \in N^-(w_2)} f(x) + \sum_{x \in N^-(w_1)} f(x) \ge 2k$, thus $\gamma_t^{\{k\}}(D) \ge 2k$.

Corollary 10. If $K_{p,p}^*$ is the complete bipartite digraph and $k \ge 1$ an integer, then $d_t^{\{k\}}(K_{p,p}^*) = p$.

Proof. Theorem 2 and Observation 9 show that $d_t^{\{k\}}(K_{p,p}^*) \leq p$.

Now let $\{u_1, u_2, \ldots, u_p\}$ and $\{v_1, v_2, \ldots, v_p\}$ be the partite sets of the complete bipartite digraph. Define $f_i(u_i) = f_i(v_i) = k$ and $f_i(x) = 0$ for each vertex $x \in V(D) - \{u_i, v_i\}$ and each $i \in \{1, 2, \ldots, p\}$. Then we observe that f_i is a T $\{k\}$ DF of $K_{p,p}^*$ for each $i \in \{1, 2, \ldots, p\}$. Therefore $\{f_1, f_2, \ldots, f_p\}$ is a T $\{k\}$ D family on $K_{p,p}^*$. Consequently, $d_t^{\{k\}}(K_{p,p}^*) \ge p$ and so $d_t^{\{k\}}(K_{p,p}^*) = p$.

Corollary 10 demonstrates that Theorem 8 is sharp.

Theorem 11. Let $k \ge 1$ be an integer and D a digraph of order n with $\delta^{-}(D) \ge 1$. If $\delta^{-}(D) \mid k$, then $d_t^{\{k\}}(D) \ge \delta^{-}(D) - 1$.

Proof. If $\delta^{-}(D) = 1$, then the result is immediate.

Let $\delta^-(D) \ge 2$ and let $V(D) = \{v_1, v_2, \dots, v_n\}$. Define $f_i : V(D) \to \{0, 1, \dots, k\}$ by

$$f_i(v_j) = \begin{cases} \frac{k}{\delta^-(D)} + 1 & \text{if } j = i, \\ \frac{k}{\delta^-(D)} & \text{if } j \neq i, \end{cases} \text{ for every } 1 \le i \le \delta^-(D) - 1 \text{ and } 1 \le j \le n.$$

Then for each $v \in V(D)$ and each $1 \le i \le \delta^{-}(D) - 1$,

$$\sum_{u \in N^-(v)} f_i(u) \ge \sum_{u \in N^-(v)} \frac{k}{\delta^-(D)} \ge \frac{k}{\delta^-(D)} \delta^-(D) = k.$$

Hence f_i is a T{k}DF of D for each $1 \le i \le \delta^-(D) - 1$. Now, since $\delta^-(D) \mid k$, we have

 $\sum_{i=1}^{\delta(D)-1} f_i(v) \leq \frac{k}{\delta^-(D)} (\delta^-(D) - 2) + \left(\frac{k}{\delta^-(D)} + 1\right) = k + \left(1 - \frac{k}{\delta^-(D)}\right) \leq k$ for each $v \in V(D)$. Thus $\{f_1, f_2, \dots, f_{\delta^-(D)-1}\}$ is a T $\{k\}$ D family on D, and the proof is complete.

Theorem 12. Let $k \ge 1$ be an integer and D a digraph of order n. If $\delta^{-}(D) \nmid k$, then $d_t^{\{k\}}(D) \ge \left\lfloor \frac{k}{\lceil k/\delta^{-}(D) \rceil} \right\rfloor$.

$$\begin{array}{l} \textit{Proof.} \ \mathrm{Let} \ V(D) = \{v_1, v_2, \dots, v_n\}. \ \mathrm{Define} \ f_i : V(D) \to \{0, 1, \dots, k\} \ \mathrm{by} \\ f_i(v_j) = \begin{cases} \lfloor \frac{k}{\delta^-(D)} \rfloor & \mathrm{if} \quad j = i, \\ & & & & & \\ \lceil \frac{k}{\delta^-(D)} \rceil & \mathrm{if} \quad j \neq i, \end{cases} \text{ for every } 1 \leq i \leq \lfloor \frac{k}{\lceil k/\delta^-(D) \rceil} \rfloor \ \mathrm{and} \ 1 \leq j \leq n. \end{array}$$

Then for each $v \in V(D)$ and each $1 \le i \le \left\lfloor \frac{k}{\lceil k/\delta^-(D) \rceil} \right\rfloor$,

$$\sum_{u \in N^-(v)} f_i(u) \ge \left\lfloor \frac{k}{\delta^-(D)} \right\rfloor + \left\lceil \frac{k}{\delta^-(D)} \right\rceil \left(\delta^-(D) - 1\right) \ge \left\lceil \frac{k}{\delta^-(D)} \right\rceil \delta^-(D) - 1 \ge k.$$

Hence f_i is a T{k}DF of D for each i. Since $\delta^-(D) \nmid k$, we have

$$\sum_{i=1}^{\left\lfloor \frac{k}{\lfloor k/\delta^{-}(D) \rceil} \right\rfloor} f_i(v) \le \left\lceil \frac{k}{\delta^{-}(D)} \right\rceil \cdot \left\lfloor \frac{k}{\lfloor \frac{k}{\delta^{-}(D)} \rceil} \right\rfloor \le \left\lceil \frac{k}{\delta^{-}(D)} \right\rceil \cdot \frac{k}{\lfloor \frac{k}{\delta^{-}(D)} \rceil} = k$$

for each $v \in V(D)$. Thus $\{f_1, f_2, \dots, f_{\lfloor \frac{k}{\lceil k/\delta^-(D) \rceil} \rfloor}\}$ is a T $\{k\}$ D family on D, and the proof is complete.

Using Theorems 2, 8, 11 and 12, we will improve Theorem 6 considerably for some cases.

Corollary 13. Let $k \ge 1$ be an integer, and let D be a digraph of order n. If $\delta^{-}(D) > k$, then $\gamma_t^{\{k\}}(D) + d_t^{\{k\}}(D) \le n + k$.

Proof. Since $\delta^{-}(D) > k$, it follows from Theorem 12 that

$$d_t^{\{k\}}(D) \ge \left\lfloor \frac{k}{\left\lceil \frac{k}{\delta^-(D)} \right\rceil} \right\rfloor = k.$$

In addition, Theorem 8 implies that $d_t^{\{k\}}(D) \leq \delta^-(D) \leq n$. Using these two inequalities, and the fact that the function g(x) = x + (kn)/x is decreasing for $k \leq x \leq \sqrt{kn}$ and increasing for $\sqrt{kn} \leq x \leq n$, Theorem 2 leads to

$$\gamma_t^{\{k\}}(D) + d_t^{\{k\}}(D) \le \frac{kn}{d_t\{k\}(D)} + d_t^{\{k\}}(D) \le \max\left\{\frac{kn}{k} + k, \frac{kn}{n} + n\right\} = n + k.$$

This is the desired bound, and the proof is complete.

Corollary 14. Let $k \ge 1$ be an integer, and let D be a digraph of order n with $\delta^{-}(D) \ge 2$. If $\delta^{-}(D) \mid k$, then $\gamma_t^{\{k\}}(D) + d_t^{\{k\}}(D) \le \frac{kn}{\delta^{-}(D)-1} + \delta^{-}(D) - 1$.

Proof. Since $\delta^{-}(D) \mid k$, Theorem 11 shows that $d_t^{\{k\}}(D) \geq \delta^{-}(D) - 1$, and Theorem 8 implies that $d_t^{\{k\}}(D) \leq \delta^{-}(D)$. Using these two inequalities and Theorem 2, we obtain the desired bound as follows $\gamma_t^{\{k\}}(D) + d_t^{\{k\}}(D) \leq \frac{kn}{d_t^{\{k\}}(D)} + d_t^{\{k\}}(D) \leq \max\left\{\frac{kn}{\delta^{-}(D)-1} + \delta^{-}(D) - 1, \frac{kn}{\delta^{-}(D)} + \delta^{-}(D)\right\} = \frac{kn}{\delta^{-}(D)-1} + \delta^{-}(D) - 1.$

Let D be a digraph. By D^{-1} we denote the digraph obtained by reversing all arcs of D. A digraph without directed cycles of length 2 is called an *oriented graph*. An oriented graph D is a *tournament* when either $(x, y) \in A(D)$ or $(y, x) \in A(D)$ for each pair of distinct vertices $x, y \in V(D)$.

Theorem 15. For every oriented graph D with $\delta^{-}(D) \ge 1$ and $\delta^{-}(D^{-1}) \ge 1$, $d_t^{\{k\}}(D) + d_t^{\{k\}}(D^{-1}) \le n-1$. If $d_t^{\{k\}}(D) + d_t^{\{k\}}(D^{-1}) = n-1$, then D is a regular tournament.

Proof. Since $\delta^{-}(D) + \delta^{-}(D^{-1}) \leq n-1$, Theorem 8 leads to

 $d_t^{\{k\}}(D) + d_t^{\{k\}}(D^{-1}) \le \delta^-(D) + \delta^-(D^{-1}) \le n - 1.$

If D is not a tournament or D is a non-regular tournament, then $\delta^{-}(D) + \delta^{-}(D^{-1}) \leq n-2$, and hence we deduce from Theorem 8 that

$$d_t^{\{k\}}(D) + d_t^{\{k\}}(D^{-1}) \le \delta^-(D) + \delta^-(D^{-1}) \le n - 2.$$

Now we present further lower bounds on the total $\{k\}$ -domatic number.

Theorem 16. Let $k \ge 1$ be an integer, and D a digraph with $\delta^{-}(D) = \delta^{-} \ge 1$. (i) If $k < \delta^{-}$, then $d_t^{\{k\}}(D) \ge k$.

- (ii) If $k = p\delta^-$ with an integer $p \ge 1$, then $d_t^{\{k\}}(D) \ge \delta^- 1$.
- (iii) If $k = p\delta^- + r$ with integers $p, r \ge 1$ and $r \le \delta^- 1$, then $d_t^{\{k\}}(D) \ge \left\lceil \frac{p(\delta^- 1) + 1}{p+1} \right\rceil$.

Proof. (i) If $k < \delta^-$, then Theorem 12 implies immediately $d_t^{\{k\}}(D) \ge k$.

(ii) If $k = p\delta^{-}$, then Theorem 11 implies immediately $d_t^{\{k\}}(D) \ge \delta^{-} - 1$.

(iii) If $k = p\delta^- + r$ with integers $p, r \ge 1$ and $r \le \delta^- - 1$, then $\lceil \frac{k}{\delta^-} \rceil = p + 1$ and therefore we deduce from Theorem 12 that

$$d_t^{\{k\}}(D) \ge \left\lfloor \frac{k}{\lceil k/\delta^-\rceil} \right\rfloor = \left\lfloor \frac{k}{p+1} \right\rfloor = \left\lfloor \frac{p\delta^- + r}{p+1} \right\rfloor \ge \frac{p\delta^- + r}{p+1} - \frac{p}{p+1} \ge \frac{p(\delta^- - 1) + 1}{p+1}.$$

This leads to the desired bound, and the proof is complete.

Corollary 17. If $k \ge 1$ is an integer and D a digraph with $\delta^{-}(D) \ge 1$, then $d_t^{\{k\}}(D) \ge \min\left\{k, \frac{\delta^{-}(D)}{2}\right\}$.

The complement \overline{D} of a digraph D is that digraph with vertex set V(D) such that for two arbitrary different vertices u and v the arc (u, v) belongs to \overline{D} if and only if (u, v) does not belong to D.

Theorem 18. Let $k \ge 1$ be an integer, and let D be an r-diregular digraph of order $n \ge 3$ with $1 \le r \le n-2$. Then $d_t^{\{k\}}(D) + d_t^{\{k\}}(\overline{D}) \ge \min\{k+1, \lceil \frac{n-1}{2} \rceil\}$.

Proof. Assume first that $k < \delta^{-}(D)$. Then it follows from Theorem 16 (i) that

*d*_t^{k}(*D*) $\geq k$ and thus $d_t^{\{k\}}(D) + d_t^{\{k\}}(\overline{D}) \geq k + 1$. Assume next that $k \geq \delta^-(D)$ and $k < \delta^-(\overline{D})$. Then Theorem 16 (i) implies $d_t^{\{k\}}(\overline{D}) \geq k$ and so $d_t^{\{k\}}(D) + d_t^{\{k\}}(\overline{D}) \geq k + 1$. Finally assume that $k \geq \delta^-(D)$ and $k \geq \delta^-(\overline{D})$. Applying Theorem 16 (ii) and (iii), we observe that $d_t^{\{k\}}(D) \geq \delta^-(D)/2$ and $d_t^{\{k\}}(\overline{D}) \geq \delta^-(\overline{D})/2$, and hence we deduce that

$$d_t^{\{k\}}(D) + d_t^{\{k\}}(\overline{D}) \ge \frac{\delta^-(D)}{2} + \frac{\delta^-(\overline{D})}{2} = \frac{n-1}{2}.$$

Combining these inequalities, we obtain the desired bound.

Theorem 19. For every digraph D of order n, $d_t^{\{k\}}(D) \ge \left|\frac{n}{n-\delta^-(D)}\right|$.

Proof. Let S be any subset of V(D) with $|S| \ge n - \delta^{-}(D)$. If $v \in V(D) - \delta^{-}(D)$. S, then there exists at least one vertex $u \in S$ such that $(u, v) \in A(D)$. Let $S_1, S_2, \ldots, S_{\lfloor \frac{n}{n-\delta^-(D)} \rfloor}$ be disjoint subsets of V(D) each of cardinality $n-\delta^-(D)$. Define $f_i: V(G) \to \{0, 1, \dots, k\}$ by

$$f_i(v) = \begin{cases} k & \text{if } v \in S_i, \\ 0 & \text{otherwise,} \end{cases}$$

for each $1 \leq i \leq \left| \frac{n}{n - \delta^-(D)} \right|$.

Since $|S_i| = n - \delta^{-}(D)$, it is clear that f_i is a total $\{k\}$ -dominating function of D for each i. Since also S_i are disjoint subsets of V(D), then for every $v \in V(D)$ $\sum_{i=1}^{\left\lfloor \frac{n}{n-\delta^-(D)} \right\rfloor} f_i(v) \le k \text{ . Thus } \{f_1, f_2, \dots, f_{\left\lfloor \frac{n}{n-\delta^-(D)} \right\rfloor} \} \text{ is a } \mathsf{T}\{k\}\mathsf{D} \text{ family on } D,$ and the proof is complete.

The special case k = 1 in Theorems 15 and 19 can be found in [6].

3. The Total $\{k\}$ -domatic Number of Graphs

The total $\{k\}$ -dominating function of a graph G is defined in [7] as a function f: $V(G) \longrightarrow \{0, 1, 2, ..., k\}$ such that $\sum_{x \in N_G(v)} f(x) \ge k$ for all $v \in V(G)$. The sum $\sum_{x \in V(G)} f(x)$ is the weight w(f) of f. The minimum of weights w(f), taken over all total $\{k\}$ -dominating functions f on G is called the *total* $\{k\}$ -domination number of G, denoted by $\gamma_t^{\{k\}}(G)$. In the special case k = 1, $\gamma_t^{\{k\}}(G)$ is the classical total domination number $\gamma_t(G)$.

A set $\{f_1, f_2, \ldots, f_d\}$ of distinct total $\{k\}$ -dominating functions on G such that $\sum_{i=1}^{d} f_i(v) \leq k$ for each $v \in V(G)$, is called a *total* $\{k\}$ -dominating family on G. The maximum number of functions in a total $\{k\}$ -dominating family on G is the *total* $\{k\}$ -domatic number of G, denoted by $d_t^{\{k\}}(G)$. This parameter was introduced by Sheikholeslami and Volkmann in [8] and has been studied in [1]. In the case k = 1, we write $d_t(G)$ instead of $d_t^{\{1\}}(G)$ which was introduced by Cockayne, Dawes and Hedetniemi [3], and has been studied in many articles.

The associated digraph D(G) of a graph G is the digraph obtained from G when each edge e of G is replaced by two oppositely oriented arcs with the same ends as e. Since $N_{D(G)}^{-}(v) = N_{G}(v)$ for each vertex $v \in V(G) = V(D(G))$, the following useful observation is valid.

Observation 20. If D(G) is the associated digraph of a graph G, then $\gamma_t^{\{k\}}(D(G)) = \gamma_t^{\{k\}}(D)$ and $d_t^{\{k\}}(D(G)) = d_t^{\{k\}}(D)$.

There are a lot of interesting applications of Observation 20. Using Theorems 2 and 6, we obtain the next results immediately.

Corollary 21 [8]. If $k \ge 1$ is an integer and G a graph of order n without isolated vertices, then $\gamma_t^{\{k\}}(G) \cdot d_t^{\{k\}}(G) \le kn$.

The case k = 1 in Corollary 21 leads to the well-known inequality $\gamma_t(G) \cdot d_t(G) \leq n$, given by Cockayne, Dawes and Hedetniemi [3] in 1980.

Corollary 22 [8]. If $k \ge 1$ is an integer and G a graph of order n without isolated vertices, then $\gamma_t^{\{k\}}(G) + d_t^{\{k\}}(G) \le nk + 1$.

Corollary 23 [3]. If G is graph of order n without isolated vertices, then $\gamma_t(G) + d_t(G) \le n+1$.

Theorem 7 and Observation 20 lead to the following bound.

Corollary 24 [8]. Let $k \ge 1$ be an integer and G a graph of order n without isolated vertices. If $d_t^{\{k\}}(G) \ge 2$, then $\gamma_t^{\{k\}}(G) + d_t^{\{k\}}(G) \le \frac{kn}{2} + 2$.

Corollary 25 [4]. If G is a graph of order n without isolated vertices and if $d_t(G) \ge 2$, then $\gamma_t(G) + d_t(G) \le \frac{n}{2} + 2$.

Since $\delta^{-}(D(G)) = \delta(G)$, the next result follows from Observation 20 and Theorem 8.

Corollary 26 [8]. If $k \ge 1$ is an integer and G a graph without isolated vertices, then $d_t^{\{k\}}(G) \le \delta(G)$.

The case k = 1 in Corollary 26 can be found in [3]. Theorem 11 and Observation 20 imply the next result.

Corollary 27 [2]. Let $k \ge 1$ be an integer and G a graph of order n without isolated vertices. If $\delta(G) \mid k$, then $d_t^{\{k\}}(G) \ge \delta(G) - 1$.

Finally, the next theorem follows from Theorem 18 and Observation 20.

Corollary 28 [1]. For every δ -regular graph of order $n \geq 5$ in which neither G nor \overline{G} have isolated vertices, $d_t^{\{k\}}(G) + d_t^{\{k\}}(\overline{G}) \geq \min\{k+1, \lfloor \frac{n-2}{2} \rfloor\}$.

References

- H. Aram, S.M. Sheikholeslami and L. Volkmann, On the total {k}-domination and {k}-domatic number of a graph, Bull. Malays. Math. Sci. Soc. (to appear).
- [2] J. Chen, X. Hou and N. Li, The total {k}-domatic number of wheels and complete graphs, J. Comb. Optim. (to appear).
- [3] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, *Total domination in graphs*, Networks 10 (1980) 211–219. doi:10.1002/net.3230100304
- [4] E.J. Cockayne, T.W. Haynes, S.T. Hedetniemi, Z. Shanchao and B. Xu, *Extremal graphs for inequalities involving domination parameters*, Discrete Math. 216 (2000) 1–10. doi:10.1016/S0012-365X(99)00251-4
- [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in graphs (New York: Marcel Dekker, Inc., 1998).
- [6] K. Jacob and S. Arumugam, Domatic number of a digraph, Bull. Kerala Math. Assoc. 2 (2005) 93–103.
- [7] N. Li and X. Hou, On the total {k}-domination number of Cartesian products of graphs, J. Comb. Optim. 18 (2009) 173–178. doi:10.1007/s10878-008-9144-2
- [8] S.M. Sheikholeslami and L. Volkmann, The total {k}-domatic number of a graph, J. Comb. Optim. 23 (2012) 252–260. doi:10.1007/s10878-010-9352-4

Received 31 March 2011 Revised 29 August 2011 Accepted 30 August 2011